Level 2 Physics: Demonstrate understanding of electricity and electromagnetism

Similar documents
1. The diagram below represents magnetic lines of force within a region of space.

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory

STUDY GUIDE: ELECTRICITY AND MAGNETISM

Circuit symbol. Each of the cells has a potential difference of 1.5 volts. Figure 1. Use the correct answer from the box to complete the sentence.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

ELECTRICAL FUNDAMENTALS

Chapter 22: Electric motors and electromagnetic induction

101 BASICS SERIES LEARNING MODULE 2: FUNDAMENTALS OF ELECTRICITY. Cutler-Hammer

Induced voltages and Inductance Faraday s Law

Objectives. Capacitors 262 CHAPTER 5 ENERGY

Build A Simple Electric Motor (example #1)

ELECTRODYNAMICS 05 AUGUST 2014

Electrical Fundamentals Module 3: Parallel Circuits

Preview of Period 16: Motors and Generators

Table of Contents 1. Introduction 2. Electrical Fundamentals Electron Theory Matter 4 MOLECULE

Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

DIRECT CURRENT GENERATORS

Series and Parallel Circuits

Ohm's Law and Circuits

Inductance. Motors. Generators

CLASS TEST GRADE 11. PHYSICAL SCIENCES: PHYSICS Test 3: Electricity and magnetism

Series and Parallel Circuits

13.10: How Series and Parallel Circuits Differ pg. 571

7. What is the current in a circuit if 15 coulombs of electric charge move past a given point in 3 seconds? (1) 5 A (3) 18 A (2) 12 A (4) 45 A

Motor Fundamentals. DC Motor

Time allowed: 1 hour 45 minutes

STUDY MATERIAL FOR CLASS Physics- CURRENT ELECTRICITY. The flow of electric charges in a particular direction constitutes electric current.

People s Physics Book

General Physics (PHY 2140)

Magnetism Basics. Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment. Net Effect = Zero!

Objectives 200 CHAPTER 4 RESISTANCE

Force on Moving Charges in a Magnetic Field

Solutions to Bulb questions

Understanding the Alternator

Magnetic Fields. I. Magnetic Field and Magnetic Field Lines

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

Lab 3 - DC Circuits and Ohm s Law

GCSE Additional Science Physics Contents Guide

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to

Experiment NO.3 Series and parallel connection

Aircraft Electrical System

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.

Fig. 1 Analogue Multimeter Fig.2 Digital Multimeter

Linear DC Motors Magnetic Flux Permanent Bar Magnets

Electricity. Introduction. Key concepts of electricity. Static electricity. Current electricity

Physics 221 Experiment 5: Magnetic Fields

Current, Resistance and Electromotive Force. Young and Freedman Chapter 25

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

Chapter 7 Direct-Current Circuits

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

ElectroMagnetic Induction. AP Physics B

Wires & Connections Component Circuit Symbol Function of Component. Power Supplies Component Circuit Symbol Function of Component

ELECTRICAL CIRCUITS. Electrical Circuits

Inductors & Inductance. Electronic Components

Experiment #3, Ohm s Law

Motors and Generators

Chapter 13: Electric Circuits

Solution Derivations for Capa #11

Inductors. AC Theory. Module 3

Diodes have an arrow showing the direction of the flow.

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?

Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS

AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules

Essential Electrical Concepts

Σ I in = Σ I out E = IR 1 + IR 2 FXA 2008 KIRCHHOFF S LAWS 1. Candidates should be able to : LAW 1 (K1)

DC motors: dynamic model and control techniques

Line Reactors and AC Drives

Physics 30 Worksheet #10 : Magnetism From Electricity

Magnetic Fields and Their Effects

Chapter 21. Magnetic Forces and Magnetic Fields

Electrical Circuit Theory

Principles and Working of DC and AC machines

EE301 Lesson 14 Reading: , , and

Lab 37: Magnetic Field ; Magnets - Drawing magnetic fields - Magnetic poles - Forces between magnets

Series and Parallel Circuits

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Physics, Chapter 27: Direct-Current Circuits

GRADE 11A: Physics 5. UNIT 11AP.5 6 hours. Electronic devices. Resources. About this unit. Previous learning. Expectations

Course description: Introduces the student to basic electricity with an emphasis on Ohms Law.

Last time : energy storage elements capacitor.

Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament

The DC Motor/Generator Commutation Mystery. Commutation and Brushes. DC Machine Basics

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W

Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true.

Student Exploration: Circuits

Unit: Charge Differentiated Task Light it Up!

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws

Grade 5 Standard 4 Unit Test Static Electricity

Electronics. Basic Concepts. Yrd. Doç. Dr. Aytaç GÖREN Yrd. Doç. Dr. Levent ÇETİN

Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.

CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS

ANALOG AND DIGITAL METERS ANALOG VS. DIGITAL METERS VOLTMETERS ANALOG AND DIGITAL

BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011

Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010

Eðlisfræði 2, vor 2007

Transcription:

Level 2 Physics: Demonstrate understanding of electricity and electromagnetism Static Electricity: Uniform electric field, electric field strength, force on a charge in an electric field, electric potential energy, and work done on a charge moving in an electric field. When you use a cloth to rub an insulator such as a balloon or a plastic ruler, electrons are rubbed from one to the other. Electrons carry negative charges. A negatively charged object has had electrons rubbed on to it. A positively charged object has had electrons rubbed off it. Each electron carries 1.6 x 10-19 Coulombs of charge. If charged particles are in an electric field negative charges such as electrons and beta particles - move towards positive plate. Positive particles - including alpha particles move toward the negative plate. As the charges move, electrical potential energy is converted to kinetic energy (E = ½ mv 2 ). This is used in processes such as the painting of car bodies. This can be predicted by the field lines. Remember the arrows indicate the direction of the force that a positive charge would experience. The field strength, E, of the field can be calculated by E = V/d. This can be used to calculate the value of the force experienced by the charge by using the equation F = E q If charged particles are moving through an electric field negative charges move towards positive plate in an arc. Positive particles move toward negative plate in an arc. When charged particles move inside a magnetic field things become more complicated see later in this section. An electric current is a movement of charge. If you rub a plastic ruler on a cat, you will build up a charge. When you touch something earthed, the charge flows from your body and you feel the shock. Vehicles can build up a charge as they move along the road. Because tyres are made of rubber they are insulators and so the charge stays on the vehicle. Some cars give you a shock when you get out of them as the charge goes through you to the ground. Refueling a jumbo jet requires the fuel line to be earthed to make sure that any electric charge created by the rubbing of the fuel on the fuel line cannot form a spark. Clouds can build up charges. Sometimes there is enough energy to form long sparks called lightning. In conductors, the electrons that carry the negative charges are free to move. The current in an electric circuit is caused by the movement of the charges through the conductors of the circuit. Charge, current and time are linked by the following relationship Q = I t. Remember by convention conventional current flows from positive to negative even though this is NOT the direction of the electrons.

DC Electricity: Parallel circuits with resistive component(s) in series with the source, circuit diagrams, voltage, current, resistance, energy, power, and voltage or current characteristics of diodes. Circuit symbols Electrical symbols are used instead of pictures for the parts or components used in an electrical circuit. You should be able to draw and identify the following circuit symbols: Ammeter Lamp Battery Resistor Switch Voltmeter Cell Variable resistor Diode Cells and/or batteries and the mains supply are all sources of electrical energy. There are some important differences between them: Cells and batteries supply direct current (d.c.). This means that the current is always in the same direction in a circuit. The mains supply is alternating current (a.c.). This means that the current from a mains supply constantly changes direction in a circuit. The frequency of the mains supply is 50 hertz (50 Hz) and, in New Zealand, the value of the mains supply is 240 volts (240 V). Diodes semiconductor devices - allow current to only flow if arrow matches conventional current. Diodes can be used to convert a.c. to d.c. in a process called rectification. Because diodes are semiconductors they do not behave like ohmic conductors.

