13.10: How Series and Parallel Circuits Differ pg. 571

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "13.10: How Series and Parallel Circuits Differ pg. 571"

Transcription

1 13.10: How Series and Parallel Circuits Differ pg. 571 Key Concepts: 5. Connecting loads in series and parallel affects the current, potential difference, and total resistance. - Using your knowledge of current, voltage and resistance, you can predict patterns within circuits. Loads in Series - A series circuit has only one path in which the electrons can flow. - Potential difference occurs instantaneously once current begins to flow. Current through Loads in Series - The current flow in a series circuit with one load is greater then a circuit with two loads. - As more loads are added there is an increase in the total resistance of the circuit. Figure 1: From Ohm s relationship, the current in a circuit depends on the resistance in that circuit.

2 Sample Problem: Comparing the Current in Two Series Circuits The same type of lamp is used in two series circuits. The first circuit has two identical lamps (Figure 2). The second circuit has three identical lamps (Figure 3). The potential difference across the battery is 10 V. The circuit with two lamps has a resistance 0f 10 Ω. The circuit that has three lamps has a total resistance of 15 Ω. Use the total resistance given to calculate the current through each circuit. Figure 2 Figure 3 Voltage across Loads in Series - A battery contains potential energy. It converts chemical potential energy into electrical energy. - As electrons leave the battery and enter a circuit it creates current. - As electrons pass through the circuit potential energy is converted to kinetic energy. - A circuit with one lamp, the potential energy is converted to light or heat energy. - With one load the voltage drop across the load will be equal to the voltage across the battery.

3 - A circuit with two lamps, the energy leaving the battery is equal to its potential energy. - With two lamps, only have of the potential energy is converted to light or heat. - The voltage will drop across each lamp. - The total voltage drop across the each identical load is equal to the voltage drop across the battery. V load = V source # of loads Sample Problem: Calculating Voltage in Series Circuit A series circuit contains three identical lamps (Figure 4). The potential difference of the battery is 30 V. Calculate the potential difference across each lamp. Figure 4

4 Loads in Parallel - In a parallel circuit there is more then one path for electrons to flow. Current through Loads in Parallel - When two identical loads are connected in a parallel circuit, the current will split in two. - When three identical loads are connected in a parallel circuit, the current will be divided into thirds. - Mathematical Equation used to calculate current through a load within a parallel circuit. I load = I source # of loads Figure 5: The more loads that are connected in parallel, the more paths electrons have to follow.

5 Sample Problem: Calculating Current in Parallel Circuit The total resistance in the circuit in Figure 5 (b) is 2 Ω. The potential difference of the battery is 18 V. Calculate the current through each lamp. (Calculate current first) Figure 5(b) Voltage across Loads in Parallel - The resistance in loads connected in parallel is less then a series circuit with the same number and type of loads. - Since there are more then one path for electrons to follow there is less resistance across the load in any one path. - In a parallel circuit, the voltage drop across a load is equal to the voltage drop across the battery. This is different in comparison to a series circuit.

6 Sample Problem: Calculating the Voltage in a Parallel Circuit A parallel circuit contains three identical lamps (Figure 6). The current coming out of the energy source is 2.5 A. The total resistance of the circuit is 6.0 Ω. Calculate the voltage across the energy source and across each lamp. Figure 6 Resistance, Current, and Voltage in Circuits Table 1: The relationships of Loads in Series and Parallel Circuits Quantity Series Circuit Parallel Circuit Total resistance of Increases decreases circuit (RT) Current through loads (I load) I source decreases as more loads are added I source splits among loads based on the number of branches in Voltage across loads (V load) V source splits based on the number of loads parallel Voltage of each parallel branch is the same as V source

7 Evidence of Learning. Students can - describe how lamps or loads can be placed in a series circuit and parallel circuit. - explain that the current in a series circuit flows though one circuit and lessens as the loads are increased. - understand that the current in a parallel circuit flows through many different paths. - understand that the more identical loads that are connected in series, the voltage drop across each load decrease. - understand that the voltage drop across a parallel load will be the same as the voltage drop across the battery. Check Your Learning Questions 1 7, page 575 Summary: - In parallel circuit, the total resistance is less than if the loads were connected in series. - The more loads that are connected in series, the lower the current will be in the circuit. - The more loads that are connected in parallel, the lower the current will be through each branch. - In a series circuit with identical loads, the voltage drop across the energy source is split equally among the loads. - In a parallel circuit, the voltage drop across each parallel branch will be the same as the voltage drop across the energy source.

