WEEK 1. Engineering Calculations Processes Process Variables
|
|
|
- Bernice McGee
- 9 years ago
- Views:
Transcription
1 WEEK 1 Engineering Calculations Processes Process Variables
2 2.1 Units and Dimensions Units and dimensions are important in science and engineering A measured quantity has a numerical value and a unit (ex: 25 o C) Dimension: Length, time, mass or temperature - These are properties that can be measured or obtained by multiplying other dimensions (ex: velocity = Length/time; volume = Length 3 ) Note: If the units are the same, they can be added or subtracted (ex: 3 cm- 1 cm). If they are different, conversion is required in order to obtain the same units.
3 2.2 Unit Conversion Measured quantity - Unit having appropriate dimension. Ex: Volume-- 3 cm 3 - Length 3 Measure quantity- numerical value, proper unit - proper dimension Note: The numerical value depends on the unit. (Inside cover of the book) To convert from one unit to another, we multiply by a conversion factor Ex: 36 mg (1g/1000 mg) = g 36 mg (0.001g/1 mg) = g Note: The old units should cancel out. All we have left is the desired unit. We also deal with compound units (Ex: miles/h). These units are formed by combining different dimensions (Ex: to do in class: 1 cm/s 2 in km/yr 2 )
4 2.3 Systems of Units (SI, American Engineering System) Base units are units for mass, length, time, temperature, electrical current and light intensity (Page 11 in the textbook). Ex1: Quantity: temperature, Base unit: Kelvin (SI), symbol: K. Ex2: Quantity: time, Base unit: second, symbol: s. Multiple units: multiple or fraction of base units such as hours, milliseconds, year etc Multiple unit prefixes are: Mega (M) = 10 6, Kilo (k) = 10 3, Centi (c): 10-2, Milli (m) = 10-3, Micro (μ) = 10-6, Nano (n) = Note: There are quantities which require derived units. It is imperative that we recognize units associated with quantities. Ex: volume liter l or L Force Newton (SI), dyne (CGS) N Pressure pascal (SI) Pa Energy, work joule (SI) J Power watt W Conversion: W = 1 J/s = 1kg.m 2 /s 3 ; 1 N = 1 kg.m/s 2 Example: Conversion between systems of units: 23 lbm.ft/min 2 in kg.cm/s 2
5 2.4 Force and Weight For now, we are interested in force and weight in the context of units and unit conversion Force is proportional to mass X acceleration SI: kg.m/s 2 CGS: g.cm/s 2 American engineering: lbm.ft/s 2 1 Newton (N) = 1 kg.m/s 2 (SI) 1 dyne = 1 g.cm/s 2 (CGS) 1 lbf = lbm.ft/s 2 (American engineering) (acceleration of gravity at sea level and 45 o latitude) Conversion factors: 1 kg.(m/s 2 )/N, 1 g.(cm/s 2 )/dyne, lbm.(ft/s 2 )/lbf Weight is force exerted on an object by gravitational acceleration W = m g g = m/s 2 = 980 cm/s 2 = ft/s 2 There is a distinction between weight and mass (Go over example on page 13 in class)
6 2.5 Numerical Calculations and Estimations Scientific notation, significant figures, and precision: ax10 b (b is a negative or positive integer) Ex: 123,000,000=1.23X10 8 ; =2.8X10-5 Significant figures: a) There is a decimal point: (2 significant figures) First nonzero digit on the left to the last digit (zero or nonzero) on the right b) There is no decimal point: (3 significant figures) First nonzero digit on the left to the last nonzero digit of the number More examples: 2300 : 2; : 4; : 5; : 4; : 2; : 4. When using scientific notations, make sure that the significant digits are shown. 2.3 x10 3 ; x10 3 ; x10 3 ; x10 4 ; 3.5 x10-2 ; x10-2. Note: high precision: close to each other High accuracy: very near the target Significant figures have to do with precision of a reported (or measured) quantity. Ex1: 3 significant figures: the value of the third of the figures may be off by ass much as one half. Ex2: 8.3 g lies between 8.25 g and 8.35 g Ex3: g lies between g and g
