AND9140/D. Thermal Calculations for IGBTs APPLICATION NOTE. Vce

Similar documents
2N6056. NPN Darlington Silicon Power Transistor DARLINGTON 8 AMPERE SILICON POWER TRANSISTOR 80 VOLTS, 100 WATTS

2N4921G, 2N4922G, 2N4923G. Medium-Power Plastic NPN Silicon Transistors 1.0 AMPERE GENERAL PURPOSE POWER TRANSISTORS VOLTS, 30 WATTS

Vdc. Vdc. Adc. W W/ C T J, T stg 65 to C

C106 Series. Sensitive Gate Silicon Controlled Rectifiers

TIP140, TIP141, TIP142, (NPN); TIP145, TIP146, TIP147, (PNP) Darlington Complementary Silicon Power Transistors

2N2222A. Small Signal Switching Transistor. NPN Silicon. MIL PRF 19500/255 Qualified Available as JAN, JANTX, and JANTXV.

BC327, BC327-16, BC327-25, BC Amplifier Transistors. PNP Silicon. These are Pb Free Devices* Features MAXIMUM RATINGS

MCR08B, MCR08M. Sensitive Gate Silicon Controlled Rectifiers. Reverse Blocking Thyristors. SCRs 0.8 AMPERES RMS 200 thru 600 VOLTS

AND8433/D. Using ON Semiconductor Constant Current Regulator (CCR) Devices in AC Applications APPLICATION NOTE

2N6387, 2N6388. Plastic Medium-Power Silicon Transistors DARLINGTON NPN SILICON POWER TRANSISTORS 8 AND 10 AMPERES 65 WATTS, VOLTS

NUD4011. Low Current LED Driver

BC337, BC337-25, BC Amplifier Transistors. NPN Silicon. These are Pb Free Devices. Features MAXIMUM RATINGS

1SMB59xxBT3G Series, SZ1SMB59xxT3G Series. 3 Watt Plastic Surface Mount Zener Voltage Regulators

AND9190/D. Vertical Timing Optimization for Interline CCD Image Sensors APPLICATION NOTE

3EZ6.2D5 Series. 3 Watt DO-41 Surmetic 30 Zener Voltage Regulators

1N59xxBRNG Series. 3 W DO-41 Surmetic 30 Zener Voltage Regulators

Device Application Topology Efficiency Input Power Power Factor THD NSIC2030JB, NSIC2050JB R4 Q2 Q1 R9

TIP41, TIP41A, TIP41B, TIP41C (NPN); TIP42, TIP42A, TIP42B, TIP42C (PNP) Complementary Silicon Plastic Power Transistors

ESD9X3.3ST5G Series, SZESD9X3.3ST5G Series. Transient Voltage Suppressors Micro Packaged Diodes for ESD Protection

P2N2222ARL1G. Amplifier Transistors. NPN Silicon. These are Pb Free Devices* Features.

NTMS4920NR2G. Power MOSFET 30 V, 17 A, N Channel, SO 8 Features

2N4401. General Purpose Transistors. NPN Silicon. Pb Free Packages are Available* Features MAXIMUM RATINGS THERMAL CHARACTERISTICS

MPS2222, MPS2222A. NPN Silicon. Pb Free Packages are Available* Features MAXIMUM RATINGS MARKING DIAGRAMS THERMAL CHARACTERISTICS

1N4001, 1N4002, 1N4003, 1N4004, 1N4005, 1N4006, 1N4007. Axial Lead Standard Recovery Rectifiers

MBR2045CT SCHOTTKY BARRIER RECTIFIER 20 AMPERES 45 VOLTS

CS V/250 ma, 5.0 V/100 ma Micropower Low Dropout Regulator with ENABLE

MMSZxxxT1G Series, SZMMSZxxxT1G Series. Zener Voltage Regulators. 500 mw SOD 123 Surface Mount

MMBF4391LT1G, SMMBF4391LT1G, MMBF4392LT1G, MMBF4393LT1G. JFET Switching Transistors. N Channel

120 V AC, Low Cost, Dimmable, Linear, Parallel to Series LED Driving Circuit

2N3903, 2N3904. General Purpose Transistors. NPN Silicon. Pb Free Packages are Available* Features. MAXIMUM RATINGS

MC14008B. 4-Bit Full Adder

1.5SMC6.8AT3G Series, SZ1.5SMC6.8AT3G Series Watt Peak Power Zener Transient Voltage Suppressors. Unidirectional*

MPSA92, MPSA93. High Voltage Transistors. PNP Silicon. Pb Free Packages are Available* Features. MAXIMUM RATINGS MARKING DIAGRAM

