AgCl(s) º Ag + (aq) + Cl (aq) Ag 3 PO 4 (s) º 3 Ag + (aq) + PO 4 3 (aq) Introduction to Sparingly Soluble Salts. Ag + (aq) Cl (aq) AgCl(s)

Similar documents
General Chemistry II Chapter 20

Solubility of Salts - Ksp. Ksp Solubility

Copyright 2009 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.

Steps for balancing a chemical equation

Solubility Product Constant

NET IONIC EQUATIONS. A balanced chemical equation can describe all chemical reactions, an example of such an equation is:

Common Ion Effects. CH 3 CO 2 (aq) + Na + (aq)

Chemistry 132 NT. Solubility Equilibria. The most difficult thing to understand is the income tax. Solubility and Complex-ion Equilibria

Equilibrium Constants The following equilibrium constants will be useful for some of the problems.

Experiment 1 Chemical Reactions and Net Ionic Equations

Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions.

Since we will be dealing with aqueous acid and base solution, first we must examine the behavior of water.

One problem often faced in qualitative analysis is to test for one ion in a

Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent.

stoichiometry = the numerical relationships between chemical amounts in a reaction.

Name: Class: Date: 2 4 (aq)

6 Reactions in Aqueous Solutions

Decomposition. Composition

Stoichiometry and Aqueous Reactions (Chapter 4)

This experiment involves the separation and identification of ions using

Chapter 6 Notes Science 10 Name:

Name period Unit 9: acid/base equilibrium

Writing Chemical Equations

Chemical Equations and Chemical Reactions. Chapter 8.1

Chemistry 12 Tutorial 10 Ksp Calculations

Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent

2. Write the chemical formula(s) of the product(s) and balance the following spontaneous reactions.

Chapter 7: Chemical Reactions

Chapter 5. Chemical Reactions and Equations. Introduction. Chapter 5 Topics. 5.1 What is a Chemical Reaction

1. Read P , P & P ; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436 #1, 7, 8, 11

4.1 Aqueous Solutions. Chapter 4. Reactions in Aqueous Solution. Electrolytes. Strong Electrolytes. Weak Electrolytes

Experiment 8 - Double Displacement Reactions

2. DECOMPOSITION REACTION ( A couple have a heated argument and break up )

CHM1 Review for Exam 12

Aqueous Ions and Reactions

1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) 3 (s) + H 2 (g)

Molarity of Ions in Solution

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases

CHEMICAL REACTIONS. Chemistry 51 Chapter 6

Summer 2003 CHEMISTRY 115 EXAM 3(A)

Chemical Equations. Chemical Equations. Chemical reactions describe processes involving chemical change

UNIT (4) CALCULATIONS AND CHEMICAL REACTIONS

H 2 + O 2 H 2 O. - Note there is not enough hydrogen to react with oxygen - It is necessary to balance equation.

CHAPTER 16: ACIDS AND BASES

Answer Key, Problem Set 5 (With explanations)--complete

Chem101: General Chemistry Lecture 9 Acids and Bases

Chemical Reactions in Water Ron Robertson

Answers and Solutions to Text Problems

PART I: MULTIPLE CHOICE (30 multiple choice questions. Each multiple choice question is worth 2 points)

Experiment 5. Chemical Reactions A + X AX AX A + X A + BX AX + B AZ + BX AX + BZ

Chapter 14 - Acids and Bases

Chemistry: Chemical Equations

Write the acid-base equilibria connecting all components in the aqueous solution. Now list all of the species present.

Chemistry B11 Chapter 4 Chemical reactions

Appendix D. Reaction Stoichiometry D.1 INTRODUCTION

Acids and Bases: A Brief Review

Chapter 8: Chemical Equations and Reactions

Solution. Practice Exercise. Concept Exercise

Chapter 8 - Chemical Equations and Reactions

REVIEW QUESTIONS Chapter 8

SEATTLE CENTRAL COMMUNITY COLLEGE DIVISION OF SCIENCE AND MATHEMATICS. Oxidation-Reduction

Balancing Chemical Equations Worksheet

Tutorial 4 SOLUTION STOICHIOMETRY. Solution stoichiometry calculations involve chemical reactions taking place in solution.

Paper 1 (7404/1): Inorganic and Physical Chemistry Mark scheme

Chemistry Ch 15 (Solutions) Study Guide Introduction

Reactions in Aqueous Solution

Chapter 17. The best buffer choice for ph 7 is NaH 2 PO 4 /Na 2 HPO 4. 19)

David A. Katz Chemist, Educator, Science Communicator, and Consultant Department of Chemistry, Pima Community College

CHAPTER 5: MOLECULES AND COMPOUNDS

Solubility Product. Application of Equilibrium concepts

CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS

6) Which compound is manufactured in larger quantities in the U.S. than any other industrial chemical?

Soil Chemistry Ch. 2. Chemical Principles As Applied to Soils

NAMING QUIZ 3 - Part A Name: 1. Zinc (II) Nitrate. 5. Silver (I) carbonate. 6. Aluminum acetate. 8. Iron (III) hydroxide

Acid/Base Definition. Acid/Base Reactions. Major vs. Minor Species. Terms/Items you Need to Know. you need to memorize these!!

Chem 31 Fall Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Writing and Balancing Chemical Equations

Chapter 4 Chemical Reactions

Balancing Reaction Equations Oxidation State Reduction-oxidation Reactions

Chapter 16: Tests for ions and gases

CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í CHEMICAL REACTIONS

Nomenclature of Ionic Compounds

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.

W1 WORKSHOP ON STOICHIOMETRY

Chemistry Themed. Types of Reactions

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.

Formulae, stoichiometry and the mole concept

Candidate Style Answer

MOLARITY = (moles solute) / (vol.solution in liter units)

Practical Lesson No 4 TITRATIONS

Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses

ph: Measurement and Uses

Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations

1332 CHAPTER 18 Sample Questions

Chapter 16 Acid-Base Equilibria

Chemistry Unit Test Review

CHAPTERS 15 FAKE TEST QUESTIONS. 1. According to the Brønsted Lowry definition, which species can function both as an acid and as a base?

Required Reading Material.

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

Santa Monica College Chemistry 11

Transcription:

Introduction to Sparingly Soluble Salts All ionic compounds dissolve to some extent in water, but the range of solubilities is quite remarkable. (See the table on the right.) Sparingly soluble salts are those which have molar solubilities much less than 1 mol L 1. We wish to investigate the factors that affect solubility, so that we can learn how to: (1) dissolve solids that are normally difficult to dissolve (2) exploit differences in solubilities to separate the components of mixtures We shall start by considering a single ionic solid that has a low solubility in water. Salt AgClO 4 AgF NaCl NaNO 3 PbCl 2 CaCO 3 AgCl CuS Molar Solubility 27 mol L 1 15 mol L 1 6 mol L 1 1 mol L 1 10 3 mol L 1 10 4 mol L 1 10 5 mol L 1 10 12 mol L 1 When a sparingly soluble ionic solid, such as AgCl, dissolves in water, ions break away from the crystal lattice and enter into the solution and become hydrated. Hydrated ions can also lose their waters of hydration and add back onto the surface of the crystal. At some point, the rate of dissolution will equal the rate of recrystallization. At that point, the system has reached a state of dynamic equilibrium and the concentrations of ions in the solution stop changing. Ag + (aq) Cl (aq) AgCl(s) The dissolution of AgCl(s) in water is described by the following chemical equation: AgCl(s) º Ag + (aq) + Cl (aq) + - K sp =[Ag ] eq [Cl ] eq The equilibrium constant for this reaction is denoted by K sp and is called the solubility product. For a solid such as Ag 3 PO 4, we have: Ag 3 PO 4 (s) º 3 Ag + (aq) + PO 4 3 (aq) + 3 3- K sp = [Ag ] eq [PO 4 ] eq