7 2.5 Numerical Calculations and Estimations When doing multiplication or division, keep the lowest number of significant figures of any of the multiplicands or divisors. Ex1: 3.57x4.286 = = 15.3 (3) (4) (3) Ex2: (5.2x10-4 ) (0.1635x10 7 )/2.67 = (2) (4) (3) = 3.2x10 2 =320 (9) (2) Addition and subtraction: the number of decimal places in the answer = the number of decimal places in the quantity with the smallest number of decimal places Ex: (2.75x10 6 ) + (3.400x10 4 ) = 2.78x10 6 (3) (4) (3) Note: Equations must be dimensionally homogeneous (End of Chapter 2)
8 Chapter 3 Processes and process variables Process : any operation or series of operations that causes a physical or chemical change in a substance or a mixture of substances Input or Feed Process Output or Product Process Unit : apparatus in which one of the operations that constitutes of a process is carried out Examples of process units reactors, distillation columns, heat exchanger We need to introduce definitions and measurement techniques to help understand and design process units
9 Chapter 3 Density: mass/volume of substance (kg/m 3, g/cm 3, lbm/ft 3 ) Specific volume of a substance: volume of substance/mass (m 3 /kg, cm 3 /g, ft 3 /lbm) Density of solid and liquid are weak functions of temperature and pressure. Ex1: density of carbon tetrachloride: g/cm 3 Ex2: mass of 20.0 cm 3 of carbon tetrachloride? 20.0 cm 3 x g/cm 3 = 31.9 g Ex3: volume of 6.20 lbm of tetrachloride: 6.20 lbm x (454g/1lbm) x (1cm 3 /1.595 g) = 1760 cm 3
10 Chapter 3 Specific gravity of a substance: SG = ρ/ρref. ρref(h 2 0, 4 o C) = g/cm 3 = 1000 kg/m 3 = lbm/ft 3. SG = o /4 o (Example in class) 3.2 Flow rate: Mass and volumetric flow rate - Flow rate of a material = rate at which a material is transported through a process line. Mass flow rate (mass/time); volumetric flow rate (volume/time) How do we measure flow rate? (Page 46: rotameter - float and orifice meter pressure drop). 3.3 Chemical composition Moles and molecular weights. Atomic weight of an element = mass of an atom. Molecular weight of a compound = sum of the atomic weights of all the atoms that make up the molecule of the compound Ex: atomic weight (O): 16; Molecular weight of O 2 is about 32. Unit: 1 gram-mole (g-mole or mole in SI) = amount of that species (# moles) that is numerically equal to its molecular weight. Instead of g-mole, we may write moles (ex: 2 g-moles = 2 moles) Ex: Carbon monoxide (CO) = 28 g/mole -> 1 g-mole of CO contains 28 g. Also 1 lb-mole of CO contains 28 lbm Conversion: 34 kg NH 3 x (1 kmol/17 kg NH 3 ) = 2 kmol NH 3 4 lb-mole NH 3 x (17 lbm/1 lb-mole NH 3 ) = 68 lbm NH 3 In class Page 48 Example 3.3-1
11 Chapter 3 Notes: Avogadro's number: 6.02x10 23 molecules/mole Molecular formula: CxOy means x mole of C and y mole of O. But we have 1 mole of Cx and 1 mole of Oy. Also: 1 mole of CxOy. Mass, mole fractions and average molecular weight Mass fraction = X A = mass of A/total mass Mole fraction = Y A = mole of A/total moles Example to do in class In this example, we use conversion of mass and mole fractions. You are giving mass %. 1) Use 100 (g, kg, lbm) basis, 2) Obtain the mass, 3) Convert mass to moles using molecular weight. When giving mole %, the procedure is similar.
12 Chapter 3 Average molecular weight (or mean molecular weight) of a mixture: M (kg/kmol or lbm/lbmol). M = y M + y M + = y M i i M i : molecular weight of compound i; y i : mole fraction of compound i. 1 x x xi... M M M M = = 1 2 x i: mass fraction of i Example page 51 to do in class i
13 3.4 Pressure 3.4a Fluid pressure and hydrostatic head: P = F/A = N/m 2 ; dynes/cm 2 ; lbf/in 2 1 N/m 2 = 1 pascal (Pa) Po P = Po + ρgh h P is the hydrostatic pressure of the fluid Head of a particular fluid P head = ρ fluid gh P Example page 55 to do in class We need to use 1 N = 1 kg.m/s 2 ; 1 dyne = 1 g.cm/s 2 ; 1lbf = lbm.ft/s 2 to obtain proper units. 3.4b Atmospheric pressure, absolute pressure and gauge pressure: P abs = P gauge + P atmospheric 3.4c Fluid pressure measurement: Bourdon gauge; Manometer. Read Page 58 and 59
14 3.5 Temperature T(K) = T( o C) T( o R) = T( o F) T( o R) = 1.8 T(K) T( o F) = 1.8 T( o C) + 32 HMK: 2.2, 2.3, 2.8, 2.9, 3.2, 3.3, 3.14
= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C
Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.