1N5820, 1N5821, 1N5822. Axial Lead Rectifiers SCHOTTKY BARRIER RECTIFIERS 3.0 AMPERES 20, 30, 40 VOLTS

MMBZ52xxBLT1G Series, SZMMBZ52xxBLT3G. Zener Voltage Regulators. 225 mw SOT 23 Surface Mount

NSI45060JDT4G. Adjustable Constant Current Regulator & LED Driver. 45 V, ma 15%, 2.7 W Package

2N3906. General Purpose Transistors. PNP Silicon. Pb Free Packages are Available* Features MAXIMUM RATINGS

2N3903, 2N3904. General Purpose Transistors. NPN Silicon. Features Pb Free Package May be Available. The G Suffix Denotes a Pb Free Lead Finish

LM A, Adjustable Output, Positive Voltage Regulator THREE TERMINAL ADJUSTABLE POSITIVE VOLTAGE REGULATOR

CAT4101TV. 1 A Constant-Current LED Driver with PWM Dimming

AND8008/D. Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE

NUD4001, NSVD4001. High Current LED Driver

BC546B, BC547A, B, C, BC548B, C. Amplifier Transistors. NPN Silicon. Pb Free Packages are Available* Features. MAXIMUM RATINGS

BSP52T1 MEDIUM POWER NPN SILICON SURFACE MOUNT DARLINGTON TRANSISTOR

ESD Line Ultra-Large Bandwidth ESD Protection

AND8326/D. PCB Design Guidelines for Dual Power Supply Voltage Translators

1SMA5.0AT3G Series, SZ1SMA5.0AT3G Series. 400 Watt Peak Power Zener Transient Voltage Suppressors. Unidirectional

DN05034/D. Enhanced PWM LED Dimming DESIGN NOTE

BC546B, BC547A, B, C, BC548B, C. Amplifier Transistors. NPN Silicon. Pb Free Package is Available* Features. MAXIMUM RATINGS

NCP1090GEVB, NCP1094GEVB. Power-over-Ethernet PD Interface Evaluation Board User's Manual EVAL BOARD USER S MANUAL.

2N5460, 2N5461, 2N5462. JFET Amplifier. P Channel Depletion. Pb Free Packages are Available* Features. MAXIMUM RATINGS

SCHOTTKY BARRIER RECTIFIERS 1.0 AMPERE 20, 30 and 40 VOLTS

LB1836M. Specifications. Monolithic Digital IC Low-Saturation Bidirectional Motor Driver for Low-Voltage Drive. Absolute Maximum Ratings at Ta = 25 C

MJD112 (NPN), MJD117 (PNP) Complementary Darlington Power Transistors. DPAK For Surface Mount Applications

LC03-6R2G. Low Capacitance Surface Mount TVS for High-Speed Data Interfaces. SO-8 LOW CAPACITANCE VOLTAGE SUPPRESSOR 2 kw PEAK POWER 6 VOLTS

CS3341, CS3351, CS387. Alternator Voltage Regulator Darlington Driver

AND8365/D. 125 kbps with AMIS-4168x APPLICATION NOTE

AND9015. A Solution for Peak EMI Reduction with Spread Spectrum Clock Generators APPLICATION NOTE. Prepared by: Apps Team, BIDC ON Semiconductor

MCR100 Series. Sensitive Gate Silicon Controlled Rectifiers. Reverse Blocking Thyristors. SCRs 0.8 A RMS 100 thru 600 V

AND8480/D. CrM Buck LED Driver Evaluation Board APPLICATION NOTE

NUP4106. Low Capacitance Surface Mount TVS for High-Speed Data Interfaces SO 8 LOW CAPACITANCE VOLTAGE SUPPRESSOR 500 WATTS PEAK POWER 3.

Prepared by: Paul Lee ON Semiconductor

AND8336. Design Examples of On Board Dual Supply Voltage Logic Translators. Prepared by: Jim Lepkowski ON Semiconductor.