Physics Worksheet Electric Circuits Section: Name: Series Circuits

Physics Worksheet Electric Circuits Section: Name: Series Circuits Do Now: (1) What is electric circuit? (2) Convert the following picture into schematic diagram. Series Circuits 4. Label every component of the circuit; identify each of the voltage and current. 5. Relation

More information

Series and Parallel Circuits

Series and Parallel Circuits Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected end-to-end. A parallel

More information

Circuits. Page The diagram below represents a series circuit containing three resistors.

Circuits. Page The diagram below represents a series circuit containing three resistors. Name: Circuits Date: 1. Which circuit segment has an equivalent resistance of 6 ohms? 4. The diagram below represents a series circuit containing three resistors. 2. Base your answer to the following question

More information

Student Exploration: Circuits

Student Exploration: Circuits Name: Date: Student Exploration: Circuits Vocabulary: ammeter, circuit, current, ohmmeter, Ohm s law, parallel circuit, resistance, resistor, series circuit, voltage Prior Knowledge Questions (Do these

More information

Electrical Circuit Calculations

Electrical Circuit Calculations Electrical Circuit Calculations Series Circuits Many circuits have more than one conversion device in them (i.e. toaster. heater. lamps etc.) and some have more than one source of electrical energy. If

More information

Experiment NO.3 Series and parallel connection

Experiment NO.3 Series and parallel connection Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.

More information

Experiment 4 ~ Resistors in Series & Parallel

Experiment 4 ~ Resistors in Series & Parallel Experiment 4 ~ Resistors in Series & Parallel Objective: In this experiment you will set up three circuits: one with resistors in series, one with resistors in parallel, and one with some of each. You

More information

Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller Tristan@CatherineNorth.com

Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller Tristan@CatherineNorth.com Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller Tristan@CatherineNorth.com Parallel Circuits. Parallel Circuits are a little bit more complicated

More information

1) 10. V 2) 20. V 3) 110 V 4) 220 V

1) 10. V 2) 20. V 3) 110 V 4) 220 V 1. The diagram below represents an electric circuit consisting of a 12-volt battery, a 3.0-ohm resistor, R 1, and a variable resistor, R 2. 3. What is the total resistance of the circuit 1) 6.6 Ω 2) 10

More information

Chapter 5. Parallel Circuits ISU EE. C.Y. Lee

Chapter 5. Parallel Circuits ISU EE. C.Y. Lee Chapter 5 Parallel Circuits Objectives Identify a parallel circuit Determine the voltage across each parallel branch Apply Kirchhoff s current law Determine total parallel resistance Apply Ohm s law in

More information

Q1. (a) The diagram shows the voltage-current graphs for three different electrical components.

Q1. (a) The diagram shows the voltage-current graphs for three different electrical components. Q. (a) The diagram shows the voltage-current graphs for three different electrical components. Which one of the components A, B or C could be a 3 volt filament lamp? Explain the reason for your choice...................

More information

The current that flows is determined by the potential difference across the conductor and the resistance of the conductor (Ohm s law): V = IR P = VI

The current that flows is determined by the potential difference across the conductor and the resistance of the conductor (Ohm s law): V = IR P = VI PHYS1000 DC electric circuits 1 Electric circuits Electric current Charge can move freely in a conductor if an electric field is present; the moving charge is an electric current (SI unit is the ampere

More information

ch 18 practice Multiple Choice

ch 18 practice Multiple Choice ch 18 practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is the best description of a schematic diagram? a. uses pictures

More information

8. Resistors in Parallel

8. Resistors in Parallel 8. Resistors in Parallel Resistors are said to be connected together in "Parallel" when both of their terminals are respectively connected to each terminal of the other resistor or resistors. Unlike the

More information

Kirchhoff s Voltage Law

Kirchhoff s Voltage Law BASIC ELECTRICAL Kirchhoff s Voltage Law OBJECTIVES Define Kirchhoff s Voltage Law Discuss how Kirchhoff s Voltage Law applies to Series and Parallel Circuits Calculate Voltage drops in a Series and Parallel