Pump Formulas Imperial and SI Units
Pump Formulas Imperial and Pressure to Head H = head, ft P = pressure, psi H = head, m P = pressure, bar Mass Flow to Volumetric Flow ṁ = mass flow, lbm/h ρ = fluid density, lbm/ft 3 ṁ = mass flow, kg/h
AP Chemistry A. Allan Chapter 1 Notes - Chemical Foundations
AP Chemistry A. Allan Chapter 1 Notes - Chemical Foundations 1.1 Chemistry: An Overview A. Reaction of hydrogen and oxygen 1. Two molecules of hydrogen react with one molecule of oxygen to form two molecules
Chemistry 11 Some Study Materials for the Final Exam
Chemistry 11 Some Study Materials for the Final Exam Prefix Abbreviation Exponent giga G 10 9 mega M 10 6 kilo k 10 3 hecto h 10 2 deca da 10 1 deci d 10-1 centi c 10-2 milli m 10-3 micro µ 10-6 nano n
1 Introduction The Scientific Method (1 of 20) 1 Introduction Observations and Measurements Qualitative, Quantitative, Inferences (2 of 20)
The Scientific Method (1 of 20) This is an attempt to state how scientists do science. It is necessarily artificial. Here are MY five steps: Make observations the leaves on my plant are turning yellow
AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1
Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol -1. Example
Chapter 2 Measurement and Problem Solving
Introductory Chemistry, 3 rd Edition Nivaldo Tro Measurement and Problem Solving Graph of global Temperature rise in 20 th Century. Cover page Opposite page 11. Roy Kennedy Massachusetts Bay Community
Chapter Test B. Chapter: Measurements and Calculations
Assessment Chapter Test B Chapter: Measurements and Calculations PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.
Chapter 1: Chemistry: Measurements and Methods
Chapter 1: Chemistry: Measurements and Methods 1.1 The Discovery Process o Chemistry - The study of matter o Matter - Anything that has mass and occupies space, the stuff that things are made of. This
PHYS-2010: General Physics I Course Lecture Notes Section XIII
PHYS-2010: General Physics I Course Lecture Notes Section XIII Dr. Donald G. Luttermoser East Tennessee State University Edition 2.5 Abstract These class notes are designed for use of the instructor and
Element of same atomic number, but different atomic mass o Example: Hydrogen
Atomic mass: p + = protons; e - = electrons; n 0 = neutrons p + + n 0 = atomic mass o For carbon-12, 6p + + 6n 0 = atomic mass of 12.0 o For chlorine-35, 17p + + 18n 0 = atomic mass of 35.0 atomic mass
Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS
1 P a g e Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS The comparison of any physical quantity with its standard unit is called measurement. Physical Quantities All the quantities in terms of
F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.
Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.
UNIT (1) MEASUREMENTS IN CHEMISTRY
UNIT (1) MEASUREMENTS IN CHEMISTRY Measurements are part of our daily lives. We measure our weights, driving distances, and gallons of gasoline. As a health professional you might measure blood pressure,
2.2 Scientific Notation: Writing Large and Small Numbers
2.2 Scientific Notation: Writing Large and Small Numbers A number written in scientific notation has two parts. A decimal part: a number that is between 1 and 10. An exponential part: 10 raised to an exponent,
APPENDIX I SI AND ENGLISH UNITS AND CONVERSION FACTORS
APPENDIX I SI AND ENGLISH UNITS AND CONVERSION FACTORS The International System of Units (Systéme International d Unités, or SI) recognizes seven basic units from which all others are derived. They are:
Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6
Gases Petrucci, Harwood and Herring: Chapter 6 CHEM 1000A 3.0 Gases 1 We will be looking at Macroscopic and Microscopic properties: Macroscopic Properties of bulk gases Observable Pressure, volume, mass,
Sample Questions Chapter 2. Stoker
Sample Questions Chapter 2. Stoker 1. The mathematical meaning associated with the metric system prefixes centi, milli, and micro is, respectively, A) 2, 4, and 6. B) 2, 3, and 6. C) 3, 6, and 9. D) 3,
10 g 5 g? 10 g 5 g. 10 g 5 g. scale
The International System of Units, or the SI Units Vs. Honors Chem 1 LENGTH In the SI, the base unit of length is the Meter. Prefixes identify additional units of length, based on the meter. Smaller than
2014 Spring CHEM101 Ch1-2 Review Worksheet Modified by Dr. Cheng-Yu Lai,
Ch1 1) Which of the following underlined items is not an intensive property? A) A chemical reaction requires 3.00 g of oxygen. B) The density of helium at 25 C is 1.64 10-4 g/cm3. C) The melting point
Welcome to Physics 40!
