Kinetic Theory of Gases
|
|
|
- Esther Cain
- 9 years ago
- Views:
Transcription
1 Kinetic Theory of Gases Physics 1425 Lecture 31 Michael Fowler, UVa
2 Bernoulli s Picture Daniel Bernoulli, in 1738, was the first to understand air pressure in terms of molecules he visualized them shooting around very rapidly in a closed container, supporting a weight as shown by constantly bouncing off the underside of the piston. Given more room, they would rush in to fill the new space, just as a gas is observed to do. No-one believed him. Applet here.
3 One Dimensional, One Molecule Gas The molecule roundtrips in time 2L/v, so it bounces off the piston v/2l times per sec, each time delivering momentum 2mv, so the piston will pick up momentum from this gas at rate 2mv x v/2l per second. Force from gas on piston: F = rate of change of momentum = mv 2 /L. An equal opposite force must be supplied from outside to keep the piston at rest. Animation! V v 1-D gas: molecule bounces between ends of cylinder. L
4 Molecule in a Two-Dimensional Box Assume perfectly elastic collisions with all walls. The molecule will follow a zigzag path, the time between collisions with the same end, say the end at x = L, is now 2L/v x, and the momentum transferred per collision is 2mv x, so the average force on the end is mv x2 /L. This will still hold good in three dimensions. a y v y v x 0 x L
5 N Molecules in an L x L x L Cube Assume first that we have a very large number N of molecules bouncing around, so small that they don t hit each other, each follows its own zigzag path. The force on the right-hand wall at x = L is just the sum of the forces from each one, so F = mv x12 /L +mv x22 /L +mv x32 /L + + mv xn2 /L.
6 Bar Means Average The force on the wall depends on the sum vx 1+ vx2 + vx3+ + vxn We don t need the individual values v x12, etc., just the average, written with a bar: v v + v + v + + v N x = x1 x2 x3 xn So the force on the wall is: F = 2 Nmv x L
7 Gas Molecules Have Random Velocities Gravity has a negligible effect on the speeds, so all directions look the same to the gas molecules This means: vx = vy = vz and since the molecular speed squared it follows that v = v + v + v x y z v = v x 3
8 Relating Pressure to Molecular Energy Our gas of molecules is in an L x L x L cube, the force on one wall (which has area L 2 ) is F Nmv = = L Nmv 3L 2 2 x So the pressure P, force per unit area, is (V = L 3 ) 2 F Nmv = = = 2N P L L 3 V Now we ll multiply both sides by V ( ) mv
9 Finding the Ideal Gas Law ( ) We ve established that PV = 3N 2mv and we know that for very weakly interacting gases, PV = nrt. These two equations must be the same! The equivalence is most simply expressed using Boltzmann s constant, k = R/N A (= 1.38 x J/K). PV =nrt = nn A kt = NkT, so mv = kt Absolute temperature is proportional to average molecular kinetic energy.
10 Average Speed of Air Molecules Maxwell and co were very smart guys they figured out accurately the average speed of air molecules before they had any idea how big the molecules were! They just used ( ) PV = N mv = Nmv = M v where M is the total mass of the gas in the box.
11 Average Speed of Air Molecules 1 2 Let s see what PV = 3 M v gives for the speed of air molecules in this room (we are, of course, averaging here over oxygen and nitrogen plus a tiny amount of other stuff). Let s take a one meter cube: it will contain about 1.3 kg of air. The pressure P = 10 5 N/m 2, close enough, so PV = 10 = 3 (1.3) v 2 giving the root mean square value v = 480 m/s.
12 Clicker Question Since oxygen, nitrogen and helium all satisfy the same gas law PV = nrt at room temperature, we conclude that: A. All have the same (rms) root mean square average molecular speed B. All have the same average molecular kinetic energy C. Neither of the above is true.
13 Clicker Question If we take the average speed of oxygen molecules in this room to be 480 m/s, what would be the average speed of helium atoms that leaked from a balloon into the room? A. 480 m/s B. 960 m/s C m/s D m/s
14 The Speed Distribution Although the molecules fly freely almost all of the time, they do collide occasionally. Assuming random elastic collisions, there will be transfer of energy, typically of order kt, from one to another in a collision. The chances of a particular molecule picking up kt n times in a row is similar to the chances of a coin toss coming up heads n times in a row. that is, high energies are exponentially unlikely.
15 Maxwell s Speed Distribution Maxwell did the math precisely, and found the probability of a molecule having a high energy at a given moment did drop exponentially with energy: Probability (speed = v) e 1 2 mv / 2 kt meaning that for each extra kt of energy, the probability of finding a particle with that energy drops by 1/e 0.37 more than a factor of 2, because the average amount picked up per collision is less that kt. 1 2 mv / kt 2 (Maxwell s exact result is f v = 4π N ve.) 2π ( ) m kt 3 2 2
16 Escaping from a Planet Maxwell s speed distribution makes it quite easy to predict which gases can escape from planetary atmospheres. For the Earth, v escape = 11 km/sec. The upper atmosphere has parts as hot as 1000K. 2 mv kt 3 escape /2 The speed distribution includes e = e where we ve used 2mv = 2kT. For H 2, at 1000K, the fraction of molecules at escape velocity is of order 10-6, for He 10-12, for O This means the H 2 will escape almost instantly, the He pretty quickly, and the O 2 never. 2 2 /2 v v
17 Clicker Question Which of the following gases would you expect to be dominant in the Martian atmosphere? A. H 2 B. He C. N 2 D. H 2 0 E. CO 2
18 Real Gases (This is of course chemistry.) Water has the three phases as shown on this pressure/ temperature graph. They meet at the triple point a definite P and T, useful as a reference point in fixing temperatures. Freezing and boiling points vary with pressure. At the critical point, liquid and vapor become the same. The solid-liquid dividing line slopes forwards for almost all substances water is an exception.
19 Vapor Pressure and Humidity The H 2 O molecules in liquid water strongly attract each other, holding the liquid together. But these molecules are still jiggling around, with a Maxwell speed distribution. This means a fraction of them near the surface are moving fast enough to escape, forming a vapor above the surface. In a closed container, with enough water present, an equilibrium situation is reached between escaping and returning molecules.
20 Water and Vapor in Equilibrium In equilibrium in a closed container, the molecules in the vapor have the same average kinetic energy as the air molecules, so exert pressure on the walls of the container proportionate to their numbers. This is the saturated vapor pressure. It varies with temperature like e a/t, not surprising since its origin is molecules fast enough to escape. a Air + water vapor Water
21 Water Vapor Pressure At room temperature, saturated vapor pressure is about 2.5% of atmospheric pressure. At 100 C, it equals atmospheric pressure: this means small bubbles formed in the liquid by fast moving molecules coming together are no longer crushed by the surrounding atmospheric pressure, the water boils. In mountain resorts like Aspen, water boils at a lower temperature, producing inferior tea.
22 Relative Humidity and Dew Point If water is constantly boiled off in a closed room, it is not possible to establish an equilibrium situation with vapor pressure above the saturated value for that temperature further water will condense out on the walls, etc. At this point, relative humidity = 100%. Relative humidity = vapor pressure/saturated vapor pressure Dew point: temperature at which dew forms that is, water condenses out as the air cools.
Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.
Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.
Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature
OpenStax-CNX module: m42217 1 Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons
(1) The size of a gas particle is negligible as compared to the volume of the container in which the gas is placed.
Gas Laws and Kinetic Molecular Theory The Gas Laws are based on experiments, and they describe how a gas behaves under certain conditions. However, Gas Laws do not attempt to explain the behavior of gases.
Chemistry 13: States of Matter
Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties
HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases
UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius
CLASSICAL CONCEPT REVIEW 8
CLASSICAL CONCEPT REVIEW 8 Kinetic Theory Information concerning the initial motions of each of the atoms of macroscopic systems is not accessible, nor do we have the computational capability even with
10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory
The first scheduled quiz will be given next Tuesday during Lecture. It will last 5 minutes. Bring pencil, calculator, and your book. The coverage will be pp 364-44, i.e. Sections 0.0 through.4. 0.7 Theory
THE KINETIC THEORY OF GASES
Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure
THE IDEAL GAS LAW AND KINETIC THEORY
Chapter 14 he Ideal Gas Law and Kinetic heory Chapter 14 HE IDEAL GAS LAW AND KINEIC HEORY REIEW Kinetic molecular theory involves the study of matter, particularly gases, as very small particles in constant
Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004
Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein
momentum change per impact The average rate of change of momentum = Time interval between successive impacts 2m x 2l / x m x m x 2 / l P = l 2 P = l 3
Kinetic Molecular Theory This explains the Ideal Gas Pressure olume and Temperature behavior It s based on following ideas:. Any ordinary sized or macroscopic sample of gas contains large number of molecules.
= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm
Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by
1 Introduction. Taking the logarithm of both sides of Equation 1.1:
j1 1 Introduction The aim of this book is to provide an understanding of the basic processes, at the atomic or molecular level, which are responsible for kinetic processes at the microscopic and macroscopic
KINETIC MOLECULAR THEORY OF MATTER
KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,
Kinetic Theory & Ideal Gas
1 of 6 Thermodynamics Summer 2006 Kinetic Theory & Ideal Gas The study of thermodynamics usually starts with the concepts of temperature and heat, and most people feel that the temperature of an object
13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory
Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation,
EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor
EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,
Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.
Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite
The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10
Our Atmosphere The Gas Laws 99% N 2 and O 2 78% N 2 80 70 Nitrogen Chapter 10 21% O 2 1% CO 2 and the Noble Gases 60 50 40 Oxygen 30 20 10 0 Gas Carbon dioxide and Noble Gases Pressure Pressure = Force
Unit 3: States of Matter Practice Exam
Page 1 Unit 3: States of Matter Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Two gases with unequal masses are injected into opposite
Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack
Kinetic Theory of Gas Assistant Professor Department of Materials Science and Engineering University of Tennessee 603 Dougherty Engineering Building Knoxville, TN 3793-00 Phone: (865) 974-5344 Fax (865)
Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT).
CHEM110 Week 9 Notes (Gas Laws) Page 1 of 7 Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT). Gases Are mostly empty space Occupy containers uniformly and completely Expand infinitely Diffuse
Boyles Law. At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 P = P
Boyles Law At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 or k 1 Boyles Law Example ressure olume Initial 2.00 atm 100 cm 3
Thermodynamics AP Physics B. Multiple Choice Questions
Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium
1.4.6-1.4.8 Gas Laws. Heat and Temperature
1.4.6-1.4.8 Gas Laws Heat and Temperature Often the concepts of heat and temperature are thought to be the same, but they are not. Perhaps the reason the two are incorrectly thought to be the same is because
7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.
CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,
Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages 385 389)
13 STATES OF MATTER SECTION 13.1 THE NATURE OF GASES (pages 385 389) This section introduces the kinetic theory and describes how it applies to gases. It defines gas pressure and explains how temperature
CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry
CHEMISTRY Matter and Change 13 Table Of Contents Chapter 13: Gases Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry State the relationships among pressure, temperature,
Kinetic Theory of Gases. Chapter 33. Kinetic Theory of Gases
Kinetic Theory of Gases Kinetic Theory of Gases Chapter 33 Kinetic theory of gases envisions gases as a collection of atoms or molecules. Atoms or molecules are considered as particles. This is based on
1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion
Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic
Topic 3b: Kinetic Theory
Topic 3b: Kinetic Theory What is temperature? We have developed some statistical language to simplify describing measurements on physical systems. When we measure the temperature of a system, what underlying
TEMPERATURE AND PRESSURE OF AN IDEAL GAS: THE EQUATION OF STATE MISN-0-157. THE EQUATION OF STATE by William C. Lane Michigan State University
MISN-0-157 TEMPERATURE AND PRESSURE OF AN IDEAL GAS: THE EQUATION OF STATE TEMPERATURE AND PRESSURE OF AN IDEAL GAS: THE EQUATION OF STATE by William C. Lane Michigan State University 1. Introduction a.
TEACHER BACKGROUND INFORMATION THERMAL ENERGY
TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to
Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57
Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity
Phys222 W11 Quiz 1: Chapters 19-21 Keys. Name:
Name:. In order for two objects to have the same temperature, they must a. be in thermal equilibrium.