More information

Series and Parallel Wiring

Series and Parallel Wiring Series and Parallel Wiring Thus far, we have dealt with circuits that include only a single device, such as a light bulb. There are, however, many circuits in which more than one device is connected to

More information

Series,"Parallel," and"series." Parallel"Circuits"

Series,Parallel, andseries. ParallelCircuits chapter 25 Series,"Parallel," and"series." Parallel"Circuits" FIGURE 25.1 A series circuit with three bulbs. All current flows through all resistances (bulbs). The total resistance of the circuit is the

More information

Electrical Fundamentals Module 3: Parallel Circuits

Electrical Fundamentals Module 3: Parallel Circuits Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310- Electrical Fundamentals 2 Module 3 Parallel Circuits Module

More information

Electrical Power. How do you calculate electrical power? 14.3

Electrical Power. How do you calculate electrical power? 14.3 . Name: Date: Electrical Power 14.3 How do you calculate electrical power? In this skill sheet you will review the relationship between electrical power and Ohm s law. As you work through the problems,

More information

TECH TIP # 37 SOLVING SERIES/PARALLEL CIRCUITS THREE LAWS --- SERIES CIRCUITS LAW # 1 --- THE SAME CURRENT FLOWS THROUGH ALL PARTS OF THE CIRCUIT

TECH TIP # 37 SOLVING SERIES/PARALLEL CIRCUITS THREE LAWS --- SERIES CIRCUITS LAW # 1 --- THE SAME CURRENT FLOWS THROUGH ALL PARTS OF THE CIRCUIT TECH TIP # 37 SOLVING SERIES/PARALLEL CIRCUITS Please study this Tech Tip along with assignment 4 in Basic Electricity. Parallel circuits differ from series circuits in that the current divides into a

More information

Chapter 18: Circuits and Circuit Elements 1. Schematic diagram: diagram that depicts the construction of an electrical apparatus

Chapter 18: Circuits and Circuit Elements 1. Schematic diagram: diagram that depicts the construction of an electrical apparatus Chapter 18: Circuits and Circuit Elements 1 Section 1: Schematic Diagrams and Circuits Schematic Diagrams Schematic diagram: diagram that depicts the construction of an electrical apparatus Uses symbols

More information

CHAPTER 2. Basic Electronics & Theory. (The rules behind all those little things)

CHAPTER 2. Basic Electronics & Theory. (The rules behind all those little things) CHAPTER 2 Basic Electronics & Theory (The rules behind all those little things) 1 Current, Voltage, Resistance Water flowing through a hose is a good way to imagine electricity. Water is like Electrons

More information

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.

More information

Note-A-Rific: Characteristics

Note-A-Rific: Characteristics Note-A-Rific: Characteristics Any path along which electrons can flow is a circuit. For a continuous flow of electrons, there must be a complete circuit with no gaps. A gap is usually an electric switch

More information

A) The potential difference across the 6-ohm B) 2.0 A resistor is the same as the potential difference across the 3-ohm resistor. D) 4.

A) The potential difference across the 6-ohm B) 2.0 A resistor is the same as the potential difference across the 3-ohm resistor. D) 4. 1. A 2.0-ohm resistor and a 4.0-ohm resistor are connected in series with a 12-volt battery. If the current through the 2.0-ohm resistor is 2.0 amperes, the current through the 4.0-ohm resistor is A) 1.0

More information

Parallel DC circuits

Parallel DC circuits Parallel DC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Chapter 21 Electric Current and Direct-Current Circuit

Chapter 21 Electric Current and Direct-Current Circuit Chapter 21 Electric Current and Direct-Current Circuit Outline 21-1 Electric Current 21-2 Resistance and Ohm s Law 21-3 Energy and Power in Electric Circuit 21-4 Resistance in Series and Parallel 21-5

More information

Electronics. Basic Concepts. Yrd. Doç. Dr. Aytaç GÖREN Yrd. Doç. Dr. Levent ÇETİN

Electronics. Basic Concepts. Yrd. Doç. Dr. Aytaç GÖREN Yrd. Doç. Dr. Levent ÇETİN Electronics Basic Concepts Electric charge Ordinary matter is made up of atoms which have positively charged nuclei and negatively charged electrons surrounding them. Charge is quantized as the subtraction

More information

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00

More information

Students will need about 30 minutes to complete these constructed response tasks.