CM1213A-04SO, SZCM1213A-04SO 4-Channel Low Capacitance ESD Protection Array

NUP2105L, SZNUP2105L. Dual Line CAN Bus Protector SOT 23 DUAL BIDIRECTIONAL VOLTAGE SUPPRESSOR 350 W PEAK POWER

MTD3055VT4. MAXIMUM RATINGS (T C = 25 C unless otherwise noted) MARKING DIAGRAMS ORDERING INFORMATION. R DS(on) TYP 60 V 100 m

NE592 Video Amplifier

AND8147/D. An Innovative Approach to Achieving Single Stage PFC and Step-Down Conversion for Distributive Systems APPLICATION NOTE

AND8360. AMIS Multiple CAN Bus Network APPLICATION NOTE

AND8132/D. Performance Improvements to the NCP1012 Evaluation Board APPLICATION NOTE

MC74AC138, MC74ACT of-8 Decoder/Demultiplexer

LC898300XA. Functions Automatic adjustment to the individual resonance frequency Automatic brake function Initial drive frequency adjustment function

NLX1G74. Single D Flip-Flop

MC14175B/D. Quad Type D Flip-Flop

MC10SX1190. Fibre Channel Coaxial Cable Driver and Loop Resiliency Circuit

LOW POWER SCHOTTKY. GUARANTEED OPERATING RANGES ORDERING INFORMATION

PD Storage Temperature Range Tstg 65 to +150 C Junction Temperature TJ 200 C

Schottky Rectifier, 1.0 A

1N5817, 1N5818, 1N5819. Axial Lead Rectifiers. SCHOTTKY BARRIER RECTIFIERS 1.0 AMPERE 20, 30 and 40 VOLTS

CAT4109, CAV Channel Constant-Current RGB LED Driver with Individual PWM Dimming

Schottky Rectifier, 1.0 A

High Performance Schottky Rectifier, 3.0 A

MARKING DIAGRAMS LOGIC DIAGRAM PDIP 16 P SUFFIX CASE 648 DIP PIN ASSIGNMENT ORDERING INFORMATION CDIP 16 L SUFFIX CASE 620

NCT65. Remote Trip Point Temperature Sensor with Overtemperature Shutdown

P D Operating Junction Temperature T J 200 C Storage Temperature Range T stg 65 to +150 C

SN74LS74AMEL. Dual D Type Positive Edge Triggered Flip Flop LOW POWER SCHOTTKY

NS3L V, 8-Channel, 2:1 Gigabit Ethernet LAN Switch with LED Switch

PDS5100H. Product Summary. Features and Benefits. Mechanical Data. Description and Applications. Ordering Information (Note 5) Marking Information

Schottky Rectifier, 100 A

AMIS High-Speed 3.3 V Digital Interface CAN Transceiver

1SMB5.0AT3G Series, SZ1SMB5.0AT3G Series. 600 Watt Peak Power Zener Transient Voltage Suppressors. Unidirectional

MC34063A, MC33063A, NCV33063A. 1.5 A, Step Up/Down/ Inverting Switching Regulators

NCP432, NCP A Ultra-Small Controlled Load Switch with Auto-Discharge Path

How To Fit A 2Mm Exposed Pad To A Dfn Package

High Performance Schottky Rectifier, 1 A

NLSX Bit 24 Mb/s Dual-Supply Level Translator

LOW POWER SCHOTTKY. GUARANTEED OPERATING RANGES ORDERING INFORMATION PLASTIC N SUFFIX CASE 648 SOIC D SUFFIX CASE 751B

MC13783 Buck and Boost Inductor Sizing

CAT V High Current Boost White LED Driver

High Performance Schottky Rectifier, 1.0 A

Transcription:

Thermal Calculations for IGBTs Introduction IGBTs generally require a more complex set of calculations to determine the die temperatures than do most power semiconductors. This is due to the fact that most IGBTs are co-packaged and include both an IGBT and a diode die in the same package. In order to know the temperature of each die, it is necessary to know the power dissipation, frequency, thetas and interaction coefficient for each die. It is also necessary to have the thetas for each device and the psi value for their interaction. This application note will explain, in simple terms, how to measure the power and calculate the temperature rise of the diode and IGBT dice. Loss Components Depending on the circuit topology and operating conditions, the power losses between the two die can vary considerably. The losses in the IGBT can be broken down into the conduction and switching (turn-on and turn-off), while the diode losses are the conduction and turn off losses. Accurately measuring these losses generally requires the use of an oscilloscope with voltage and current probes to monitor the waveforms during operation of the devices. It will be necessary to utilize math functions to measure the. When the total for a switching cycle has been determined, it can be translated to power by dividing by the time of the switching period. APPLICATION NOTE Figure 1. TO 247 Package Showing IGBT Die (Left) and Diode Die (Right) IGBT Turn-on Pc Vce IGBT turn on 5% Ic 5% Vce Ic Figure 2. IGBT Turn-on Loss Waveforms Semiconductor Components Industries, LLC, 14 April, 14 Rev. 1 1 Publication Order Number:

By multiplying the voltage and current of the turn-on waveforms, the power during this period can be calculated. The integral of the power waveform is shown at the bottom of the screen. This gives the for the turn-on losses of the IGBT. The points at which the power measurement begins and ends are arbitrary, but once a set of criteria are selected, measurements should consistently conform to those criteria. IGBT Conduction Loss After stabilizing Vce_sat and current Pcond Vce_sat End of the conduction period Ic Conduction Conduction losses occur between the turn-on and turn-off loss areas. Again the integral should be used since the power is not quite constant over this period. Figure 3. IGBT Conduction Loss Waveforms IGBT Turn-off Ic Pc IGBT turn off Vce 5% Vce 5% Ic Figure 4. IGBT Turn-off Loss Waveforms The turn-on, conduction and turn-off losses make up the sum of the losses for the IGBT die. The off-state losses are negligible and do not need to be calculated. To calculate the total power loss for the IGBT, the sum of the three energies must be multiplied by the switching frequency. P IGBT Eon E cond E off fsw The IGBT losses must be measured with a resistive load or during a portion of the cycle where the load is consuming power. This eliminates the diode conduction. 2

Maximum If If Pf Vf Minimum If Conduction Figure 5. Diode Conduction Loss Waveforms FWD Reverse Recovery Vd Id Pd FWD turn off % Irrm % Irrm Irrm Figure 6. Diode Reverse Recovery Waveforms Figures 5 and 6 show the diode current and voltage waveforms during operation in the rectifier or reactive mode. The diode losses are calculated similarly to the IGBT losses. It needs to be stood that the losses vary over the half-sine wave. The variation from the peak values to the zero crossing need to be taken into account to arrive at the average power dissipation in the device. Econd E rev fsw 3

IGBT and Diode Power Calculations When the five loss components have been measured, they need to be related to the conditions which they were taken so that the total power in each can be calculated. Figure 7. Inductive Load Waveforms Figure 7 shows the typical voltage and current waveforms for an inductive load, such as a motor. From t 0 to t 1 the current is reactive and the diodes are conducting current. From t 1 to t 2 the current is resistive and the IGBTs are conducting current. The power during these periods is the value of importance. Calculating the average power for each period based on a single pulse is very complex; however we can estimate it to a reasonable level of accuracy. To do this will require the calculation of the average power for that period of time. In this situation it is necessary to calculate the average (or heating) equivalent. For voltage and current values, this is the rms value and for power it is the average. Average Power P avg P max t1 sin 2 t dt T t0 P avg P max T 2 cos 2 t 1 T cos 2 t 0 This equation would work for this power in a fraction of each quarter of the sine wave, so to correct for that we need to add a factor of 4 in the denominator. This is valid as long as the zero voltage crossing point is between 0 and 90 which it must be for an inductive load, so the equation becomes: P avg P max T 8 cos 2 t 1 T cos 2 t 0 Diode The diode is conducting during the interval from t 0 to t 1. Taking the waveforms at the zero crossing of the voltage will yield the peak power dissipation for the diode. Using this power level, we can use the average power formula during the period of t 0 to t 1 to find the average power dissipation for the diode. An example calculation for this period is shown below. pk = 50 W (at the voltage zero crossing point) T = ms (50 Hz sine wave) t 0 =0 t 1 = 2.5 ms The 2 watt power level occurs at the time of 2.5 ms into the cycle. To calculate the equivalent power at the peak of the sine wave, we need to compare the amplitudes at these two points. The peak amplitude will occur at 90 or /2 radians, which equates to an amplitude of 1. The amplitude at 2.5 ms is sine ( 2.5 ms/10 ms) or 0.707, so the power at the peak of the sine wave is: P pk 50 W 70.7 W 0.707 P max T 8 cos 2 t 1 T cos 2 t 0 70.7 2.5 0 8 cos 2 2.5 cos 2 0 22.5 [0.707 1] 6.60 W 4