CHEM 120 Online Chapter 7
CHEM 120 Online Chapter 7 Date: 1. Which of the following statements is not a part of kinetic molecular theory? A) Matter is composed of particles that are in constant motion. B) Particle velocity increases
Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.
Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular
Episode 603: Kinetic model of an ideal gas
Episode 603: Kinetic model of an ideal gas This episode relates the gas laws to the behaviour of the particles of a gas. Summary Discussion and demonstration: explaining pressure in terms of particles.
THE HUMIDITY/MOISTURE HANDBOOK
THE HUMIDITY/MOISTURE HANDBOOK Table of Contents Introduction... 3 Relative Humidity... 3 Partial Pressure... 4 Saturation Pressure (Ps)... 5 Other Absolute Moisture Scales... 8 % Moisture by Volume (%M
CHAPTER 12. Gases and the Kinetic-Molecular Theory
CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids
CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION
CHAPTER 4 THE CAUIU-CAPEYRON EQUATION Before starting this chapter, it would probably be a good idea to re-read ections 9. and 9.3 of Chapter 9. The Clausius-Clapeyron equation relates the latent heat
Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)
Gases States of Matter States of Matter Kinetic E (motion) Potential E(interaction) Distance Between (size) Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large
A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.
I. MOLECULES IN MOTION: A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. 1) theory developed in the late 19 th century to
CHEMISTRY 113 EXAM 4(A)
Summer 2003 1. The molecular geometry of PF 4 + ion is: A. bent B. trigonal planar C. tetrahedral D. octahedral CHEMISTRY 113 EXAM 4(A) 2. The Cl-C-Cl bond angle in CCl 2 O molecule (C is the central atom)
PHYS-2010: General Physics I Course Lecture Notes Section XIII
PHYS-2010: General Physics I Course Lecture Notes Section XIII Dr. Donald G. Luttermoser East Tennessee State University Edition 2.5 Abstract These class notes are designed for use of the instructor and
Chapter 8: Gases and Gas Laws.
133 Chapter 8: Gases and Gas Laws. The first substances to be produced and studied in high purity were gases. Gases are more difficult to handle and manipulate than solids and liquids, since any minor
19 The Kinetic Theory of Gases
19 The Kinetic Theory of Gases When a container of cold champagne, soda pop, or any other carbonated drink is opened, a slight fog forms around the opening and some of the liquid sprays outward. (In the
The Ideal Gas Law. Gas Constant. Applications of the Gas law. P = ρ R T. Lecture 2: Atmospheric Thermodynamics
Lecture 2: Atmospheric Thermodynamics Ideal Gas Law (Equation of State) Hydrostatic Balance Heat and Temperature Conduction, Convection, Radiation Latent Heating Adiabatic Process Lapse Rate and Stability
CHEMISTRY GAS LAW S WORKSHEET
Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The volume of a fixed mass of gas is
Gas Laws. vacuum. 760 mm. air pressure. mercury
Gas Laws Some chemical reactions take place in the gas phase and others produce products that are gases. We need a way to measure the quantity of compounds in a given volume of gas and relate that to moles.
= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C
Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.
A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension
A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives Have a working knowledge of the basic
States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.
CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas
Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008
Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid
Chapter 12 - Liquids and Solids
Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative
Thermodynamics: Lecture 8, Kinetic Theory
Thermodynamics: Lecture 8, Kinetic Theory Chris Glosser April 15, 1 1 OUTLINE I. Assumptions of Kinetic Theory (A) Molecular Flux (B) Pressure and the Ideal Gas Law II. The Maxwell-Boltzmann Distributuion
Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6
Gases Petrucci, Harwood and Herring: Chapter 6 CHEM 1000A 3.0 Gases 1 We will be looking at Macroscopic and Microscopic properties: Macroscopic Properties of bulk gases Observable Pressure, volume, mass,
Geol 116 The Planet Class 7-1 Feb 28, 2005. Exercise 1, Calculate the escape velocities of the nine planets in the solar system
Exercises/Discussions Atmospheric Composition: Escape Velocities and Surface Temperature Objectives Escape velocity and the mass and size of a planetary body The effect of escape velocity and surface temperature
Entropy and the Kinetic Theory: the Molecular Picture
previous index next Entropy and the Kinetic Theory: the Molecular Picture Michael Fowler 7/15/08 Searching for a Molecular Description of Entropy Clausius introduced entropy as a new thermodynamic variable
Work and Energy. Work = Force Distance. Work increases the energy of an object. Energy can be converted back to work.
