Chapter 17. The best buffer choice for ph 7 is NaH 2 PO 4 /Na 2 HPO 4. 19)
|
|
|
- Alexis Palmer
- 9 years ago
- Views:
Transcription
1 Chapter 17 2) a) HCl and CH 3 COOH are both acids. A buffer must have an acid/base conjugate pair. b) NaH 2 PO 4 and Na 2 HPO 4 are an acid/base conjugate pair. They will make an excellent buffer. c) H 2 CO 3 and NaHCO 3 are also an acid/base conjugate pair and they will make an excellent buffer. The carbonic acid/bicarbonate buffer plays an important role in maintaining the ph of your blood at a constant value. 4) Solutions containing acid-base buffers are resistant to change in the ph of the solution when H 3 O + or OH - is added or removed. Buffers are effective when the concentrations of the weak acid (NH 4 + ) and conjugate base (NH 3 ) are large compared to the amount of H 3 O + or OH - ions added or removed. When H 3 O + is added to the solution from an external source, such as HCl, some of the base NH 3 of the buffer is converted to NH 4 + (thus using up most of the protons added); when hydroxide ions are added to the solution (from NaOH), protons are dissociated from some of the NH 4 + of the buffer, converting them to NH 3 (and thus using up most of the OH- added). However, because of the presence of the weak acid and conjugate base in solution, the change in H 3 O + or OH - concentration is small relative to the amounts of these species present in solution and the change in ph will be small. 15) Buffers works best when the pk a corresponds to the desired ph. To determine which choice is best, we need to look up the pk a (or Ka) values associated with each acid/base conjugate pair. Recall pk a = -logk a 19) H 3 PO 4 /NaH 2 PO 4 K a = 7.5 x 10-3 pka = 2.1 NaH 2 PO 4 /Na 2 HPO 4 K a = 6.2 x 10-8 pka = 7.2 Na 2 HPO 4 /Na 3 PO 4 K a = 3.6 x pka = 12 The best buffer choice for ph 7 is NaH 2 PO 4 /Na 2 HPO 4. a) A concentration of hydronium (H 3 O + ) ions of 4.5 x 10-3 M will generate a ph of 2.3 (ph = -log[h 3 O + ]). The best choice from Table 7.1 is lactic acid/lactate since it as a pk a of However, note that phosphoric acid, with a pk a of 2.1, would actually be better. b) A concentration of hydronium (H 3 O + ) ions of 5.2 x 10-8 M will generate a ph of 7.3 (ph = -log[h 3 O + ]). The best choice from Table 7.1 is NaH 2 PO 4 /Na 2 HPO 4 since it as a pk a of 7.2.
2 c) A concentration of hydronium (H 3 O + ) ions of 8.3 x 10-6 M will generate a ph of 5.1 (ph = -log[h 3 O + ]). The best choice from Table 7.1 is acetic acid/acetate since it as a pk a of 4.7. d) A concentration of hydronium (H 3 O + ) ions of 9.7 x M will generate a ph of 10 (ph = -log[h 3 O + ]). The best choice from Table 7.1 is HCO 3 - /CO 3-2 since it as a pk a of ) How many grams of benzoic acid must be added to the 1 L solution? We know the following: We have 14.4 g sodium benzoate. We want a ph of 3.88 We can look up in appendix F that the K a for benzoic acid is 6.3 x Using the looked up K a value, we can calculate the pk a value. pk a = -logk a = 4.2 We can calculate that the MW of sodium benzoate is 144 g/mol. This lets us calculate the concentration of benzoate to be 0.10 M. The Henderson-Hasselbalch equation is: [ A ] ph = pka + log [ HA] We know all of these values now except HA. Plugging into the equation: = log x x = 0.21 M Thus, we need 0.21 mols in the 1 liter solution. The MW of benzoic acid is g/mol, requiring 25.6 g = 26 g using sig fig. 27) a) CH 3 COOH/CH 3 COONa is an acid/base conjugate pair and will form a buffer. b) The sodium hydroxide will react completely with the acetic acid to form water and sodium acetate. This is the same acid/base conjugate pair discussed in part a). c) HCl and acetic acid are both acids. No conjugate base is present and a buffer is not formed.
