Spectroscopy in Astronomy: Emission Spectra

Similar documents
ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

Building your own Spectroscope

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = = = 25 or 2

Name Class Date. spectrum. White is not a color, but is a combination of all colors. Black is not a color; it is the absence of all light.

THE BOHR QUANTUM MODEL

O6: The Diffraction Grating Spectrometer

Experiment IV: Atomic Spectra and the Bohr model

Atoms Absorb & Emit Light

1 Laboratory #5: Grating Spectrometer

Flame Tests & Electron Configuration

Experiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight

Austin Peay State University Department of Chemistry Chem The Use of the Spectrophotometer and Beer's Law

SSO Transmission Grating Spectrograph (TGS) User s Guide

Interference. Physics 102 Workshop #3. General Instructions

Using the Spectrophotometer

Theremino System Theremino Spectrometer Technology

What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher)

GRID AND PRISM SPECTROMETERS

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

Lenses and Telescopes

WAVELENGTH OF LIGHT - DIFFRACTION GRATING

Cosmic Journey: Teacher Packet

After a wave passes through a medium, how does the position of that medium compare to its original position?

Spectra of Lights: An Interactive Demonstration with Diffraction Gratings

The Electromagnetic Spectrum

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

WAVES AND ELECTROMAGNETIC RADIATION

The photoionization detector (PID) utilizes ultraviolet

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Diffraction of Laser Light

Name period AP chemistry Unit 2 worksheet Practice problems

Electron Configuration Worksheet (and Lots More!!)

1. Three-Color Light. Introduction to Three-Color Light. Chapter 1. Adding Color Pigments. Difference Between Pigments and Light. Adding Color Light

THE NATURE OF LIGHT AND COLOR

Copyright by Mark Brandt, Ph.D. 12

Atomic Structure: Chapter Problems

Sample Exercise 6.1 Concepts of Wavelength and Frequency

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

3 - Atomic Absorption Spectroscopy

The Phenomenon of Photoelectric Emission:

DNA Detection. Chapter 13

Physics 30 Worksheet # 14: Michelson Experiment

Chapter 17: Light and Image Formation

Color Filters and Light

Experiment #5: Qualitative Absorption Spectroscopy

How To Understand Light And Color

Study Guide for Exam on Light

Waves Sound and Light

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points

Physics 10. Lecture 29A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

PROTONS AND ELECTRONS

Modeling the Expanding Universe

Review Vocabulary spectrum: a range of values or properties

Photons. ConcepTest ) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION

- the. or may. scales on. Butterfly wing. magnified about 75 times.

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1

Three Key Paper Properties

Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002

Electromagnetic Radiation (EMR) and Remote Sensing

8.2 Cells and Energy. What is photosynthesis? Photosynthesis takes place in the chloroplasts. CHAPTER 8. Solar cells and chloroplasts

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics

Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset.

Photosynthesis and Light in the Ocean Adapted from The Fluid Earth / Living Ocean Heather Spalding, UH GK-12 program

Section 1: Arranging the Elements Pages

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves

Flipping the On-Switch to Energy Efficient Lighting. By Patrick J. Ritsko

Engineering Mini Holiday Lights

Introduction to Light, Color, and Shadows

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2

Noble Gases. Outline Nobel Gas Elements Radon and Health Chemistry Homework

Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D

9/13/2013. However, Dalton thought that an atom was just a tiny sphere with no internal parts. This is sometimes referred to as the cannonball model.

Interferometers. OBJECTIVES To examine the operation of several kinds of interferometers. d sin = n (1)

ING LA PALMA TECHNICAL NOTE No Investigation of Low Fringing Detectors on the ISIS Spectrograph.

Electron Orbits. Binding Energy. centrifugal force: electrostatic force: stability criterion: kinetic energy of the electron on its orbit:

Development of the Extreme Ultraviolet Spectrometer: EXCEED

Spectroscopy Using the Tracker Video Analysis Program

What s so special about the laser?

KITCHEN CHEMISTRY Chemical reaction with vinegar and baking soda

Measuring the Doppler Shift of a Kepler Star with a Planet

5.33 Lecture Notes: Introduction to Spectroscopy

Chapter 18: The Structure of the Atom

(Refer Slide Time: 00:01:43 min)

The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010

CHEM 1411 Chapter 5 Homework Answers

Aesthetic Plus LASER TRAINING MANUAL FOR MEDICAL PROFESSIONALS. presents

MY FIRST STEPS IN SLIT SPECTROSCOPY

Solution Derivations for Capa #14

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Materials Needed: Choose one of the following methods depending on how familiar your students are with the internet and how to use it.

Color and Light. DELTA SCIENCE READER Overview Before Reading Guide the Reading After Reading

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total

Displays. Cathode Ray Tube. Semiconductor Elements. Basic applications. Oscilloscope TV Old monitors. 2009, Associate Professor PhD. T.

Transcription:

Spectroscopy in Astronomy: Emission Spectra Equipment: (Shared among all lab groups) Blue spectrometer (one for each lab group) Spectrum tube power supplies (5000 volts be careful!) These will be set up around the room, one with a hydrogen gas tube, and three others with unknowns. Sodium light (up front) Red reading lamps, set up next to the discharge tubes. Your answers to questions, descriptions of your procedures, data (including tables), and results will need to be written up and handed in on a separate lab report. Make sure to include an overall discussion and conclusions for the lab. Introduction: A spectroscope is a device used by astronomers (and others) to separate light into its various color components. Basically, there are two types of spectroscopes: one uses a prism usually made of glass while the other uses a diffraction grating which is made of a plate of glass with very fine and accurately placed parallel scratches on one face. The grating or prism in a spectroscope is called the dispersing element. The purposes of this experiment are: (i) To familiarize yourself with the use of a very simple spectrograph, (ii) To determine how accurately you can measure wavelengths in an emission-line spectrum, and (iii) To identify some unknown gases from their spectra. Procedure: Divide yourselves into groups of 3 or 4. Over the course of the lab, make sure that everybody has a chance to use the spectrograph, and take some data. Begin by examining your spectrograph. It should look roughly like the following image, when viewed from above:

scale eyepiece slit At the eyepiece end, what looks like a clear piece of plastic is actually a transmission diffraction grating, with thousands of grooves cut into it. Much of the light that hits the grating passes straight through, and you are able to see through it. Some of the light, however, hits the grooves and scatters in all directions. In certain angles, light coming from different grooves interferes constructively. This happens at different angles for different wavelengths, with the result that the grating spreads the light out into a spectrum. The process is sketched below, for two grooves (the gratings on the spectrographs actually have thousands of grooves). Bright points appear here where the difference in the paths between the observer and the two slits is an integer number of wavelengths. Planar light waves coming in. Screen with two slits Light scatters off of slits

The calibration of the spectrographs is not perfect. Before proceeding, you ll need to see how well calibrated yours is. First, look through the eyepiece of the spectrograph, while aiming at the room lights (everyone in your group should do this). You will see two scales. One gives photon energies in electron volts (ev), and the other gives photon wavelengths. 1) What are the numbers on the wavelength scale? Two units are commonly used when measuring the wavelengths of visible light. Most physicists in the world use nanometers, where 1 nm = 10-9 m. The unit most commonly used by astronomers is the Ångstrom, where 1 Å = 10-10 m. 2) Based upon the numbers that you see on the scale, what units do you think that we will be using to measuring wavelengths in this lab? 3) What are the smallest divisions on the scale? How precisely do you believe that you will be able to make wavelength measurements using this scale (give your expected precision as a number)? Now, make sure that the slit is aimed at the overhead lights. Do you see a spectrum projected against the scale on the side? If not, then rotate the eyepiece that holds the diffraction grating until the spectrum of the room lights is projected on the scale. Make sure that everybody in your group is able to see the spectrum of the lights, and that you individually record the answer to the following question: 4) Looking at the overhead lights, you should see a continuous spectrum, with some brighter lines at certain wavelengths. Record the wavelengths of the brightest lines that you can see. Compare them to the location of the brightest lines of Mercury given below. How closely do they compare. Quantify your answer. That means to use numbers: pretty close doesn t qualify as a comparison! Mercury Gas Color Wavelength Violet 405 Violet 436 Blue 492 Green 546 Yellow 577 Yellow 579 Orange 607 Red 691

Now make another check of the location of the scale, and learn to use the spectrograph in the dark. Once everybody has completed step 1, the room lights will be turned off, and the instructor will turn on the sodium light. Sodium emits a doublet of lines (two lines spaced very closely together), at 589.0 and 589.6 nm. These will appear as a single line in your spectrograph. (The pureness of the emission explains why things look so odd when illuminated by streetlights that use low pressure sodium gas.) 5) At what wavelength do you see the sodium doublet? What is the percentage difference between what you see and the actual average doublet wavelength of 589.3 nm? 6) Tabulate the difference between the wavelengths recorded on your spectrograph and the actual wavelengths. Fill in the following table for all the lines that you could see (transcribe it onto your final lab report). All units should be in nm. For the difference, subtract the true wavelength from your measurement (so, if your spectrograph reads wavelengths as being too small, the difference will be negative). For the ratio, divide the true wavelength by your measurement (so, if your spectrograph reads too large, the ratio will be less than one). For the final row, average the results of your differences and ratios. Element Actual Wavelength Measured wavelength Na Average ------- ------- Difference Ratio 7) Go to the lab station with the power supply holding the hydrogen gas tube, and turn it on. In order to see the scale better, it will help to project the red reading lamp either at the wall or onto a sheet of paper such that the red light illuminates the scale of the spectrograph. Don t shine the red lamp directly at the spectrograph it ll be too bright, and will swamp your spectrum. You will probably see 3 lines in your spectrograph. Complete the following table for the lines that you can see:

True wavelength Color 656.3 Red 486.1 Aqua 434.1 Violet 410.2 Violet Measured wavelength Correction 1 Correction 2 Which is better? For Correction 1 take your measured wavelengths and subtract the average difference that you found in step 6. For Correction 2 take your measured wavelengths and multiply by the average ratio that you found in step 6. In the final column, decide which of the two corrections gave you a wavelength that was closer to the true wavelength. Hopefully (but not certainly!) it will be the same for all of the lines. Don t worry if it isn t. Pick as your best the one that works better for more lines. 8) Now try to identify some unknown elements using their emission spectra. There are 3 or 4 unknown tubes at stations around the lab, labeled by number. Look at each of the unknowns with your spectroscope, write down how many lines you can see for each, and your best measurement of the wavelength of each one. Keep a record of these on a separate sheet of paper, and hand it in as part of the data section of your lab report. 9) As you work on step 8, make your best guess as to the identity of each of the unknown elements, and record them, along with the reasons for your choices. To do this, compare your results with the lists below, with charts in your text, the color charts that your instructor will have, the charts on the web page listed below, and with the chart in the lab room. Visual comparisons will be the easiest, and so the list of wavelengths is recommended only as a last resort. Hint: the unknowns will be from among helium (He), oxygen (O), nitrogen (N), neon (Ne), argon (Ar), xenon (Xe), and mercury (). In making your comparisons, keep the following points in mind: a) You won t see all of the lines that are either shown on the images or listed below our spectrographs are too crude for that. b) If you see lines in your spectrograph that are either not listed or are not shown, then you have a bad match, and should look at another element. c) Don t worry too much about the extreme red and violet wavelengths. Our eyes aren t very sensitive to wavelengths near 400 nm and 700 nm, and so you may not see something there that appears on the list or on the images. This problem varies from person to person, but gets worse with age see for example the images at the top of the web page, where the instructor is comparing his perception of the spectra with that of his students. d) If you are comparing the numbers that you measure with those on the lists below, keep in mind the differences and corrections that you found in steps 6 and 7 above. If you d like some extra credit, tabulate your measured wavelengths, and include the best correction that you found in step 7.

Wavelengths of some of the elements. All wavelengths listed below are in Ångstroms. Divide by 10 to get the wavelengths in nm. You will probably find it easier to use a visual representation, which can be found at http://astro.u-strasbg.fr/~koppen/discharge/. Your instructor will have a color version of this as well. Also look at the chart in the classroom, and at the chart that your instructor will have, which is based on the figures from the above web site. Helium (He) 4388 Å 4471 Å 4713 Å 4922 Å 5016 Å 5048 Å 5876Å 6678 Å Argon (Ar) 4610 4658 4727 4736 4765 4806 4880 4965 5142 6115 6172 6677 6753 6871 6965 Krypton (Kr) 4274 4320 4355 4470 4577 4619 4659 4739 4766 4825 4832 4847 4946 5022 5087 5126 5208 5309 5333 5468 5570 5682 5871 5992 6420 6456 6570 6904 Neon (Ne) 4569 5852 5873 5945 5965 5975 5976 6030 6074 6143 6164 6182 6217 6267 6334 6383 6402 6507 6599 6929 7032 Oxygen (O) 4593 4638 4645 4662 4676 4700 4925 4943 5330 5436 5577 5958 6046 6106 6157 6261 6370 6454 6653 Xenon (Xe) 4501 4525 4583 4624 4671 4697 4734 4793 4807 4830 4843 4917 4923 5028 5393 5460 5696 5697 5716 5824 5825 5875 5895 5931 5934 6164 6178 6180 6182 6198 6201 6318 6470 6473 Nitrogen (N) 3943 3998 4060 4095 4142 4201 4270 4344 4355 4417 4490 4574 4649 4667 4724 4815 4917 4976 Since nitrogen is a molecule, its spectrum consists of bands rather than lines. This is due to rotation of the molecules. In the visible part of the spectrum, the most prominent structure is the First Positive series, with about 30 regularly spaced bands in the region 5000-7000 Å. Only the band heads of the less intense Second Positive series are listed above.

Prelab Questions: 1) Describe what is meant by constructive and destructive interference of light waves. 2) If two rays of light have a path length difference of 500 nm, what is their wavelength if they constructively interfere (show your work)? 3) What happens during the creation of the emission spectra which you observe from the discharge tubes? 4) (show your work, or describe how you arrive at your answers) a) If an electron is in the ground state of a hydrogen atom, what wavelength photon must be absorbed in order to promote the electron up to the third energy level? b) If an electron jumps from the third energy level down to the second, what wavelength photon is produced? What color will this photon appear as?