For sparingly soluble salts, the value of K sp is quite small. We can use the K sp value for the salt to calculate the molar solubility. Example: Calculate the molar solubility of AgCl in water. Then calculate the molar solubility of Ag 3 PO 4 in water. K sp for Some Salts (from Radel & Navidi, 2 nd Ed) Chromates Ag 2 (CrO 4 ) 1.2x10-12 Ba(CrO 4 ) 1.2x10-10 Sr(CrO 4 ) 3.6x10-5 Carbonates BaCO 3 5.0x10-9 CaCO 3 4.5x10-9 MnCO 3 2.2x10-11 Li 2 CO 3 1.7x10-3 Halides AgCl 1.8x10-10 AgBr 5.0x10-13 AgI 8.3x10-17 PbCl 2 1.7x10-5 PbBr 2 2.1x10-6 Hydroxides AgOH 1.5x10-5 Ba(OH) 2 5.0 10-13 Ca(OH) 2 6.5x10-6 Fe(OH) 2 7.9x10-16 Mg(OH) 2 7.1x10-12 Mn(OH) 2 6.0x10-14 Sr(OH) 2 3.2x10-4 Zn(OH) 2 4.5x10-17 Al(OH) 3 1.3x10-33 Cr(OH) 3 6.3x10-31 Fe(OH) 3 1.6x10-39 Phosphates Ag 3 (PO 4 ) 1.8x10-18 Al(PO 4 ) 9.8x10-21 Ca 3 (PO 4 ) 2 1.3x10-32 Ni 3 (PO 4 ) 2 4.7x10-32 Sulfides Ag 2 S 1.6x10-49 CdS 1.0x10-27 MnS 3.0x10-13 ZnS 2.5x10-21

Note carefully! The solubility depends on the value of K sp and on the formula of the salt. You cannot predict which salt is more soluble by considering only the K sp value!! For a 1:1 salt. S = K sp For a 2:1 salt S = 3 ( Ksp / 4 ) Make sure you can derive these relationships yourself. (Set up the equilibrium summary for each type of salt!) For a 3:1 salt S = 4 ( Ksp / 27 ) Example: (Common Ion Effect) Calculate the molar solubility of AgCl(s) in 0.10 mol L 1 NaCl(aq).

Precipitation Up to this point, we ve focused on the dissolution process (i.e. calculating the equilibrium concentrations of ions in solution when excess solid is in equilibrium with the solution above it.) Now we turn our attention to the precipitation process, in which we mix together different substances with the aim of predicting whether a precipitate will form. AgNO 3 (aq) Consider the following equilibrium. NaCl(aq) AgCl(s) º Ag + (aq) + Cl (aq) At equilibrium, we must have [Ag + ] [Cl ] = K sp. The solid is in equilibrium with the solution above it. There is no further dissolution of the solid and the solution is saturated with respect to Ag + and Cl. Does ppte form?? What if we mix solutions of AgNO 3 (a) and NaCl(aq)? Will the Ag + and Cl ions combine to form AgCl(s)? The answer is: It depends!

Example: Suppose that 50.0 ml of 0.100 mol L 1 AgNO 3 (aq) and 60.0 ml of 0.200 mol L 1 NaCl(aq) are mixed. Does a precipitate form? If so, what are the equilibrium concentrations of Ag + and Cl?

Selective Precipitation Chemists often exploit differences in solubilities to separate ions from a mixture. (This is an important method of quantitative analysis. Practical aspects of quantitative analysis is discussed in CHEM 220/220L.) Example: Finely-divided AgNO 3, which is highly soluble in water, is added slowly with stirring to a solution in which [Cl ] = 0.10 mol L 1 and [Br ] = 0.10 mol L 1. Calculate [Cl ] and [Br ] in the solution at the instant the second precipitate just begins to form. In your estimation, is this an effective separation? Would the separation be more or less effective if Pb(NO 3 ) 2 had been used as the precipitating agent?

Factors Affecting Solubility Consider the generalized dissolution process below. MX(s) º M + (aq) + X (aq) Le Chatelier s principle tells us that if we remove M + or X from solution, then the equilibrium above will shift to the right. Similarly, if we add something to the solution that converts M + or X into other chemical species, then the equilibrium shifts to the right. Thus, the solubility of MX can be increased dramatically by adding an appropriate substance to the solution. A. ph effects If the anion X is a weak base, then it will bind with protons to form HX. In an acidic environment, X is readily converted to HX as MX dissolves. If the anion of a salt is a strong or weak base, then the salt is much more soluble in acidic solution. Example: For each of the following salts, state whether the solubility increases, decreases or stays the same when strong acid (e.g. HNO 3 ) is added to the solution. (a) AgBr(s), K sp = 5.0 10 13 (b) Ca 3 (PO 4 ) 3 (s), K sp = 2.0 10 29 (c) Mg(OH) 2 (s), K sp = 7.1 10 12