3 d) The addition of 0.3 mol of sodium hydroxide consumes all of the acetic acid. Thus, there is no acid present, only base. Without the acid present, a buffer is not formed. 29) You can solve this problem using ICE tables and the equilibrium constant to determine the [H 3 O + ] or you can more conveniently solve the problem using the Henderson-Hasselbalch equation. Part 1. Calculate the ph change upon adding 10.0 ml 0.10 M NaOH to 90 ml water ml 0.10 mol = M NaOH 1000 ml L [OH-] = M since NaOH is a strong base that dissociates 100% poh = -log[0.010] = 2.0 ph = 14 poh = 12 Could also solve by K w = 1 x = [H 3 O + ] [OH - ] = [H 3 O + ] x [H 3 O + ] = 1.0 x ph = -log(1.0 x ) = 12 Since the ph of water is 7, the total ph change in this chase is five ph units (or five orders of magnitude in [H 3 O + ]. Part 2. Calculate the ph change upon adding 10.0 ml 0.10 M NaOH to 90 ml buffer containing 1.0 M NH 3 and 1.0 M NH 4 Cl. The key reaction with the buffer will be: NH OH - H 2 O + NH 3 The strong base will react with the ammonium cation in the buffer and completely convert it to ammonia. The number of moles of base added are: 10.0 ml 0.10 mol = mol NaOH 1000 ml The number of moles of NH 4 + and NH 3 present are: 1.0 mol 90 ml = mol 1000 ml
4 So we start with mol of both NH 4 + and NH 3. After complete reaction with mol NaOH the resulting amounts of each are: = mol NH = mol NH 3 To use Henderson-Hasselbalch equation we need to know the pk a value. 1 x = K a *K b K a = 1x10-14 /1.8x10-5 = 5.6 x (or look up in table) So, [ A ] ph = pka + log [ HA] We know all of these values now except ph. Plugging into the equation: ph= -log(5.6 x ) + log = = 9.26 or 9.3 The ph of the buffer before adding NaOH was ph= -log(5.6 x ) + log 1 = 9.25 The ph shift of the buffered sample is 0.01 ph units. Note that within the 2 significant digits of the problem this is essentially no change. So, the upon addition of 10 ml 1.0 M NaOH, the buffered system shifts by ~0.01 ph units where the unbuffered system shifts by 5 ph units.
5 Ch 5. 38) a) S +6, 0-2 b) H +1, N +5, O -2 c) K +1, Mn +7, O -2 d) H+1, O -2 e) Li +1, O -2, H +1 f) C 0, H +1, Cl -1 42) a) CrCl 3 = +3 b) Na 2 CrO 4 = Cr+6 c) K 2 C r2 O 7 = Cr+6 43) The only redox reaction is (b). In this reaction calcium metal (Ca 0 ) is oxidized by oxygen gas to Ca +2. The oxygen is reduced from O (0) to O -2. Reaction (a) is a precipitation reaction and reaction (c) is an acid/base reaction. 50) The strongest oxidizing agent is F 2. The strongest reducing agent is I -. 51) & 52) a) NR b) NaBr + I 2, Br is reduced, acting as the oxidizing agent and I - is oxidized, acting as the reducing agent c) NaF + Cl 2, F is reduced, acting as the oxidizing agent and Cl - is oxidized, acting as the reducing agent d) NaCl +Br 2, Cl is reduced, acting as the oxidizing agent and Br - is oxidized, acting as the reducing agent e) NR f) NR 56) a) NR b) NR c) NR d) Au Ag Au + 3 Ag +
6 106) a) The metal halide compound should be formed. Magnesium Bromide (MgBr 2 ), Calcium Bromide (CaBr 2 ), Strontium Bromide (SrBr 2 ). b) Mg + Br 2 MgBr 2, Ca + Br 2 CaBr 2, Sr + Br 2 SrBr 2 c) This is a redox reaction in each case. The metal is oxidize and the Bromine is reduced. d) If the stoichiometry of the products is one metal per two bromine atoms, the ratio of product to metal mass should be 7.6, 5.0, and 2.8 for Mg, Ca, and Sr respectively. This is consistent with the leveling off point for each plot. The plots level off when an amount of metal is used that exceeds the amount of Br 2 available. The plots become level at different masses of products because the molar mass of the metal is different and therefore the molar mass of the products is different. The ratios of the mass of the products should be Ca:Mg, Sr:Ca, Sr: Mg = 1.08, 1.24, and 1.34 to 1 respectively. This is in agreement with the ratios of the maximum weight values given in the graph. 113) Note: K 2 SO 4 is one of the products of this reaction. It is NOT listed in the book. The net ionic equation is: 3 C 2 H 5 OH(aq) + 2 Cr 2 O 7 2- (aq) + 16 H + (aq) 3 CH 3 COOH(aq) + 4 Cr +3 (aq) + 11 H 2 O(l) The oxidation number of one of the carbons and that of the Cr are changing. The ethanol is being oxidized to acetic acid (C -1 to C +3 ) and the Cr is being reduced (Cr +6 to Cr +3 ). These carbon oxidation numbers come from counting as follows; ethanol: one monovalent O (-1) two H (+2) for a net effect at carbon of -1 and acetic acid: one monovalent O (--1), one bivalent O (-2) for a net effect at carbon of +3. You may have looked at the entire molecule and counted the carbon in ethanol as -4 and the carbon in acetic acid as 0. The result is the same: a net change in oxidation number of +4. The Cr 2 O 7 2- is the oxidizing agent and the ethanol is the reducing agent.
Name period Unit 9: acid/base equilibrium
Name period Unit 9: acid/base equilibrium 1. What is the difference between the Arrhenius and the BronstedLowry definition of an acid? Arrhenious acids give H + in water BronstedLowry acids are proton
CHAPTERS 15 FAKE TEST QUESTIONS. 1. According to the Brønsted Lowry definition, which species can function both as an acid and as a base?
You might need to know the following K values: CHAPTERS 15 FAKE TEST QUESTIONS CH 3 COOH K a = 1.8 x 10 5 Benzoic Acid K a = 6.5 x 10 5 HNO 2 K a = 4.5 x 10 4 NH 3 K b = 1.8 x 10 5 HF K a = 7.2 x 10 4
ph: Measurement and Uses
ph: Measurement and Uses One of the most important properties of aqueous solutions is the concentration of hydrogen ion. The concentration of H + (or H 3 O + ) affects the solubility of inorganic and organic
Chemical equilibria Buffer solutions
Chemical equilibria Buffer solutions Definition The buffer solutions have the ability to resist changes in ph when smaller amounts of acid or base is added. Importance They are applied in the chemical
QUESTION (2012:3) (a) (i) Complete the table below showing the conjugate acids and bases. CO 3 H 2 O OH HCN CN -
QUESTION (2012:3) (i) Complete the table below showing the conjugate acids and bases. Conjugate acid Conjugate base - HCO 3 2 CO 3 H 2 O OH HCN CN - (ii) HPO 4 2 (aq) Write equations for the reactions
stoichiometry = the numerical relationships between chemical amounts in a reaction.
1 REACTIONS AND YIELD ANSWERS stoichiometry = the numerical relationships between chemical amounts in a reaction. 2C 8 H 18 (l) + 25O 2 16CO 2 (g) + 18H 2 O(g) From the equation, 16 moles of CO 2 (a greenhouse
3 The Preparation of Buffers at Desired ph
3 The Preparation of Buffers at Desired ph Objectives: To become familiar with operating a ph meter, and to learn how to use the Henderson-Hasselbalch equation to make buffer solutions at a desired ph
Copyright 2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.
Sample Exercise 17.1 Calculating the ph When a Common Ion is Involved What is the ph of a solution made by adding 0.30 mol of acetic acid and 0.30 mol of sodium acetate to enough water to make 1.0 L of
Write the acid-base equilibria connecting all components in the aqueous solution. Now list all of the species present.
Chapter 16 Acids and Bases Concept Check 16.1 Chemists in the seventeenth century discovered that the substance that gives red ants their irritating bite is an acid with the formula HCHO 2. They called
Acid-Base Chemistry. Brønsted-Lowry Acids & Bases
Acid-Base Chemistry ν There are a couple of ways to define acids and bases ν Brønsted-Lowry acids and bases ν Acid: H + ion donor ν Base: H + ion acceptor ν Lewis acids and bases ν Acid: electron pair
An acid is a substance that produces H + (H 3 O + ) Ions in aqueous solution. A base is a substance that produces OH - ions in aqueous solution.
Chapter 8 Acids and Bases Definitions Arrhenius definitions: An acid is a substance that produces H + (H 3 O + ) Ions in aqueous solution. A base is a substance that produces OH - ions in aqueous solution.
Titrations. Acid-Base Indicators and Titration Curves. Shapes of Titration Curves. A titration curve is a graphical history of a titration
Acid-Base Indicators and Titration Curves Titrations In a titration a solution of accurately known concentration is added gradually added to another solution of unknown concentration until the chemical
Note: (H 3 O + = hydronium ion = H + = proton) Example: HS - + H 2 O H 3 O + + S 2-
AcidBase Chemistry Arrhenius acid: Substance that dissolves in water and provides H + ions Arrhenius base: Substance that dissolves in water and provides OH ions Examples: HCl H + and Cl Acid NaOH Na +
Chapter 14 - Acids and Bases
Chapter 14 - Acids and Bases 14.1 The Nature of Acids and Bases A. Arrhenius Model 1. Acids produce hydrogen ions in aqueous solutions 2. Bases produce hydroxide ions in aqueous solutions B. Bronsted-Lowry
Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases
Chapter 17 Acids and Bases How are acids different from bases? Acid Physical properties Base Physical properties Tastes sour Tastes bitter Feels slippery or slimy Chemical properties Chemical properties
p3 Recognizing Acid/Base Properties when p11 Recognizing Basic versus Nonbasic
General Chemistry II Jasperse Acid-Base Chemistry. Extra Practice Problems 1 General Types/Groups of problems: Conceptual Questions. Acids, Bases, and p1 K b and pk b, Base Strength, and using K b or p7-10
Chapter 9 Lecture Notes: Acids, Bases and Equilibrium
Chapter 9 Lecture Notes: Acids, Bases and Equilibrium Educational Goals 1. Given a chemical equation, write the law of mass action. 2. Given the equilibrium constant (K eq ) for a reaction, predict whether
We remember that molarity (M) times volume (V) is equal to moles so this relationship is the definition of the equivalence point.
Titrations Titration - a titration is defined as the determination of the amount of an unknown reagent (analyte) through the use of a known amount of another reagent (titrant) in an essentially irreversible
Balance the following equation: KClO 3 + C 12 H 22 O 11 KCl + CO 2 + H 2 O
Balance the following equation: KClO 3 + C 12 H 22 O 11 KCl + CO 2 + H 2 O Ans: 8 KClO 3 + C 12 H 22 O 11 8 KCl + 12 CO 2 + 11 H 2 O 3.2 Chemical Symbols at Different levels Chemical symbols represent
Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.
Acid-base A4 1 Acid-base theories ACIDS & BASES - IONIC EQUILIBRIA 1. LEWIS acid electron pair acceptor H, AlCl 3 base electron pair donor NH 3, H 2 O, C 2 H 5 OH, OH e.g. H 3 N: -> BF 3 > H 3 N BF 3 see
6) Which compound is manufactured in larger quantities in the U.S. than any other industrial chemical?
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which statement concerning Arrhenius acid-base theory is not correct? A) Acid-base reactions must
Review for Solving ph Problems:
Review for Solving ph Problems: Acid Ionization: HA H 2 O A - H 3 O CH 3 COOH H 2 O CH 3 COO - H 3 O Base Ionization: B H 2 O BH OH - 1) Strong Acid complete dissociation [H ] is equal to original [HA]
Chem101: General Chemistry Lecture 9 Acids and Bases
: General Chemistry Lecture 9 Acids and Bases I. Introduction A. In chemistry, and particularly biochemistry, water is the most common solvent 1. In studying acids and bases we are going to see that water
CHEM 1212 Test II. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
CHEM 1212 Test II MULTIPLE CHOICE. Choose the one alternative that est completes the statement or answers the question. 1) At 1000 K, the equilirium constant for the reaction is K p = 0.013. 2NO (g) +
UNIT (6) ACIDS AND BASES
UNIT (6) ACIDS AND BASES 6.1 Arrhenius Definition of Acids and Bases Definitions for acids and bases were proposed by the Swedish chemist Savante Arrhenius in 1884. Acids were defined as compounds that
Acids and Bases. Chapter 16
Acids and Bases Chapter 16 The Arrhenius Model An acid is any substance that produces hydrogen ions, H +, in an aqueous solution. Example: when hydrogen chloride gas is dissolved in water, the following
General Chemistry II Chapter 20
1 General Chemistry II Chapter 0 Ionic Equilibria: Principle There are many compounds that appear to be insoluble in aqueous solution (nonelectrolytes). That is, when we add a certain compound to water
Chem 116 POGIL Worksheet - Week 10 - Solutions Weak Acid and Base Equilibria
Chem 116 POGIL Worksheet - Week 10 - Solutions Weak Acid and Base Equilibria Key Questions 1. A 0.0100 M solution of a weak acid HA has a ph of 2.60. What is the value of K a for the acid? [Hint: What
Moles, Molecules, and Grams Worksheet Answer Key
Moles, Molecules, and Grams Worksheet Answer Key 1) How many are there in 24 grams of FeF 3? 1.28 x 10 23 2) How many are there in 450 grams of Na 2 SO 4? 1.91 x 10 24 3) How many grams are there in 2.3
Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.
Acid-base 2816 1 Acid-base theories ACIDS & BASES - IONIC EQUILIBRIA LEWIS acid electron pair acceptor H +, AlCl 3 base electron pair donor NH 3, H 2 O, C 2 H 5 OH, OH e.g. H 3 N: -> BF 3 > H 3 N + BF
1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) 3 (s) + H 2 (g)
1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) A) 1 B) 2 C) 4 D) 5 E) Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) Al (s) + H 2 O (l)? Al(OH)
Chapter 14: Acids and Bases
Ch 14 Page 1 Chapter 14: Acids and Bases Properties of Acids Sour taste React with some metals Turns blue litmus paper red React with bases Some Common Acids HCl, hydrochloric acid H 2 SO 4, sulfuric acid
PART I: MULTIPLE CHOICE (30 multiple choice questions. Each multiple choice question is worth 2 points)
CHEMISTRY 123-07 Midterm #1 Answer key October 14, 2010 Statistics: Average: 74 p (74%); Highest: 97 p (95%); Lowest: 33 p (33%) Number of students performing at or above average: 67 (57%) Number of students
Chemical Reactions in Water Ron Robertson
Chemical Reactions in Water Ron Robertson r2 f:\files\courses\1110-20\2010 possible slides for web\waterchemtrans.doc Properties of Compounds in Water Electrolytes and nonelectrolytes Water soluble compounds
1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436 #1, 7, 8, 11
SCH3U- R.H.KING ACADEMY SOLUTION & ACID/BASE WORKSHEET Name: The importance of water - MAKING CONNECTION READING 1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436
Titration curves. Strong Acid-Strong Base Titrations
Titration curves A titration is a procedure for carrying out a chemical reaction between two solutions by the controlled addition from a buret of one solution (the titrant) to the other, allowing measurements
Since we will be dealing with aqueous acid and base solution, first we must examine the behavior of water.
Acids and Bases Know the definition of Arrhenius, Bronsted-Lowry, and Lewis acid and base. Autoionization of Water Since we will be dealing with aqueous acid and base solution, first we must examine the
Aqueous Ions and Reactions
Aqueous Ions and Reactions (ions, acids, and bases) Demo NaCl(aq) + AgNO 3 (aq) AgCl (s) Two clear and colorless solutions turn to a cloudy white when mixed Demo Special Light bulb in water can test for
6 Reactions in Aqueous Solutions
6 Reactions in Aqueous Solutions Water is by far the most common medium in which chemical reactions occur naturally. It is not hard to see this: 70% of our body mass is water and about 70% of the surface
CHEMISTRY II FINAL EXAM REVIEW
Name Period CHEMISTRY II FINAL EXAM REVIEW Final Exam: approximately 75 multiple choice questions Ch 12: Stoichiometry Ch 5 & 6: Electron Configurations & Periodic Properties Ch 7 & 8: Bonding Ch 14: Gas
Chemistry: Chemical Equations
Chemistry: Chemical Equations Write a balanced chemical equation for each word equation. Include the phase of each substance in the equation. Classify the reaction as synthesis, decomposition, single replacement,
Name: Class: Date: 2 4 (aq)
Name: Class: Date: Unit 4 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The balanced molecular equation for complete neutralization of
Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent
Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent Water a polar solvent: dissolves most ionic compounds as well as many molecular compounds Aqueous solution:
Chapter 16 Acid-Base Equilibria
Chapter 16 Acid-Base Equilibria Learning goals and key skills: Understand the nature of the hydrated proton, represented as either H + (aq) or H 3 O + (aq) Define and identify Arrhenuis acids and bases.
Acids and Bases: A Brief Review
Acids and : A Brief Review Acids: taste sour and cause dyes to change color. : taste bitter and feel soapy. Arrhenius: acids increase [H ] bases increase [OH ] in solution. Arrhenius: acid base salt water.
Molarity of Ions in Solution
APPENDIX A Molarity of Ions in Solution ften it is necessary to calculate not only the concentration (in molarity) of a compound in aqueous solution but also the concentration of each ion in aqueous solution.
Chemistry 201. Practical aspects of buffers. NC State University. Lecture 15
Chemistry 201 Lecture 15 Practical aspects of buffers NC State University The everyday ph scale To review what ph means in practice, we consider the ph of everyday substances that we know from experience.
Study Guide For Chapter 7
Name: Class: Date: ID: A Study Guide For Chapter 7 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The number of atoms in a mole of any pure substance
Stoichiometry. Lecture Examples Answer Key
Stoichiometry Lecture Examples Answer Key Ex. 1 Balance the following chemical equations: 3 NaBr + 1 H 3 PO 4 3 HBr + 1 Na 3 PO 4 2 C 3 H 5 N 3 O 9 6 CO 2 + 3 N 2 + 5 H 2 O + 9 O 2 2 Ca(OH) 2 + 2 SO 2
Tutorial 4 SOLUTION STOICHIOMETRY. Solution stoichiometry calculations involve chemical reactions taking place in solution.
T-27 Tutorial 4 SOLUTION STOICHIOMETRY Solution stoichiometry calculations involve chemical reactions taking place in solution. Of the various methods of expressing solution concentration the most convenient
Chapter 3: Stoichiometry
Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and
4.1 Stoichiometry. 3 Basic Steps. 4. Stoichiometry. Stoichiometry. Butane Lighter 2C 4 H 10 + 13O 2 10H 2 O + 8CO 2
4. Stoichiometry 1. Stoichiometric Equations 2. Limiting Reagent Problems 3. Percent Yield 4. Limiting Reagent Problems 5. Concentrations of Solutes 6. Solution Stoichiometry 7. ph and Acid Base Titrations
Ch 8.5 Solution Concentration Units % (m/m or w/w) = mass of solute x 100 total mass of solution mass of solution = mass solute + mass solvent
1 Ch 8.5 Solution Concentration Units % (m/m or w/w) = mass of solute x 100 total mass of solution mass of solution = mass solute + mass solvent % (v/v) = volume of solute x 100 volume of solution filled
Answers and Solutions to Text Problems
Chapter 7 Answers and Solutions 7 Answers and Solutions to Text Problems 7.1 A mole is the amount of a substance that contains 6.02 x 10 23 items. For example, one mole of water contains 6.02 10 23 molecules
Acid-Base Equilibrium
AcidBaseEquil 1 Acid-Base Equilibrium See AqueousIons in Chemistry 1110 online notes for review of acid-base fundamentals! Acid- Base Reaction in Aqueous Salt Solutions Recall that use [ ] to mean concentration
CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH
1. Is H 3 O + polar or non-polar? (1 point) a) Polar b) Non-polar CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH 2. The bond strength is considerably greater in HF than in the other three hydrogen halides
Acid/Base Definition. Acid/Base Reactions. Major vs. Minor Species. Terms/Items you Need to Know. you need to memorize these!!
Acid/Base Reactions some covalent compounds have weakly bound H atoms and can lose them to water (acids) some compounds produce OH in water solutions when they dissolve (bases) acid/base reaction are very
W1 WORKSHOP ON STOICHIOMETRY
INTRODUCTION W1 WORKSHOP ON STOICHIOMETRY These notes and exercises are designed to introduce you to the basic concepts required to understand a chemical formula or equation. Relative atomic masses of
Formulas, Equations and Moles
Chapter 3 Formulas, Equations and Moles Interpreting Chemical Equations You can interpret a balanced chemical equation in many ways. On a microscopic level, two molecules of H 2 react with one molecule
CHAPTER 16: ACIDS AND BASES
CHAPTER 16: ACIDS AND BASES Active Learning: 4, 6, 14; End-of-Chapter Problems: 2-25, 27-58, 66-68, 70, 75-77, 83, 90-91, 93-104 Chapter 15 End-of-Chapter Problems: 69-74, 125, 129, 133 16.1 ACIDS AND
Common Ion Effects. CH 3 CO 2 (aq) + Na + (aq)
Common Ion Effects If two reactions both involve the same ion, then one reaction can effect the equilibrium position of the other reaction. The ion that appears in both reactions is the common ion. Buffers
Chapter 16: Acid-Base and Solubility Equilibria: Reactions in Soil and Water
Chapter 16: Acid-Base and Solubility Equilibria: Reactions in Soil and Water Problems: 16.2-16.86 16.1 ACIDS AND BASES: THE BRØNSTED-LOWRY MODEL PROPERTIES OF ACIDS & BASES Acids produce hydrogen ions,
TOPIC 11: Acids and Bases
TOPIC 11: Acids and Bases ELECTROLYTES are substances that when dissolves in water conduct electricity. They conduct electricity because they will break apart into Ex. NaCl(s)! Na + (aq) + Cl - (aq), and
Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses
Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses B. Calculations of moles C. Calculations of number of atoms from moles/molar masses 1. Avagadro
Chemistry Post-Enrolment Worksheet
Name: Chemistry Post-Enrolment Worksheet The purpose of this worksheet is to get you to recap some of the fundamental concepts that you studied at GCSE and introduce some of the concepts that will be part
Experiment 1 Chemical Reactions and Net Ionic Equations
Experiment 1 Chemical Reactions and Net Ionic Equations I. Objective: To predict the products of some displacement reactions and write net ionic equations. II. Chemical Principles: A. Reaction Types. Chemical
Formulae, stoichiometry and the mole concept
3 Formulae, stoichiometry and the mole concept Content 3.1 Symbols, Formulae and Chemical equations 3.2 Concept of Relative Mass 3.3 Mole Concept and Stoichiometry Learning Outcomes Candidates should be
Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions.
Aqueous Solutions and Solution Stoichiometry Water is the dissolving medium, or solvent. Some Properties of Water Water is bent or V-shaped. The O-H bonds are covalent. Water is a polar molecule. Hydration
Acid/base Definitions. Acid/Base Definitions. Acid / Base Chemistry. Acid/Base Definitions. Identifying Acids and Bases
Acids Identifying Acids and Bases Acid (anhydrides) contains H+ ions as the cation, with and other element as the anion Non-metal oxide H2SO4 HI P2O5 Bases Base (anhydrides) Contains OH- as the anion Combined
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í CHEMICAL REACTIONS
Chemical reaction = process during which original substances change to new substances, reactants turn to... The bonds of reactants... and new bonds are... The classification of reactions: 1. Classification
Worksheet 23 Strong Acid/Strong Base Titrations
Worksheet 2 Strong Acid/Strong Base Titrations A. Initial ph This is always determined based solely on the initial concentration of the acid or base being titrated. Every mole of acid or base will produce
Acid-Base (Proton-Transfer) Reactions
Acid-Base (Proton-Transfer) Reactions Chapter 17 An example of equilibrium: Acid base chemistry What are acids and bases? Every day descriptions Chemical description of acidic and basic solutions by Arrhenius
Acid-Base Titrations. Setup for a Typical Titration. Titration 1
Titration 1 Acid-Base Titrations Molarities of acidic and basic solutions can be used to convert back and forth between moles of solutes and volumes of their solutions, but how are the molarities of these
Stoichiometry Review
Stoichiometry Review There are 20 problems in this review set. Answers, including problem set-up, can be found in the second half of this document. 1. N 2 (g) + 3H 2 (g) --------> 2NH 3 (g) a. nitrogen
SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, "Chemistry 11", McGraw-Hill Ryerson, 2001
SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, "Chemistry 11", McGraw-Hill Ryerson, 2001 1. A small pin contains 0.0178 mol of iron. How many atoms of iron are in the pin? 2. A sample
5.111 Principles of Chemical Science
MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Page 1 of 10 pages
APPENDIX B: EXERCISES
BUILDING CHEMISTRY LABORATORY SESSIONS APPENDIX B: EXERCISES Molecular mass, the mole, and mass percent Relative atomic and molecular mass Relative atomic mass (A r ) is a constant that expresses the ratio
Answer Key, Problem Set 5 (With explanations)--complete
Chemistry 122 Mines, Spring 2016 Answer Key, Problem Set 5 (With explanations)complete 1. NT1; 2. NT2; 3. MP; 4. MP (15.38); 5. MP (15.40); 6. MP (15.42); 7. NT3; 8. NT4; 9. MP; 10. NT5; 11. NT6; 12. MP;
IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.
The Mole Atomic mass units and atoms are not convenient units to work with. The concept of the mole was invented. This was the number of atoms of carbon-12 that were needed to make 12 g of carbon. 1 mole
Chapter 19: Acids and Bases Homework Packet (50 pts) Name: Score: / 50
Chapter 19: Acids and Bases Homework Packet (50 pts) Topic pg Section 19.1 1-3 Section 19.2 3-6 Section 19.3 6-7 Section 19.4 8 Naming Acids 9 Properties of Acids/Bases 10-11 Conjugate Acid/Base Pairs
Equilibrium Constants The following equilibrium constants will be useful for some of the problems.
1 CH302 Exam 4 Practice Problems (buffers, titrations, Ksp) Equilibrium Constants The following equilibrium constants will be useful for some of the problems. Substance Constant Substance Constant HCO
CHM1 Review for Exam 12
Topics Solutions 1. Arrhenius Acids and bases a. An acid increases the H + concentration in b. A base increases the OH - concentration in 2. Strong acids and bases completely dissociate 3. Weak acids and
Chemical Calculations: The Mole Concept and Chemical Formulas. AW Atomic weight (mass of the atom of an element) was determined by relative weights.
1 Introduction to Chemistry Atomic Weights (Definitions) Chemical Calculations: The Mole Concept and Chemical Formulas AW Atomic weight (mass of the atom of an element) was determined by relative weights.
Properties of Aqueous Solutions of Acids and Bases. CHAPTER 10 Acids, Bases and Salts. Properties of Aqueous Solutions of Acids and Bases
CAPTER Acids, Bases and Salts Properties of Aqueous Solutions of Acids and Bases Strong and Weak Acids Acids are substances that generate in aqueous solutions. Strong acids ionize 0% in water. That is,
NH 3 + H 2 O + OH - NH 4. Acid-Base Concepts -- Chapter 15 + H + Conjugate Acid-Base Pairs: - H + base. acid
Acid-Base Concepts -- Chapter 15 1. Arrhenius Acid-Base Concept (last semester) Acid: H+ supplier Base: OH- supplier 2. Brønsted-Lowry Acid-Base Concept (more general) (a) Definition (H+ transfer) Acid:
WRITING CHEMICAL FORMULA
WRITING CHEMICAL FORMULA For ionic compounds, the chemical formula must be worked out. You will no longer have the list of ions in the exam (like at GCSE). Instead you must learn some and work out others.
CHAPTER 18 ACID-BASE EQUILIBRIA
CHAPTER 18 ACID-BASE EQUILIBRIA 18.1 The Arrhenius definition classified substances as being acids or bases by their behavior in the solvent water. 18. All Arrhenius acids contain hydrogen and produce
Topic 18 Acids and Bases. 18.1 Exercises
Topic 18 Acids and Bases 18.1 Exercises 1. Define: (a) ph The negative log of the hydrogen ion concentration in a solution. i.e. ph = log[h 3 O + ] (b) poh The negative log of hydroxide ion concentration
Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole
Topic 4 National Chemistry Summary Notes Formulae, Equations, Balancing Equations and The Mole LI 1 The chemical formula of a covalent molecular compound tells us the number of atoms of each element present
Calculating Atoms, Ions, or Molecules Using Moles
TEKS REVIEW 8B Calculating Atoms, Ions, or Molecules Using Moles TEKS 8B READINESS Use the mole concept to calculate the number of atoms, ions, or molecules in a sample TEKS_TXT of material. Vocabulary
Topic 5. Acid and Bases
Topic 5 5-1 Acid and Bases Acid and Bases 5-2 There are a number definitions for aicd and bases, depending on what is convenient to use in a particular situation: Arrhenius and Ostwald: Theory of electrolyte
Topic 8 Acids and bases 6 hours
Topic 8 Acids and bases 6 hours Hydronium ion (H3O + ) = more stable form of hydrogen ion (H + ) H + + H2O H3O + 8.1 Theories of acids and bases 2 hours 1. Arrhenius H-X / M-OH ACID a substance that dissociates
Similarities The ph of each of these solutions is the same; that is, the [H + ] is the same in both beakers (go ahead and count).
Compare 1 L of acetate buffer solution (0.50 mol of acetic acid and 0.50 mol sodium acetate) to 1 L of HCl solution AcO - AcO - H+ Cl - AcO - AcO - Cl - Cl - AcO - Cl - Cl - Cl - Cl - AcO - AcO - AcO -
ATOMS. Multiple Choice Questions
Chapter 3 ATOMS AND MOLECULES Multiple Choice Questions 1. Which of the following correctly represents 360 g of water? (i) 2 moles of H 2 0 (ii) 20 moles of water (iii) 6.022 10 23 molecules of water (iv)
Chapter 3 Mass Relationships in Chemical Reactions
Chapter 3 Mass Relationships in Chemical Reactions Student: 1. An atom of bromine has a mass about four times greater than that of an atom of neon. Which choice makes the correct comparison of the relative
Chapter 3! Stoichiometry: Calculations with Chemical Formulas and Equations. Stoichiometry
Chapter 3! : Calculations with Chemical Formulas and Equations Anatomy of a Chemical Equation CH 4 (g) + 2O 2 (g) CO 2 (g) + 2 H 2 O (g) Anatomy of a Chemical Equation CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2
Molar Mass Worksheet Answer Key
Molar Mass Worksheet Answer Key Calculate the molar masses of the following chemicals: 1) Cl 2 71 g/mol 2) KOH 56.1 g/mol 3) BeCl 2 80 g/mol 4) FeCl 3 162.3 g/mol 5) BF 3 67.8 g/mol 6) CCl 2 F 2 121 g/mol
The Mole. 6.022 x 10 23
The Mole 6.022 x 10 23 Background: atomic masses Look at the atomic masses on the periodic table. What do these represent? E.g. the atomic mass of Carbon is 12.01 (atomic # is 6) We know there are 6 protons
Practical Lesson No 4 TITRATIONS
Practical Lesson No 4 TITRATIONS Reagents: 1. NaOH standard solution 0.1 mol/l 2. H 2 SO 4 solution of unknown concentration 3. Phenolphthalein 4. Na 2 S 2 O 3 standard solution 0.1 mol/l 5. Starch solution