IGBT For the positive voltage half-cycle, the IGBT is conducting from t 1 to t 2. The average power for the IGBT is calculated similarly to the diode power. The example calculation for it is shown below. P IGBTpk =95W T = ms (50 Hz sine wave) T 1 = 2.5 ms T 2 = 10 ms (T/2) For the IGBT analysis the IGBT power during the entire half sine wave (t 0 t 2 ) will be calculated and then the IGBT power during the Diode conduction period (t 0 t 1 ) will be calculated and subtracted from the full half sine wave. P IGBT (t2 t0) P pk 0.6366 95 0.6366 60.48 W Then we will calculate the power during the diode conduction period P max T 8 cos 2 t 2 T cos 2 t 1 Since t2 = T/2 the equation becomes 0.6 P max T 8 1 cos 2 t 1 (t1 t0) 60.48 2.5 0 8 1 cos 2 0 (t1 t0) 19.25 [1 0.707] 5.64 W P IGBT (t2 t1) 60.48 W 5.64 W 54.84 W Die Temperature Calculations Once the power dissipation values for the two dice are completed, the die temperatures can be calculated by using the curves in the data sheets. Both die will not normally be at the same temperature. There is a theta for each die and a Psi-interactions. The theta is the thermal impedance from that die to the case or lead of the package, which will be called out in the variable name. e.g. R JC is the junction-to-case theta. The Psi-interaction is a constant that adds the thermal effect from the die that is not being calculated. It is based on the distance between the dice. In general, for most of the TO 247 and TO 2 packages used for IGBTs, a value of 0.15 C/W is a good estimate. 0.5 R JC = 0.486 R(t) ( C/W) 0.4 0.3 R i ( C/W) i (sec) Duty Factor = t 1 /t 2 0.001111 0.009004 50% Duty Cycle Peak T J = P DM x Z JC + T C 0.001000 0.031623 0.033663 0.002971 0.2 5% Junction R 1 R 2 R n Case 0.078587 0.004024 0.001016 0.984432 0.1 % 0.050668 0.062412 C i = i /R i 0.083685 0.119496 10% Single Pulse 0.168644 0.187512 0 2% C 1 C 2 C n 0.062579 1.597970 0.00001 0.0001 0.001 0.01 0.1 1 10 10 PULSE TIME (sec) Figure 8. IGBT Thermal Curve 1 50% Duty Cycle R JC = 1.06 R(t) ( C/W) % 0.1 Junction R 1 R 2 R n Case R i ( C/W) i (sec) 10% 0.043 1.48E 4 5% C i = i /R i 0.42428 0.002 0.51036 0.03 0.01 2% 0.34767 0.1 C 1 C 2 C n 0.11135 2.0 1% Single Pulse Duty Factor = t 1 /t 2 Peak T J = P DM x Z JC + T C 0.001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 PULSE TIME (sec) Figure 9. Diode Thermal Curve 5

Figures 8 & 9 show the thermal response curves for the IGBT and diode in a typical package. The DC value is given on the curve. For the IGBT this is 0.486 C/W and for the diode is 1.06 C/W. To calculate the steady-state temperature for a given power level, the power dissipation values, DC thetas and case temperature are all that are required. The calculations are as follows: PIGBT R IGBT PDIODE Psi TCASE PDIODE R DIODE PIGBT Psi TCASE Example: T C = 70 C R JC-IGBT = 0.486 C/W R JC diode = 1.06 C/W P D-IGBT = 54.84 W P D-DIODE = 6.60 W Psi-interaction = 0.15 C/W The steady-state junction temperature for the IGBT is: PIGBT R IGBT PDIODE Psi TCASE (54.84 0.486) (6.60 0.15) 70 97.6 o C (Average Junction Temperature) The steady-state junction temperature for the diode is: PDIODE R DIODE PIGBT Psi TCASE (6.6 1.06) (54.84 0.15) 70 85.2 o C (Average Junction Temperature) To calculate the peak junction temperature, we can add the pulse value to the steady-state (or average) temperature. This calculation requires the junction temperature from the previous set of calculations, and adds the instantaneous temperature change to it. The only new constant that is needed is the one for the pulse value for the IGBT or diode for the pulse width required. At a line frequency of 50 Hz, the period for a half-cycle is 10 ms. The R IGBT value for a 10 ms pulse, from Figure 8 and for a 50% duty ratio, is 0.375 C/W and the R DIODE value from Figure 9, the same conditions is 0.95 C/W. The basic equations are: T Jpk IGBT PIGBT R IGBT T Jpk DIODE PDIODE R DIODE So for the above conditions, the peak junction temperatures are: T Jpk IGBT 97.6 o C 58.84 W 0.375 o C W 1 o C (Peak Junction Temperature) T Jpk DIODE 85.2 o C 6.6 W 0.95 o C W 91 o C (Peak Junction Temperature) Conclusion Junction temperatures in multi-die packages can not accurately, be calculated with a single theta. Using waveforms and math obtained from a digital oscilloscope the power for each device can be calculated. Given the power dissipation, thetas and psi for the IGBT, the average and peak junction temperature values can be calculated. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC s product/patent coverage may be accessed at www.onsemi.com/site/pdf/patent Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Typical parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typicals must be validated for each customer application by customer s technical experts. SCILLC does not convey any license its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303 675 2175 or 800 344 3860 Toll Free USA/Canada Fax: 303 675 2176 or 800 344 3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800 282 9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81 3 5817 1050 6 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative