Practical Lesson No 4 TITRATIONS
|
|
|
- Sara Banks
- 9 years ago
- Views:
Transcription
1 Practical Lesson No 4 TITRATIONS Reagents: 1. NaOH standard solution 0.1 mol/l 2. H 2 SO 4 solution of unknown concentration 3. Phenolphthalein 4. Na 2 S 2 O 3 standard solution 0.1 mol/l 5. Starch solution 6 g/l 6. Solutio Lugoli 13 g I 2 in KI 25 g/l Theory of titrations In general, chemistry often analyses unknown samples to answer two questions: what substances are present and what is their amount. There are therefore two parts of analytical chemistry: the qualitative and the quantitative analysis. As analytical methods for inorganic substances differ from those for the organic ones, there are two kinds of analytical chemistry: the inorganic and the organic analytical chemistry. In this lesson we present some examples of the quantitative analysis of inorganic substances. An important method for determination of the amount of a particular substance is based on measuring volumes of reactant solutions. The method is called a titration, and can be defined as a procedure for determining the amount of substance A by adding a carefully measured volume of a solution with known concentration of substance B until the reaction of substance A with the substance B is just complete. To make the course of the reaction visible, it is necessary to add another substance called an indicator. An indicator is a substance that undergoes a colour change when the reaction approaches completion, i.e. at the equivalence point. The titration analysis can be based on various sorts of chemical reactions, from which we give three examples here: A. Neutralisation reaction When an acid is mixed with an alkali (base), neutralisation reaction occurs, e.g.: HCl + NaOH NaCl + H 2 O In ionic terms: H + + OH H 2 O An acid-base titration is a special kind of titration, used for measuring the amount of acid (or base) in a solution by determining the volume of base (or acid) of known concentration (titrant, titration reagent, standard solution) that will completely neutralise it. Institute of Medical Biochemistry, 1 st Faculty of Medicine, Charles University in Prague,
2 Fig 1. Acid-base titration curves: To a certain amount of weak (CH 3 COOH), or strong (HCl) acid, small amounts of weak (NH 4 OH) or strong (NaOH) alkali were added and ph was measured after each addition. Note the sharp increase in ph at the equivalence point, where all the acid has been just consumed for the neutralisation reaction with the added base. The differences in the curve shapes between weak and strong acids/bases, respectively, will be discussed later, in conjunction with principle of ph buffering. ph can be measured during the course of an acid-base titration; the resulting plot of ph against the volume of alkali (or acid) added to the original sample of acid (or alkali) is called an acid-base titration curve (Fig 1). Such curves can be used to gain insight into the titration process. Usually, however, the equivalence point is more conveniently visualised using a suitable acid-base indicator. Acid-base indicators are organic dyes that change colour with ph (in other words, the spectral properties of the dye depend on its protonation). Two examples of these substances are: Indicator Colour at lower ph ph range for colour change Colour at higher ph Methyl orange red yellow Phenolphthalein colourless pink Institute of Medical Biochemistry, 1 st Faculty of Medicine, Charles University in Prague,
3 B. Precipitation reaction Certain combinations of aqueous cations and anions produce insoluble products (precipitates), e.g.: AgNO 3 (aq) + NaCl(aq) AgCl(s) + NaNO 3 (aq) ionic: Ag + + Cl - AgCl This reaction can be employed for quantification of chloride ions in unknown solution by means of titration with silver nitrate solution of known concentration. This technique, called argentometry, uses chromate K 2 CrO 4 as an indicator. Chromate forms also an insoluble salt with Ag. How, then, can it be used as an indicator? Simply stated, AgCl is less soluble than Ag 2 CrO 4. Initially the Ag + ions (the titrant) enter the solution where there is an excess of chloride ions, and all the silver ions are being consumed for formation of the white precipitate of AgCl. When the equivalence point is reached, the Cl ions are no longer available, and the Ag + concentration is allowed to rise to the point where the red-brown insoluble Ag 2 CrO 4 appears. The argentometry can be used for determination of halides (Cl, Br, I ), mercaptans (thioalcohols), fatty acids and several divalent anions. Another similar approach is called mercurimetry. In this case the titrating reagent contains mercury(ii) ions that react with chloride in the sample to produce soluble but non-dissociated mercury(ii) chloride, HgCl 2. The indicator in this case is sodium nitroprusside Na 2 [Fe(CN) 5 NO]. The appearance of free Hg 2+ ions at the point of equivalence results in formation of white precipitate of mercury(ii) nitroprusside. C. Oxidation-reduction reaction Oxidation means loss of electron(s) and reduction means gain of electron(s); reactions where a transfer of electrons is involved are thus called oxidation-reduction (redox) reactions. In addition to neutralisation (acid-base) and precipitation reactions, the redox processes can be utilised in quantitative titrimetric chemical analysis. Iodometry is one example; encompasses a wide range of methods for determination of substances that either reduce iodine to iodide anion (and are themselves oxidised by iodine) or oxidise iodide to iodine (and themselves are reduced). The reaction I e 2 I is fully reversible and its direction depends on the reducing or oxidising power of the other (estimated) substance, and also on the ph of the solution. Redox iodometric methods are divided into two groups: 1. Determination of substances with reducing power, able to be oxidised by iodine. Iodine is consumed in the reaction since it is reduced to iodide: I e 2 I This can be used for estimation of thiosulphate, sulphite, formaldehyde etc. Although it is possible to titrate the sample directly with the solution of iodine (direct iodometry), more convenient is to add known excess of iodine and then titrate the remaining (nonconsumed) iodine with thiosulphate (back-titration). 2. Determination of substances with oxidising power, which at ph below 7 and excess of iodide produce stoichiometric amount of iodine, and are themselves reduced: 2 I I e The released iodine is titrated with thiosulphate (indirect iodometry). This approach is suitable for estimation of Cl 2, Br 2, iodates, hydrogen peroxide, ethanol in blood etc. Institute of Medical Biochemistry, 1 st Faculty of Medicine, Charles University in Prague,
4 The final step is the same in both cases: titration of iodine with sodium thiosulphate: I Na 2 S 2 O 3 2 NaI + Na 2 S 4 O 6 (At neutral or slightly acidic ph iodine I 2, or better I 3, oxidises thiosulphate to tetrathionate). Although iodine has red-brown colour and its presence in the solution could be followed directly, for greater accuracy an indicator is used. The indicator in iodometry is starch that forms a blue complex with iodine. Titration calculations Regardless of the type of reaction used in the titration experiment, the subsequent calculation is based on the known stoichiometry with which the titrated substance (unknown) reacts with the titrant. Although it can be accomplished in several ways, usage of the following simple formula is recommended: c 1. v 1 = c 2. v 2 where c 1... concentration of the substance to be titrated (the unknown) v 1...volume of the unknown sample taken for the titration c 2...concentration of the titrant (known) v 2... volume of the titrant solution consumed for titration untill the equivalence point is reached (the actual experimental data from the titration analysis) Obviously values of c and v on both sides of the equation must be in the same units. In cases where the stoichiometry of the titration reaction differs from simple 1:1 ratio, it must be taken into account in calculation as well. Example of usage: An unknown sample of sulfuric acid H 2 SO 4 was titrated with the known KOH solution. It was found that 12 ml of the KOH c = 0.1 mol/l was necessary for just complete neutralisation of 10 ml of the unknown sample of H 2 SO 4. What is concentration of sulfuric acid in the sample? Equation: H 2 SO KOH K 2 SO H 2 O Calculation: H 2 SO 4 KOH c 1. v 1 = c 2. v 2 c 1 = c 2. v 2 /v 1 = /10 = 0.12 The concentration of H 2 SO 4 would be 0.12 mol/l. However, it goes from the reaction above that 2 moles of KOH are required for neutralisation of 1 mol of H 2 SO 4. Therefore, the result, 0.12, must be divided by 2, giving the concentration of sulfuric acid in the unknown sample 0.06 mol/l. Institute of Medical Biochemistry, 1 st Faculty of Medicine, Charles University in Prague,
5 EXPERIMENTAL The task is to perform two titrations: 1) determination of concentration of sulfuric acid by means of acid-base titration, 2) determination of iodine in Lugol solution by means of iodometry (redox titration) Do not confuse the samples, reagents and equipment (burettes) designated for each of these two experiments! In general, each titration is to be performed three times, first to get a rough reading, the other two for accurate determination of the equivalence point. For the calculation, the average (arithmetic mean) of the second and third readings is used. 1. Titrimetric estimation of molar and mass concentration of sulfuric acid Procedure: a. Measure 10.0 ml of the unknown solution of sulfuric acid into 100 ml titration flask using a glass pipette and dilute with approximately 10 ml of distilled water. Add a few drops of phenolphthalein as the indicator. b. Titrate with standard NaOH solution (c = 0.1 mol/l). The point of equivalence (the end of titration) occurs when the solution turns slight red-violet. c. Perform the titration three times, for further calculation use arithmetic mean of the results from the second and the third runs. d. Calculate the molar as well as the mass concentrations of sulfuric acid in the unknown sample. e. Write a net ionic equation for the neutralisation reaction that occurs in the titration flask. 2. Direct iodometry: Determination of iodine in the Lugol solution Procedure: a. Pipette 10 ml of Lugol solution into a titration flask, and add about 10 ml of distilled water. b. Titrate with sodium thiosulphate standard solution (c = 0.1 mol/l) to faint yellow colour. c. Add 2 ml of the indicator and titrate until the starch-iodine blue colour completely disappears. d. Carry out three times and use the last two results for calculation. e. Write an ionic equation of I 2 reaction with sodium thiosulphate. f. Calculate the molar as well as the mass concentration of iodine in Lugol solution. Institute of Medical Biochemistry, 1 st Faculty of Medicine, Charles University in Prague,
stoichiometry = the numerical relationships between chemical amounts in a reaction.
1 REACTIONS AND YIELD ANSWERS stoichiometry = the numerical relationships between chemical amounts in a reaction. 2C 8 H 18 (l) + 25O 2 16CO 2 (g) + 18H 2 O(g) From the equation, 16 moles of CO 2 (a greenhouse
Chemical Reactions in Water Ron Robertson
Chemical Reactions in Water Ron Robertson r2 f:\files\courses\1110-20\2010 possible slides for web\waterchemtrans.doc Properties of Compounds in Water Electrolytes and nonelectrolytes Water soluble compounds
6 Reactions in Aqueous Solutions
6 Reactions in Aqueous Solutions Water is by far the most common medium in which chemical reactions occur naturally. It is not hard to see this: 70% of our body mass is water and about 70% of the surface
4.1 Stoichiometry. 3 Basic Steps. 4. Stoichiometry. Stoichiometry. Butane Lighter 2C 4 H 10 + 13O 2 10H 2 O + 8CO 2
4. Stoichiometry 1. Stoichiometric Equations 2. Limiting Reagent Problems 3. Percent Yield 4. Limiting Reagent Problems 5. Concentrations of Solutes 6. Solution Stoichiometry 7. ph and Acid Base Titrations
Tutorial 4 SOLUTION STOICHIOMETRY. Solution stoichiometry calculations involve chemical reactions taking place in solution.
T-27 Tutorial 4 SOLUTION STOICHIOMETRY Solution stoichiometry calculations involve chemical reactions taking place in solution. Of the various methods of expressing solution concentration the most convenient
Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.
Acid-base A4 1 Acid-base theories ACIDS & BASES - IONIC EQUILIBRIA 1. LEWIS acid electron pair acceptor H, AlCl 3 base electron pair donor NH 3, H 2 O, C 2 H 5 OH, OH e.g. H 3 N: -> BF 3 > H 3 N BF 3 see
ph: Measurement and Uses
ph: Measurement and Uses One of the most important properties of aqueous solutions is the concentration of hydrogen ion. The concentration of H + (or H 3 O + ) affects the solubility of inorganic and organic
Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.
Acid-base 2816 1 Acid-base theories ACIDS & BASES - IONIC EQUILIBRIA LEWIS acid electron pair acceptor H +, AlCl 3 base electron pair donor NH 3, H 2 O, C 2 H 5 OH, OH e.g. H 3 N: -> BF 3 > H 3 N + BF
Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent
Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent Water a polar solvent: dissolves most ionic compounds as well as many molecular compounds Aqueous solution:
Additional Lecture: TITRATION BASICS
Additional Lecture: TITRATION BASICS 1 Definition and Applications Titration is the incremental addition of a reagent solution (called titrant) to the analyte until the reaction is complete Common applications:
Determination of the amount of sodium carbonate and sodium hydroxide in a mixture by titration.
Module 9 : Experiments in Chemistry Lecture 38 : Titrations : Acid-Base, Redox and Complexometric Objectives In this lecture you will learn the techniques to do following Determination of the amount of
I. ACID-BASE NEUTRALIZATION, TITRATION
LABORATORY 3 I. ACID-BASE NEUTRALIZATION, TITRATION Acid-base neutralization is a process in which acid reacts with base to produce water and salt. The driving force of this reaction is formation of a
Precipitation Titration: Determination of Chloride by the Mohr Method by Dr. Deniz Korkmaz
Precipitation Titration: Determination of Chloride by the Mohr Method by Dr. Deniz Korkmaz Introduction Titration is a process by which the concentration of an unknown substance in solution is determined
A Volumetric Analysis (Redox Titration) of Hypochlorite in Bleach
CHEM 311L Quantitative Analysis Laboratory Revision 2.3 A Volumetric Analysis (Redox Titration) of Hypochlorite in Bleach In this laboratory exercise, we will determine the concentration of the active
Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions.
Aqueous Solutions and Solution Stoichiometry Water is the dissolving medium, or solvent. Some Properties of Water Water is bent or V-shaped. The O-H bonds are covalent. Water is a polar molecule. Hydration
Chemical equilibria Buffer solutions
Chemical equilibria Buffer solutions Definition The buffer solutions have the ability to resist changes in ph when smaller amounts of acid or base is added. Importance They are applied in the chemical
CHM1 Review for Exam 12
Topics Solutions 1. Arrhenius Acids and bases a. An acid increases the H + concentration in b. A base increases the OH - concentration in 2. Strong acids and bases completely dissociate 3. Weak acids and
Volumetric Analysis. Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115
Volumetric Analysis Lecture 5 Experiment 9 in Beran page 109 Prelab = Page 115 Experimental Aims To prepare and standardize (determine concentration) a NaOH solution Using your standardized NaOH calculate
LESSON ASSIGNMENT. After completing this lesson, you should be able to: 7-1. Solve basic titration problems.
LESSON ASSIGNMENT LESSON 7 Titration. TEXT ASSIGNMENT Paragraphs 7-1 through 7-5. LESSON OBJECTIVES After completing this lesson, you should be able to: 7-1. Solve basic titration problems. 7-2. Convert
Stoichiometry and Aqueous Reactions (Chapter 4)
Stoichiometry and Aqueous Reactions (Chapter 4) Chemical Equations 1. Balancing Chemical Equations (from Chapter 3) Adjust coefficients to get equal numbers of each kind of element on both sides of arrow.
1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436 #1, 7, 8, 11
SCH3U- R.H.KING ACADEMY SOLUTION & ACID/BASE WORKSHEET Name: The importance of water - MAKING CONNECTION READING 1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436
Titrations. Acid-Base Indicators and Titration Curves. Shapes of Titration Curves. A titration curve is a graphical history of a titration
Acid-Base Indicators and Titration Curves Titrations In a titration a solution of accurately known concentration is added gradually added to another solution of unknown concentration until the chemical
General Chemistry II Chapter 20
1 General Chemistry II Chapter 0 Ionic Equilibria: Principle There are many compounds that appear to be insoluble in aqueous solution (nonelectrolytes). That is, when we add a certain compound to water
Chapter 16: Tests for ions and gases
The position of hydrogen in the reactivity series Hydrogen, although not a metal, is included in the reactivity series because it, like metals, can be displaced from aqueous solution, only this time the
Copyright 2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.
Sample Exercise 17.1 Calculating the ph When a Common Ion is Involved What is the ph of a solution made by adding 0.30 mol of acetic acid and 0.30 mol of sodium acetate to enough water to make 1.0 L of
Name: Class: Date: 2 4 (aq)
Name: Class: Date: Unit 4 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The balanced molecular equation for complete neutralization of
Acid-Base Titrations. Setup for a Typical Titration. Titration 1
Titration 1 Acid-Base Titrations Molarities of acidic and basic solutions can be used to convert back and forth between moles of solutes and volumes of their solutions, but how are the molarities of these
One problem often faced in qualitative analysis is to test for one ion in a
Chemistry 112 Laboratory: Silver Group Analysis Page 11 ANALYSIS OF THE SILVER GROUP CATIONS Ag + Pb Analysis of a Mixture of Cations One problem often faced in qualitative analysis is to test for one
Chapter 17. The best buffer choice for ph 7 is NaH 2 PO 4 /Na 2 HPO 4. 19)
Chapter 17 2) a) HCl and CH 3 COOH are both acids. A buffer must have an acid/base conjugate pair. b) NaH 2 PO 4 and Na 2 HPO 4 are an acid/base conjugate pair. They will make an excellent buffer. c) H
Acid/Base Definition. Acid/Base Reactions. Major vs. Minor Species. Terms/Items you Need to Know. you need to memorize these!!
Acid/Base Reactions some covalent compounds have weakly bound H atoms and can lose them to water (acids) some compounds produce OH in water solutions when they dissolve (bases) acid/base reaction are very
Topic 18 Acids and Bases. 18.1 Exercises
Topic 18 Acids and Bases 18.1 Exercises 1. Define: (a) ph The negative log of the hydrogen ion concentration in a solution. i.e. ph = log[h 3 O + ] (b) poh The negative log of hydroxide ion concentration
1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) 3 (s) + H 2 (g)
1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) A) 1 B) 2 C) 4 D) 5 E) Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) Al (s) + H 2 O (l)? Al(OH)
Number of moles of solute = Concentration (mol. L ) x Volume of solution (litres) or n = C x V
44 CALCULATIONS INVOLVING SOLUTIONS INTRODUCTION AND DEFINITIONS Many chemical reactions take place in aqueous (water) solution. Quantities of such solutions are measured as volumes, while the amounts
Experiment 8 - Double Displacement Reactions
Experiment 8 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are
TOPIC 11: Acids and Bases
TOPIC 11: Acids and Bases ELECTROLYTES are substances that when dissolves in water conduct electricity. They conduct electricity because they will break apart into Ex. NaCl(s)! Na + (aq) + Cl - (aq), and
Equilibrium Constants The following equilibrium constants will be useful for some of the problems.
1 CH302 Exam 4 Practice Problems (buffers, titrations, Ksp) Equilibrium Constants The following equilibrium constants will be useful for some of the problems. Substance Constant Substance Constant HCO
Solubility Product Constant
Solubility Product Constant Page 1 In general, when ionic compounds dissolve in water, they go into solution as ions. When the solution becomes saturated with ions, that is, unable to hold any more, the
CHEMICAL REACTIONS. Chemistry 51 Chapter 6
CHEMICAL REACTIONS A chemical reaction is a rearrangement of atoms in which some of the original bonds are broken and new bonds are formed to give different chemical structures. In a chemical reaction,
Juice Titration. Background. Acid/Base Titration
Juice Titration Background Acids in Juice Juice contains both citric and ascorbic acids. Citric acid is used as a natural preservative and provides a sour taste. Ascorbic acid is a water-soluble vitamin
MOLARITY = (moles solute) / (vol.solution in liter units)
CHEM 101/105 Stoichiometry, as applied to Aqueous Solutions containing Ionic Solutes Lect-05 MOLES - a quantity of substance. Quantities of substances can be expressed as masses, as numbers, or as moles.
Continuous process of sodium bicarbonate production by Solvay method
Continuous process of sodium bicarbonate production by Solvay method Manual to experiment nr 10 Instructor: Dr Tomasz S. Pawłowski 1 Goal of the experiment The goal of the experiment is introduction of
TITRATION OF VITAMIN C
TITRATION OF VITAMIN C Introduction: In this lab, we will be performing two different types of titrations on ascorbic acid, more commonly known as Vitamin C. The first will be an acid-base titration in
Acids and Bases. Chapter 16
Acids and Bases Chapter 16 The Arrhenius Model An acid is any substance that produces hydrogen ions, H +, in an aqueous solution. Example: when hydrogen chloride gas is dissolved in water, the following
Paper 1 (7404/1): Inorganic and Physical Chemistry Mark scheme
AQA Qualifications AS Chemistry Paper (7404/): Inorganic and Physical Chemistry Mark scheme 7404 Specimen paper Version 0.6 MARK SCHEME AS Chemistry Specimen paper Section A 0. s 2 2s 2 2p 6 3s 2 3p 6
Balancing Chemical Equations Worksheet
Balancing Chemical Equations Worksheet Student Instructions 1. Identify the reactants and products and write a word equation. 2. Write the correct chemical formula for each of the reactants and the products.
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í CHEMICAL REACTIONS
Chemical reaction = process during which original substances change to new substances, reactants turn to... The bonds of reactants... and new bonds are... The classification of reactions: 1. Classification
(1) Hydrochloric acid reacts with sodium hypochlorite to form hypochlorous acid: NaOCl(aq) + HCl(aq) HOCl(aq) + NaCl(aq) hypochlorous acid
The Determination of Hypochlorite in Bleach Reading assignment: Chang, Chemistry 10 th edition, pages 156-159. We will study an example of a redox titration in order to determine the concentration of sodium
n molarity = M = N.B.: n = litres (solution)
1. CONCENTRATION UNITS A solution is a homogeneous mixture of two or more chemical substances. If we have a solution made from a solid and a liquid, we say that the solid is dissolved in the liquid and
Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked.
GCSE CHEMISTRY Higher Tier Chemistry 1H H Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the periodic table (enclosed). Instructions Answer all
Chapter 7: Chemical Reactions
Chapter 7 Page 1 Chapter 7: Chemical Reactions A chemical reaction: a process in which at least one new substance is formed as the result of a chemical change. A + B C + D Reactants Products Evidence that
Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions
Oxidation-Reduction Reactions Chapter 11 Electrochemistry Oxidation and Reduction Reactions An oxidation and reduction reaction occurs in both aqueous solutions and in reactions where substances are burned
Experiment 1 Chemical Reactions and Net Ionic Equations
Experiment 1 Chemical Reactions and Net Ionic Equations I. Objective: To predict the products of some displacement reactions and write net ionic equations. II. Chemical Principles: A. Reaction Types. Chemical
4 theoretical problems 2 practical problems
1 st 4 theoretical problems 2 practical problems FIRST INTERNATIONAL CHEMISTRY OLYMPIAD PRAGUE 1968 CZECHOSLOVAKIA THEORETICAL PROBLEMS PROBLEM 1 A mixture of hydrogen and chlorine kept in a closed flask
Lab #13: Qualitative Analysis of Cations and Anions
Lab #13: Qualitative Analysis of Cations and Anions Objectives: 1. To understand the rationale and the procedure behind the separation for various cations and anions. 2. To perform qualitative analysis
IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.
The Mole Atomic mass units and atoms are not convenient units to work with. The concept of the mole was invented. This was the number of atoms of carbon-12 that were needed to make 12 g of carbon. 1 mole
Acetic Acid Content of Vinegar: An Acid-Base Titration E10-1
Experiment 10 Acetic Acid Content of Vinegar: An Acid-Base Titration E10-1 E10-2 The task The goal of this experiment is to determine accurately the concentration of acetic acid in vinegar via volumetric
Formulae, stoichiometry and the mole concept
3 Formulae, stoichiometry and the mole concept Content 3.1 Symbols, Formulae and Chemical equations 3.2 Concept of Relative Mass 3.3 Mole Concept and Stoichiometry Learning Outcomes Candidates should be
Chemistry Ch 15 (Solutions) Study Guide Introduction
Chemistry Ch 15 (Solutions) Study Guide Introduction Name: Note: a word marked (?) is a vocabulary word you should know the meaning of. A homogeneous (?) mixture, or, is a mixture in which the individual
Aqueous Chemical Reactions
Name: Date: Lab Partners: Lab section: Aqueous Chemical Reactions The purpose of this lab is to introduce you to three major categories of reactions that occur in aqueous solutions: precipitation reactions,
Experiment 5. Chemical Reactions A + X AX AX A + X A + BX AX + B AZ + BX AX + BZ
Experiment 5 Chemical Reactions OBJECTIVES 1. To observe the various criteria that are used to indicate that a chemical reaction has occurred. 2. To convert word equations into balanced inorganic chemical
Determination of Ascorbic Acid in Vitamin C Tablets by Redox and Acid/Base Titrations
hemistry 211 Spring 2011 Purpose: Determination of Ascorbic Acid in Vitamin Tablets by Redox and Acid/Base Titrations To determine the quantity of Vitamin (ascorbic acid) found in commercially available
This value, called the ionic product of water, Kw, is related to the equilibrium constant of water
HYDROGEN ION CONCENTRATION - ph VALUES AND BUFFER SOLUTIONS 1. INTRODUCTION Water has a small but definite tendency to ionise. H 2 0 H + + OH - If there is nothing but water (pure water) then the concentration
Syllabus OC18 Use litmus or a universal indicator to test a variety of solutions, and classify these as acidic, basic or neutral
Chemistry: 9. Acids and Bases Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Syllabus OC18 Use litmus or a universal indicator to test a variety
2. DECOMPOSITION REACTION ( A couple have a heated argument and break up )
TYPES OF CHEMICAL REACTIONS Most reactions can be classified into one of five categories by examining the types of reactants and products involved in the reaction. Knowing the types of reactions can help
Chem101: General Chemistry Lecture 9 Acids and Bases
: General Chemistry Lecture 9 Acids and Bases I. Introduction A. In chemistry, and particularly biochemistry, water is the most common solvent 1. In studying acids and bases we are going to see that water
Common Ion Effects. CH 3 CO 2 (aq) + Na + (aq)
Common Ion Effects If two reactions both involve the same ion, then one reaction can effect the equilibrium position of the other reaction. The ion that appears in both reactions is the common ion. Buffers
Appendix D. Reaction Stoichiometry D.1 INTRODUCTION
Appendix D Reaction Stoichiometry D.1 INTRODUCTION In Appendix A, the stoichiometry of elements and compounds was presented. There, the relationships among grams, moles and number of atoms and molecules
Note: (H 3 O + = hydronium ion = H + = proton) Example: HS - + H 2 O H 3 O + + S 2-
AcidBase Chemistry Arrhenius acid: Substance that dissolves in water and provides H + ions Arrhenius base: Substance that dissolves in water and provides OH ions Examples: HCl H + and Cl Acid NaOH Na +
ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND
#3. Acid - Base Titrations 27 EXPERIMENT 3. ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND Carbonate Equilibria In this experiment a solution of hydrochloric
Titrimetry (Volumetric Methods) OCN 633 Fall 2013
Titrimetry (Volumetric Methods) OCN 633 Fall 2013 Titrimetric Methods of Analysis Some of the oldest classical wet methods High accuracy and precision Analyte reacts with solution of known composition
Liquid phase. Balance equation Moles A Stoic. coefficient. Aqueous phase
STOICHIOMETRY Objective The purpose of this exercise is to give you some practice on some Stoichiometry calculations. Discussion The molecular mass of a compound is the sum of the atomic masses of all
Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent.
TYPES OF SOLUTIONS A solution is a homogeneous mixture of two substances: a solute and a solvent. Solute: substance being dissolved; present in lesser amount. Solvent: substance doing the dissolving; present
EXPERIMENT 12 A SOLUBILITY PRODUCT CONSTANT
PURPOSE: 1. To determine experimentally the molar solubility of potassium acid tartrate in water and in a solution of potassium nitrate. 2. To examine the effect of a common ion on the solubility of slightly
Formulas, Equations and Moles
Chapter 3 Formulas, Equations and Moles Interpreting Chemical Equations You can interpret a balanced chemical equation in many ways. On a microscopic level, two molecules of H 2 react with one molecule
Chapter 8: Chemical Equations and Reactions
Chapter 8: Chemical Equations and Reactions I. Describing Chemical Reactions A. A chemical reaction is the process by which one or more substances are changed into one or more different substances. A chemical
Auto-ionization of Water
2H 2 O H 3 O + + OH Hydronium ion hydroxide ion Q: But how often does this happen? This is the fundamental concept of all acid-base chemistry In pure water, how much of it is water and how much is ions?
To determine the equivalence points of two titrations from plots of ph versus ml of titrant added.
Titration Curves PURPOSE To determine the equivalence points of two titrations from plots of ph versus ml of titrant added. GOALS 1 To gain experience performing acid-base titrations with a ph meter. 2
AP FREE RESPONSE QUESTIONS ACIDS/BASES
AP FREE RESPONSE QUESTIONS ACIDS/BASES 199 D A chemical reaction occurs when 100. milliliters of 0.200molar HCl is added dropwise to 100. milliliters of 0.100molar Na 3 P0 solution. (a) Write the two net
Writing Chemical Equations
Writing Chemical Equations Chemical equations for solution reactions can be written in three different forms; molecular l equations, complete ionic i equations, and net ionic equations. In class, so far,
W1 WORKSHOP ON STOICHIOMETRY
INTRODUCTION W1 WORKSHOP ON STOICHIOMETRY These notes and exercises are designed to introduce you to the basic concepts required to understand a chemical formula or equation. Relative atomic masses of
OXIDATION-REDUCTION TITRATIONS-Permanganometry
Experiment No. Date OXIDATION-REDUCTION TITRATIONS-Permanganometry INTRODUCTION Potassium permanganate, KMnO 4, is probably the most widely used of all volumetric oxidizing agents. It is a powerful oxidant
Aqueous Ions and Reactions
Aqueous Ions and Reactions (ions, acids, and bases) Demo NaCl(aq) + AgNO 3 (aq) AgCl (s) Two clear and colorless solutions turn to a cloudy white when mixed Demo Special Light bulb in water can test for
Chem 31 Fall 2002. Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Writing and Balancing Chemical Equations
Chem 31 Fall 2002 Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Writing and Balancing Chemical Equations 1. Write Equation in Words -you cannot write an equation unless you
CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS
CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS Purpose: It is important for chemists to be able to determine the composition of unknown chemicals. This can often be done by way of chemical tests.
Molarity of Ions in Solution
APPENDIX A Molarity of Ions in Solution ften it is necessary to calculate not only the concentration (in molarity) of a compound in aqueous solution but also the concentration of each ion in aqueous solution.
The Determination of Acid Content in Vinegar
The Determination of Acid Content in Vinegar Reading assignment: Chang, Chemistry 10 th edition, pages 153-156. Goals We will use a titration to determine the concentration of acetic acid in a sample of
UNIT (6) ACIDS AND BASES
UNIT (6) ACIDS AND BASES 6.1 Arrhenius Definition of Acids and Bases Definitions for acids and bases were proposed by the Swedish chemist Savante Arrhenius in 1884. Acids were defined as compounds that
4.1 Aqueous Solutions. Chapter 4. Reactions in Aqueous Solution. Electrolytes. Strong Electrolytes. Weak Electrolytes
Chapter 4 Reactions in Aqueous Solution 4.1 Aqueous Solutions Solution homogeneous mixture of 2 or more substances Solute the substance present in a smaller amount (usually solid in Chap. 4) Solvent the
Acid Base Titrations in Aqueous Solvents
Acid Base Titrations in Aqueous Solvents Introduction: All kind of titrations in various samples are performed today in process analysers and laboratories, by far the most of them are acid base titrations.
Estimation of Hardness of Water by EDTA Method
Estimation of Hardness of Water by EDTA Method 1 EXPERIMENT 1 Estimation of Hardness of Water by EDTA Method INTRODUCTION Water hardness is the traditional measure of the capacity of water to precipitate
3 The Preparation of Buffers at Desired ph
3 The Preparation of Buffers at Desired ph Objectives: To become familiar with operating a ph meter, and to learn how to use the Henderson-Hasselbalch equation to make buffer solutions at a desired ph
Chemistry: Chemical Equations
Chemistry: Chemical Equations Write a balanced chemical equation for each word equation. Include the phase of each substance in the equation. Classify the reaction as synthesis, decomposition, single replacement,
REACTIONS OF SOME TRANSITION METAL IONS
Transition Metals 2815 1 REACTIONS OF SOME TRANSITION METAL IONS COBALT Cobalt(II) aqueous solutions contain the pink, octahedral hexaaquacobalt(ii) ion. hexaaqua ions can also be present in solid samples
Santa Monica College Chemistry 11
Types of Reactions Objectives The objectives of this laboratory are as follows: To perform and observe the results of a variety of chemical reactions. To become familiar with the observable signs of chemical
Teacher Demo: Turning Water into Wine into Milk into Beer
SNC2D/2P Chemical Reactions/Chemical Reactions and their Practical Applications Teacher Demo: Turning Water into Wine into Milk into Beer Topics evidence of chemical change types of chemical reactions
Chemistry 132 NT. Solubility Equilibria. The most difficult thing to understand is the income tax. Solubility and Complex-ion Equilibria
Chemistry 13 NT The most difficult thing to understand is the income tax. Albert Einstein 1 Chem 13 NT Solubility and Complex-ion Equilibria Module 1 Solubility Equilibria The Solubility Product Constant
Name period Unit 9: acid/base equilibrium
Name period Unit 9: acid/base equilibrium 1. What is the difference between the Arrhenius and the BronstedLowry definition of an acid? Arrhenious acids give H + in water BronstedLowry acids are proton
Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses
Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses B. Calculations of moles C. Calculations of number of atoms from moles/molar masses 1. Avagadro