Welcome to Physics 40! Physics for Scientists and Engineers Lab 1: Introduction to Measurement SI Quantities & Units In mechanics, three basic quantities are used Length, Mass, Time Will also use derived
01 The Nature of Fluids
01 The Nature of Fluids WRI 1/17 01 The Nature of Fluids (Water Resources I) Dave Morgan Prepared using Lyx, and the Beamer class in L A TEX 2ε, on September 12, 2007 Recommended Text 01 The Nature of
PS Chapter 1 Review. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Class: Date: ID: A PS Chapter 1 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The two main branches of science are a. physics and chemistry.
EXERCISE # 1.Metric Measurement & Scientific Notation
EXERCISE # 1.Metric Measurement & Scientific Notation Student Learning Outcomes At the completion of this exercise, students will be able to learn: 1. How to use scientific notation 2. Discuss the importance
1Physical quantities and units
1Physical quantities and units By the end of this chapter you should be able to: explain what is meant by a in physics; state the five fundamental quantities recognised and used in physics; explain the
Chemical Calculations: The Mole Concept and Chemical Formulas. AW Atomic weight (mass of the atom of an element) was determined by relative weights.
1 Introduction to Chemistry Atomic Weights (Definitions) Chemical Calculations: The Mole Concept and Chemical Formulas AW Atomic weight (mass of the atom of an element) was determined by relative weights.
Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline
Gases and Kinetic-Molecular heory: Chapter Chapter Outline Comparison of Solids, Liquids, and Gases Composition of the Atmosphere and Some Common Properties of Gases Pressure Boyle s Law: he Volume-Pressure
Chapter 1 Chemistry: The Study of Change
Chapter 1 Chemistry: The Study of Change This introductory chapter tells the student why he/she should have interest in studying chemistry. Upon completion of this chapter, the student should be able to:
LECTURE I-UNITS OF CONCENTRATION
LECTURE I-UNITS OF CONCENTRATION Chemical concentration is one of the most important determinants in almost all aspects of chemical fate, transport and treatment in both environmental and engineered systems.
CHEMISTRY GAS LAW S WORKSHEET
Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The volume of a fixed mass of gas is
CHAPTER 2: MEASUREMENT AND PROBLEM SOLVING
CHAPTER 2: MEASUREMENT AND PROBLEM SOLVING Problems: 1-64, 69-88, 91-120, 123-124 2.1 Measuring Global Temperatures measurement: a number with attached units When scientists collect data, it is important
1-1 Richard M. Felder, Lisa G. Bullard, and Michael D. Dickey (2014)
Air Conditioner Sizing Exercise On an uncomfortable summer day, the air is at 87 o F and 80% relative humidity. A laboratory air conditioner is to deliver 1000 ft 3 /min of air at 55 o F in order to maintain
CHEMICAL FORMULA COEFFICIENTS AND SUBSCRIPTS. Chapter 3: Molecular analysis 3O 2 2O 3
Chapter 3: Molecular analysis Read: BLB 3.3 3.5 H W : BLB 3:21a, c, e, f, 25, 29, 37,49, 51, 53 Supplemental 3:1 8 CHEMICAL FORMULA Formula that gives the TOTAL number of elements in a molecule or formula
General Physics 1. Class Goals
General Physics 1 Class Goals Develop problem solving skills Learn the basic concepts of mechanics and learn how to apply these concepts to solve problems Build on your understanding of how the world works
CHAPTER 12. Gases and the Kinetic-Molecular Theory
CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids
The Mole. Chapter 10. Dimensional Analysis. The Mole. How much mass is in one atom of carbon-12? Molar Mass of Atoms 3/1/2015
The Mole Chapter 10 1 Objectives Use the mole and molar mass to make conversions among moles, mass, and number of particles Determine the percent composition of the components of a compound Calculate empirical
9460218_CH06_p069-080.qxd 1/20/10 9:44 PM Page 69 GAS PROPERTIES PURPOSE
9460218_CH06_p069-080.qxd 1/20/10 9:44 PM Page 69 6 GAS PROPERTIES PURPOSE The purpose of this lab is to investigate how properties of gases pressure, temperature, and volume are related. Also, you will
Chapter 1 Lecture Notes: Science and Measurements
Educational Goals Chapter 1 Lecture Notes: Science and Measurements 1. Explain, compare, and contrast the terms scientific method, hypothesis, and experiment. 2. Compare and contrast scientific theory
Physical Quantities and Units