Series and parallel circuits In a series circuit there is only one path for the current. Here is an example of such a circuit. The current in a series circuit is the same at all places in the circuit. The supply voltage is shared between components in a series circuit. The sum of the voltages across components in series is equal to the voltage of the supply. The voltages across the components in a series circuit are in the same proportion as their resistances. This means that if two identical components are connected in series, the supply voltage divides equally across them. In a parallel circuit there is more than one path for the current to follow. At some points in a parallel circuit there will be junctions of conductors. Junctions are shown by dots on circuit diagrams. This circuit shows two lamps in parallel. The current in a parallel circuit splits into different branches then combines again before it goes back into the supply. When the current splits, the current in each branch after the split adds up to the same as the current just before the split. The voltage across components in parallel is the same for each component. Ohms Law Individual components in a circuit still obey ohms law. The quantities voltage, current and resistance are linked by the relationship. There are ohmic conductors (usually resistors maintained at a constant temperature) which have the same resistance a graph of V against I produces a linear graph. There are non-ohmic conductors (semiconductors such as diodes, LEDs, LDRs and thermistors and resisitors which change temperature) which have changing resistance a graph of V against I produces a non-linear graph.

Resistors in series and parallel To add up resistors we must consider whether they are in series, or parallel, or part of a complex circuit. For resistors in series R T = R 1 + R 2 +... For resistors in parallel 1/R T = 1/R 1 + 1/R 2 +... Power Electricity is used to carry energy which is transferred as some other type of energy. Power is the rate at which energy is transferred. The electrical energy transferred each second is found by multiplying voltage by current. There is also a relationship between power, current and resistance. The power dissipated across individual components may be calculated by using the equations above. Electromagnetism Force on a current carrying conductor in a magnetic field, force on charged particles moving in a magnetic field, DC motor, induced voltage generated across a straight conductor moving in a uniform magnetic field, and a simple generator. Magnets have two poles called the North and South poles. Like magnetic poles (e.g. N and N) repel. Unlike magnetic poles (e.g. N and S) attract. Magnets attract iron and other ferromagnetic materials. The only way to tell if an object is magnetised is to see if it repels another magnetised object. The strength and direction of a magnetic field is represented by magnetic field lines. Field lines by convention go from North to South outside magnets. Compasses point towards the Northseeking pole of the Earth which is actually a magnetic South pole.

A magnetic field is 3-dimensional, although this is not often seen on a drawing of magnetic field lines. The magnetic field around a bar magnet The magnetic field for a coil of wire is shown below. The magnetic fields from each of the turns in the coil add together, so the total magnetic field is much stronger. This produces a field which is similar to that of a bar magnet. A coil of wire like this is often called a solenoid. The magnetic field around a coil of wire Moving charges can create magnetic fields e.g. The magnetic field around a current-carrying wire To draw magnetic fields going into a piece of paper we use x e.g. x x x x x x x x x x x x x x x To draw magnetic fields coming out of a piece of paper we use. e.g................ We need this convention when considering the interaction of magnetic field, electric fields and movement.

Magnetic fields exert forces on magnets and ferromagnetic materials. Electromagnetic induction Magnetic fields exert forces on individual moving charges this may be calculated by F = Bqv. The direction of this force may be worked out by use of Flemings left hand rule. Moving a current-carrying conductor through a magnetic field can induce a Voltage (more correctly termed an EMF) this may be calculated by V = B l v The motor effect can be used to induce rotation by using two parallel wires with the current flowing in opposite directions in each wire (the electric motor). This may be calculated by use of F = B I L (when the magnetic field and current carrying wires at exactly at 90 o to each other. Rotating two parallel wires in a magnetic field can be used to induce current to flow in opposite directions in each wire (the electric generator). The induction of electricity in such a way can be used to make current flow around a loop of wire. Generators can be d.c. or a.c. depending on how the electricity leaves the loop of wire d.c. uses a split ring, a.c. uses a commutator.