Work and Energy Ch. 6 Work = Force Distance Work increases the energy of an object. Energy can be converted back to work. Therefore, energy and work have the same unit: Newton meter = Nm Energy per gram,
Practice Test. 4) The planet Earth loses heat mainly by A) conduction. B) convection. C) radiation. D) all of these Answer: C
Practice Test 1) Increase the pressure in a container of oxygen gas while keeping the temperature constant and you increase the A) molecular speed. B) molecular kinetic energy. C) Choice A and choice B
7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter
7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed
Chapter Test A. States of Matter MULTIPLE CHOICE. a fixed amount of STAs2 a. a solid. b. a liquid. c. a gas. d. any type of matter.
Assessment Chapter Test A States of Matter MULTIPLE CHOICE Write the letter of the correct answer in the space provided. 1. Boyle s law explains the relationship between volume and pressure for a fixed
Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K
Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K Kinetic Molecular Theory of Gases 1. Large number of atoms/molecules in random motion 2.
Kinetic Molecular Theory and Gas Laws
Kinetic Molecular Theory and Gas Laws I. Handout: Unit Notes II. Modeling at the Atomic Scale I. In another unit you learned about the history of the atom and the different models people had of what the
Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will
Name: Thursday, December 13, 2007 Test 5 Review questions 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will 1. decrease 2. increase 3. remain the same 2. The graph below
Chapter 12 Kinetic Theory of Gases: Equipartition of Energy and Ideal Gas Law
Chapter 1 Kinetic Theory of Gases: Equipartition of Energy and Ideal Gas Law 1.1 Introduction Macroscopic Description of Gas A gas is a system of particles occupying a volume of space that is very large
Lesson 39: Kinetic Energy & Potential Energy
Lesson 39: Kinetic Energy & Potential Energy Total Mechanical Energy We sometimes call the total energy of an object (potential and kinetic) the total mechanical energy of an object. Mechanical energy
Chapter 10 Temperature and Heat
Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its
Every mathematician knows it is impossible to understand an elementary course in thermodynamics. ~V.I. Arnold
Every mathematician knows it is impossible to understand an elementary course in thermodynamics. ~V.I. Arnold Radiation Radiation: Heat energy transmitted by electromagnetic waves Q t = εσat 4 emissivity
Surface Tension. the surface tension of a liquid is the energy required to increase the surface area a given amount
Tro, Chemistry: A Molecular Approach 1 Surface Tension surface tension is a property of liquids that results from the tendency of liquids to minimize their surface area in order to minimize their surface
Thermodynamics of Mixing
Thermodynamics of Mixing Dependence of Gibbs energy on mixture composition is G = n A µ A + n B µ B and at constant T and p, systems tend towards a lower Gibbs energy The simplest example of mixing: What
Fluid Mechanics: Static s Kinematics Dynamics Fluid
Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three
Kinetic Molecular Theory of Matter
Kinetic Molecular Theor of Matter Heat capacit of gases and metals Pressure of gas Average speed of electrons in semiconductors Electron noise in resistors Positive metal ion cores Free valence electrons
Chapter Test B. Chapter: Measurements and Calculations
Assessment Chapter Test B Chapter: Measurements and Calculations PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.
AS COMPETITION PAPER 2008
AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question
5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C
1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )
Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline
Gases and Kinetic-Molecular heory: Chapter Chapter Outline Comparison of Solids, Liquids, and Gases Composition of the Atmosphere and Some Common Properties of Gases Pressure Boyle s Law: he Volume-Pressure
Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1
Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tall-form beaker, 10 ml graduated cylinder, -10 to 110 o C thermometer, thermometer clamp, plastic pipet, long
Exam 4 Practice Problems false false
Exam 4 Practice Problems 1 1. Which of the following statements is false? a. Condensed states have much higher densities than gases. b. Molecules are very far apart in gases and closer together in liquids
AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1
Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol -1. Example
Thermodynamics. Thermodynamics 1
Thermodynamics 1 Thermodynamics Some Important Topics First Law of Thermodynamics Internal Energy U ( or E) Enthalpy H Second Law of Thermodynamics Entropy S Third law of Thermodynamics Absolute Entropy
WHERE DID ALL THE ELEMENTS COME FROM??
WHERE DID ALL THE ELEMENTS COME FROM?? In the very beginning, both space and time were created in the Big Bang. It happened 13.7 billion years ago. Afterwards, the universe was a very hot, expanding soup
AP Physics Course 1 Summer Assignment. Teachers: Mr. Finn, Mrs. Kelly, Mr. Simowitz, Mr. Slesinski
AP Physics Course 1 Summer Assignment Teachers: Mr. Finn, Mrs. Kelly, Mr. Simowitz, Mr. Slesinski On the following pages, there are six sections that use the basic skills that will be used throughout the
So T decreases. 1.- Does the temperature increase or decrease? For 1 mole of the vdw N2 gas:
1.- One mole of Nitrogen (N2) has been compressed at T0=273 K to the volume V0=1liter. The gas goes through the free expansion process (Q = 0, W = 0), in which the pressure drops down to the atmospheric
Temperature. Number of moles. Constant Terms. Pressure. Answers Additional Questions 12.1
Answers Additional Questions 12.1 1. A gas collected over water has a total pressure equal to the pressure of the dry gas plus the pressure of the water vapor. If the partial pressure of water at 25.0
Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)
Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact
10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory
Week lectures--tentative 0.7 Kinetic-Molecular Theory 40 Application to the Gas Laws 0.8 Molecular Effusion and Diffusion 43 Graham's Law of Effusion Diffusion and Mean Free Path 0.9 Real Gases: Deviations
F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.
Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
Chapter 5 Student Reading
Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.
Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.
Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:
Materials 10-mL graduated cylinder l or 2-L beaker, preferably tall-form Thermometer
VAPOR PRESSURE OF WATER Introduction At very low temperatures (temperatures near the freezing point), the rate of evaporation of water (or any liquid) is negligible. But as its temperature increases, more
Physics, Chapter 16: Kinetic Theory of Gases
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1-1958 Physics, Chapter 16: Kinetic Theory of Gases
We will study the temperature-pressure diagram of nitrogen, in particular the triple point.
K4. Triple Point of Nitrogen I. OBJECTIVE OF THE EXPERIMENT We will study the temperature-pressure diagram of nitrogen, in particular the triple point. II. BAKGROUND THOERY States of matter Matter is made
Lesson 6: Earth and the Moon
Lesson 6: Earth and the Moon Reading Assignment Chapter 7.1: Overall Structure of Planet Earth Chapter 7.3: Earth s Interior More Precisely 7-2: Radioactive Dating Chapter 7.5: Earth s Magnetosphere Chapter
HAVE A BLAST FINDING MOLAR MASS An Ideal Gas Experiment. Contents:
EXPERIMENT 4 HAVE A BLAST FINDING MOLAR MASS An Ideal Gas Experiment Contents: Pages 2-8: Teachers Guide Pages 9-11: Student Handout ACKNOWLEDGEMENTS The creation of this experiment and its support materials
Type: Single Date: Kinetic Theory of Gases. Homework: Read (14.1), Do CONCEPT Q. # (1), Do PROBLEMS # (2, 3, 5) Ch. 14
Type: Single Date: Objective: Kinetic Theory of Gases Homework: Read (14.1), Do CONCEPT Q. # (1), Do PROBLEMS # (2, 3, 5) Ch. 14 AP Physics Mr. Mirro Kinetic Theory of Gases Date Unlike the condensed phases
Chemistry 110 Lecture Unit 5 Chapter 11-GASES
Chemistry 110 Lecture Unit 5 Chapter 11-GASES I. PROPERITIES OF GASES A. Gases have an indefinite shape. B. Gases have a low density C. Gases are very compressible D. Gases exert pressure equally in all
Module P7.3 Internal energy, heat and energy transfer
F L E X I B L E L E A R N I N G A P P R O A C H T O P H Y S I C S Module P7.3 Internal energy, heat and energy transfer 1 Opening items 1.1 Module introduction 1.2 Fast track questions 1.3 Ready to study?