Physical Quantities and Units 1 Revision Objectives This chapter will explain the SI system of units used for measuring physical quantities and will distinguish between vector and scalar quantities. You
The Mole Concept. The Mole. Masses of molecules
The Mole Concept Ron Robertson r2 c:\files\courses\1110-20\2010 final slides for web\mole concept.docx The Mole The mole is a unit of measurement equal to 6.022 x 10 23 things (to 4 sf) just like there
REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52
REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts which are taught in the specified math course.
CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology
CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,
Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)
Gases States of Matter States of Matter Kinetic E (motion) Potential E(interaction) Distance Between (size) Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large
= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm
Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by
Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296)
10 CHEMICAL QUANTITIES SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) This section defines the mole and explains how the mole is used to measure matter. It also teaches you how to calculate
Three Methods for Calculating the Buoyant Force Gleue: Physics
Three Methods for Calculating the Buoyant Force Gleue: Physics Name Hr. The Buoyant Force (F b ) is the apparent loss of weight for an object submerged in a fluid. For example if you have an object immersed
Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry
Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with
CHAPTER 3: FORCES AND PRESSURE
CHAPTER 3: FORCES AND PRESSURE 3.1 UNDERSTANDING PRESSURE 1. The pressure acting on a surface is defined as.. force per unit. area on the surface. 2. Pressure, P = F A 3. Unit for pressure is. Nm -2 or
THE IDEAL GAS LAW AND KINETIC THEORY
Chapter 14 he Ideal Gas Law and Kinetic heory Chapter 14 HE IDEAL GAS LAW AND KINEIC HEORY REIEW Kinetic molecular theory involves the study of matter, particularly gases, as very small particles in constant
MOLES, MOLECULES, FORMULAS. Part I: What Is a Mole And Why Are Chemists Interested in It?
NAME PARTNERS SECTION DATE_ MOLES, MOLECULES, FORMULAS This activity is designed to introduce a convenient unit used by chemists and to illustrate uses of the unit. Part I: What Is a Mole And Why Are Chemists
Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.
Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.
1. Metric system- developed in Europe (France) in 1700's, offered as an alternative to the British or English system of measurement.
GS104 Basics Review of Math I. MATHEMATICS REVIEW A. Decimal Fractions, basics and definitions 1. Decimal Fractions - a fraction whose deonominator is 10 or some multiple of 10 such as 100, 1000, 10000,
Chapter 1 An Introduction to Chemistry
1 Chapter 1 An Introduction to Chemistry 1.1 What Is Chemistry, and What Can Chemistry Do for You? Special Topic 1.1: Green Chemistry 1.2 Suggestions for Studying Chemistry 1.3 The Scientific Method 1.4
PART 1. Transport Processes: Momentum, Heat, and Mass
PART 1 Transport Processes: Momentum, Heat, and Mass CHAPTER 1 Introduction to Engineering Principles and Units 1.1 CLASSIFICATION OF TRANSPORT PROCESSES AND SEPARATION PROCESSES (UNIT OPERATIONS) 1.1A
ModuMath Basic Math Basic Math 1.1 - Naming Whole Numbers Basic Math 1.2 - The Number Line Basic Math 1.3 - Addition of Whole Numbers, Part I
ModuMath Basic Math Basic Math 1.1 - Naming Whole Numbers 1) Read whole numbers. 2) Write whole numbers in words. 3) Change whole numbers stated in words into decimal numeral form. 4) Write numerals in
The Mole. 6.022 x 10 23
The Mole 6.022 x 10 23 Background: atomic masses Look at the atomic masses on the periodic table. What do these represent? E.g. the atomic mass of Carbon is 12.01 (atomic # is 6) We know there are 6 protons
Lecture 9 Solving Material Balances Problems Involving Non-Reactive Processes
CHE 31. INTRODUCTION TO CHEMICAL ENGINEERING CALCULATIONS Lecture 9 Solving Material Balances Problems Involving Non-Reactive Processes Component and Overall Material Balances Consider a steady-state distillation
The Mole Notes. There are many ways to or measure things. In Chemistry we also have special ways to count and measure things, one of which is the.
The Mole Notes I. Introduction There are many ways to or measure things. In Chemistry we also have special ways to count and measure things, one of which is the. A. The Mole (mol) Recall that atoms of
Chapter 4. Chemical Composition. Chapter 4 Topics H 2 S. 4.1 Mole Quantities. The Mole Scale. Molar Mass The Mass of 1 Mole
Chapter 4 Chemical Composition Chapter 4 Topics 1. Mole Quantities 2. Moles, Masses, and Particles 3. Determining Empirical Formulas 4. Chemical Composition of Solutions Copyright The McGraw-Hill Companies,
Chapter 2 Measurements in Chemistry. Standard measuring device. Standard scale gram (g)
1 Chapter 2 Measurements in Chemistry Standard measuring device Standard scale gram (g) 2 Reliability of Measurements Accuracy closeness to true value Precision reproducibility Example: 98.6 o F 98.5 o
Calculation of Molar Masses. Molar Mass. Solutions. Solutions
Molar Mass Molar mass = Mass in grams of one mole of any element, numerically equal to its atomic weight Molar mass of molecules can be determined from the chemical formula and molar masses of elements
Chemistry 13: States of Matter
Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties
PHYSICAL QUANTITIES AND UNITS
1 PHYSICAL QUANTITIES AND UNITS Introduction Physics is the study of matter, its motion and the interaction between matter. Physics involves analysis of physical quantities, the interaction between them
A Mathematical Toolkit. Introduction: Chapter 2. Objectives
A Mathematical Toolkit 1 About Science Mathematics The Language of Science When the ideas of science are epressed in mathematical terms, they are unambiguous. The equations of science provide compact epressions
How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.
The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics
Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296)
Name Date Class 10 CHEMICAL QUANTITIES SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) This section defines the mole and explains how the mole is used to measure matter. It also teaches
Physics 1114: Unit 6 Homework: Answers
Physics 1114: Unit 6 Homework: Answers Problem set 1 1. A rod 4.2 m long and 0.50 cm 2 in cross-sectional area is stretched 0.20 cm under a tension of 12,000 N. a) The stress is the Force (1.2 10 4 N)
Measurements 1. BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com. In this section we will look at. Helping you practice. Online Quizzes and Videos
BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com Measurements 1 In this section we will look at - Examples of everyday measurement - Some units we use to take measurements - Symbols for units and converting
We know from the information given that we have an equal mass of each compound, but no real numbers to plug in and find moles. So what can we do?
How do we figure this out? We know that: 1) the number of oxygen atoms can be found by using Avogadro s number, if we know the moles of oxygen atoms; 2) the number of moles of oxygen atoms can be found
Chemical Reactions 2 The Chemical Equation
Chemical Reactions 2 The Chemical Equation INFORMATION Chemical equations are symbolic devices used to represent actual chemical reactions. The left side of the equation, called the reactants, is separated
HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases
UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius
Fluid Mechanics: Static s Kinematics Dynamics Fluid
Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three
For Water to Move a driving force is needed
RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND
Atomic mass is the mass of an atom in atomic mass units (amu)
Micro World atoms & molecules Laboratory scale measurements Atomic mass is the mass of an atom in atomic mass units (amu) By definition: 1 atom 12 C weighs 12 amu On this scale 1 H = 1.008 amu 16 O = 16.00
Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle
Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle 1 Purpose 1. To determine the density of a fluid, such as water, by measurement of its mass when
XI / PHYSICS FLUIDS IN MOTION 11/PA
Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A
CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS
1 CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS The Chemical Equation A chemical equation concisely shows the initial (reactants) and final (products) results of
How much does a single atom weigh? Different elements weigh different amounts related to what makes them unique.
How much does a single atom weigh? Different elements weigh different amounts related to what makes them unique. What units do we use to define the weight of an atom? amu units of atomic weight. (atomic
Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy
Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change
EXAMPLE EXERCISE 3.1 Metric Basic Units and Prefixes
EXAMPLE EXERCISE 3.1 Metric Basic Units and Prefixes Give the symbol for each of the following metric units and state the quantity measured by each unit: (a) gigameter (b) kilogram (c) centiliter (d) microsecond
Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:
Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules
Fluids and Solids: Fundamentals
Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.
7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.
CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,
Atomic Masses. Chapter 3. Stoichiometry. Chemical Stoichiometry. Mass and Moles of a Substance. Average Atomic Mass
Atomic Masses Chapter 3 Stoichiometry 1 atomic mass unit (amu) = 1/12 of the mass of a 12 C atom so one 12 C atom has a mass of 12 amu (exact number). From mass spectrometry: 13 C/ 12 C = 1.0836129 amu
Metric Prefixes. 10 12 Tera- T 10 2 centi- c 10 9 Giga- G 10 3 milli- m 10 6 Mega- M 10 6 micro- µ 10 3 kilo- k 10 9 nano- n
Metric Prefixes Meaning Name Abbreviation Meaning Name Abbreviation 10 12 Tera- T 10 2 centi- c 10 9 Giga- G 10 3 milli- m 10 6 Mega- M 10 6 micro- µ 10 3 kilo- k 10 9 nano- n These are the most commonly
Valve Sizing. Te chnic al Bulletin. Flow Calculation Principles. Scope. Sizing Valves. Safe Product Selection. www.swagelok.com
www.swagelok.com Valve Sizing Te chnic al Bulletin Scope Valve size often is described by the nominal size of the end connections, but a more important measure is the flow that the valve can provide. And
Chapter 13 - Solutions
= Chapter 13 - Solutions Description: Find the weight of a cylindrical iron rod given its area and length and the density of iron. Part A On a part-time job you are asked to bring a cylindrical iron rod
Chapter 3: Stoichiometry
Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and
Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)
Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical
CHAPTER 3 Calculations with Chemical Formulas and Equations. atoms in a FORMULA UNIT
CHAPTER 3 Calculations with Chemical Formulas and Equations MOLECULAR WEIGHT (M. W.) Sum of the Atomic Weights of all atoms in a MOLECULE of a substance. FORMULA WEIGHT (F. W.) Sum of the atomic Weights
Unit 3 Notepack Chapter 7 Chemical Quantities Qualifier for Test
Unit 3 Notepack Chapter 7 Chemical Quantities Qualifier for Test NAME Section 7.1 The Mole: A Measurement of Matter A. What is a mole? 1. Chemistry is a quantitative science. What does this term mean?
Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.
Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular
Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.
.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations
Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.
Chapter 3 Metric System You shall do no unrighteousness in judgment, in measure of length, in weight, or in quantity. Just balances, just weights, shall ye have. Leviticus. Chapter 19, verse 35 36. Exhibit
Balance the following equation: KClO 3 + C 12 H 22 O 11 KCl + CO 2 + H 2 O
Balance the following equation: KClO 3 + C 12 H 22 O 11 KCl + CO 2 + H 2 O Ans: 8 KClO 3 + C 12 H 22 O 11 8 KCl + 12 CO 2 + 11 H 2 O 3.2 Chemical Symbols at Different levels Chemical symbols represent
Type: Single Date: Kinetic Theory of Gases. Homework: Read (14.1), Do CONCEPT Q. # (1), Do PROBLEMS # (2, 3, 5) Ch. 14
Type: Single Date: Objective: Kinetic Theory of Gases Homework: Read (14.1), Do CONCEPT Q. # (1), Do PROBLEMS # (2, 3, 5) Ch. 14 AP Physics Mr. Mirro Kinetic Theory of Gases Date Unlike the condensed phases
Gravitational Potential Energy
Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the
CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry
CHEMISTRY Matter and Change 13 Table Of Contents Chapter 13: Gases Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry State the relationships among pressure, temperature,
Physical Science: Tables & Formulas
Physical Science: Tables & Formulas SI Base Units Base Quantity Unit Name Unit Symbol Amount of substance mole Mol Electric current ampere A Length meter M Luminous intensity candela Cd Mass kilogram Kg