B. Complexing agents Many metal ions react readily with electron donors to form very stable complexes in solution. For example, Ag + reacts readily with a number of different complexing agents: Ag + (aq) + 2 NH 3 (aq) º Ag(NH 3 ) 2 + (aq) K f = 1.6 10 7 Ag + (aq) + 2 CN (aq) º Ag(CN) 2 (aq) K f = 5.6 10 18 Ag + (aq) + 4 SCN (aq) º Ag(SCN) 4 3 (aq) K f = 1.2 10 10 When excess complexing agent, such as NH 3, NaCN, or KSCN, is added to a solution containing Ag + ion, most of the silver ion in solution reacts to form a complex ion and thus [Ag + ] is very small. Consequently, [Cl ] can take on a much larger value before precipitation of AgCl occurs.

Example: A solution is made by dissolving 1.0 mol AgNO 3 in 0.500 L of 0.50 mol L 1 NH 3 (aq). What is the equilibrium concentration of [Ag + ]? How much Cl can be added to this solution before AgCl(s) precipitates? Note: K f = 1.6 10 7 for Ag(NH 3 ) + 2 and K sp = 1.8 10 10 for AgCl. AgCl has a very low solubility in water but it is much more soluble in aqueous ammonia solution. Have a look at Example 19-13 in the text to see how to calculate the solubility of AgCl in 0.10 mol L 1 NH 3 (aq).

Digging Deeper: Solubility equilibria are often a lot more complicated than you might think! The simple K sp calculations we ve carried out in previous examples are usually quite inaccurate. This is because the dissolution process is only one of many competing processes that must be considered. Consider lead (II) fluoride, PbF 2, which is a salt containing a weakly basic anion, F. To calculate the true solubility of PbF 2 in water, we should consider all of the following processes simultaneously. PbF 2 (s) º Pb 2+ (aq) + 2 F (aq) K sp = 3.6 10 8 F (aq) + H 2 O(l) º HF (aq) + OH (aq) K b = K w / K a = 1.52 10 11 2 H 2 O(l) º H 3 O + (aq) + OH (aq) K w = 1.0 10 14 If we ignore the basic character of F, we calculate the solubility, S, of PbF 2 directly from the K sp value: 2+ = 3-3 -1 S= [Pb ] K / 4 = 2.1 10 mol L. sp If wanted to incorporate the basic character of F into our calculations, we d have to use all of the following equations (5 equations in 5 unknowns): Equilibrium constant expressions: K sp = [Pb 2+ ] [F ] 2 K a = [H 3 O + ] [ F ] / [HF] K w = [H 3 O + ] [ OH ] Material Balance Equation: [F ] + [HF] = 2 [Pb 2+ ] Note: The dissolution of PbF 2 produces twice as much F as Pb 2+ but some of the F is converted into HF. Therefore, the [F ] + [HF] must be equal to twice the amount of PbF 2 that dissolved. Charge Balance Equation: 2 [Pb 2+ ] = [F ] + [OH ] When we solve the system of equations above, we get S = [Pb 2+ ] = 2.1 10 3 mol L 1. In this instance, we get the same result as before (i.e., when we neglected the basic character of F ). This is because F is a relatively weak base so the conversion of F to HF is not that important. However, if K b for F was 1.52 10 5 rather than 1.52 10 11, the calculated solubility would be 4% higher than the value calculated directly from just the K sp value. The dissolution process is sometimes further complicated by the fact that the ions don t always separate completely from each other but instead form a stable ion pair in solution. For example, in a saturated solution of CaSO 4, it has been found experimentally that a significant number of CaSO 4 molecules exist in solution. The CaSO 4 molecule is really an undissociated ion pair (Ca 2+ )(SO 2 4 ). To calculate the true solubility of CaSO 4 (s), one must not only take into account the basic character of SO 2 4 but also the following equilibrium process: Ca 2+ (aq) + SO 2 4 (aq) º CaSO 4 (aq) K = 1.92 10 2 The equilibrium constant for the formation of the (Ca 2+ )(SO 2 4 ) ion pair is quite large, and thus a significant fraction of the dissolved solid exists in this form. Consequently, the solubility of CaSO 4 (s) in water is actually much greater than one would expect if we neglected the formation of the ion pair!!