Students will need about 30 minutes to complete these constructed response tasks. Electric Title of Circuits Concept Constructed Response Teacher Guide Students will need about 30 minutes to complete these constructed response tasks. Objectives assessed: Understand the functions of

More information

Chapter 11- Electricity

Chapter 11- Electricity Chapter 11- Electricity Course Content Definition of Electricity Circuit Diagrams Series and Parallel Circuits Calculating total resistances Measurement of Electricity Ammeters and Voltmeters Ohm s Law

More information

Series & Parallel Circuits Challenge

Series & Parallel Circuits Challenge Name: Part One: Series & Parallel Circuits Challenge 1. Build a circuit using two batteries and two light bulbs in a way to illuminate the two light bulbs so that if either light bulb is disconnected,

More information

Chapter 21 Electric Current and Direct-Current Circuit

Chapter 21 Electric Current and Direct-Current Circuit Chapter 2 Electric Current and Direct-Current Circuit Outline 2- Electric Current 2-2 Resistance and Ohm s Law 2-3 Energy and Power in Electric Circuit 2-4 Resistance in Series and Parallel 2-5 Kirchhoff

More information

Student Content Brief Advanced Level

Student Content Brief Advanced Level Student Content Brief Advanced Level Electric Circuits Background Information There are a variety of forces acting on the body of the Sea Perch. One important force is pushing electrons through the wires

More information

= 1 R 1 + (2) + 1 R R 2

= 1 R 1 + (2) + 1 R R 2 PHYS 140 General Physics II EXPERIMENT 4 SERIES AND PARALLEL RESISTANCE CIRCUITS I. OBJECTIVE: The objective of this experiment is the study of series and parallel resistive circuits. The student will

More information

ELECTRICAL CIRCUITS. Electrical Circuits

ELECTRICAL CIRCUITS. Electrical Circuits Electrical Circuits A complete path, or circuit, is needed before voltage can cause a current flow through resistances to perform work. There are several types of circuits, but all require the same basic

More information

Solutions to Bulb questions

Solutions to Bulb questions Solutions to Bulb questions Note: We did some basic circuits with bulbs in fact three main ones I can think of I have summarized our results below. For the final exam, you must have an understanding of

More information

Level 2 Physics: Demonstrate understanding of electricity and electromagnetism

Level 2 Physics: Demonstrate understanding of electricity and electromagnetism Level 2 Physics: Demonstrate understanding of electricity and electromagnetism Static Electricity: Uniform electric field, electric field strength, force on a charge in an electric field, electric potential

More information

EE301 - PARALLEL CIRCUITS AND KIRCHHOFF S CURRENT LAW

EE301 - PARALLEL CIRCUITS AND KIRCHHOFF S CURRENT LAW Objectives a. estate the definition of a node and demonstrate how to measure voltage and current in parallel circuits b. Solve for total circuit resistance of a parallel circuit c. State and apply KCL

More information

Preview of Period 13: Electrical Resistance and Joule Heating

Preview of Period 13: Electrical Resistance and Joule Heating Preview of Period 13: Electrical Resistance and Joule Heating 13.1 Electrical Resistance of a Wire What does the resistance of a wire depend upon? 13.2 Resistance and Joule Heating What effect does resistance

More information

Series-Parallel Circuits

Series-Parallel Circuits Chapter 6 Series-Parallel Circuits Topics Covered in Chapter 6 6-1: Finding R T for Series-Parallel Resistances 6-2: Resistance Strings in Parallel 6-3: Resistance Banks in Series 6-4: Resistance Banks

More information

Unit 7: Electric Circuits

Unit 7: Electric Circuits Multiple Choice Portion 1. The diagram below shows part of an electrical circuit. Unit 7: Electric Circuits 4. A 12 V battery supplies a 5.0 A current to two light bulbs as shown below. What are the magnitude

More information

FREQUENTLY ASKED QUESTIONS October 2, 2012

FREQUENTLY ASKED QUESTIONS October 2, 2012 FREQUENTLY ASKED QUESTIONS October 2, 2012 Content Questions Why do batteries require resistors? Well, I don t know if they require resistors, but if you connect a battery to any circuit, there will always

More information

Science AS90191 Describe Aspects of Physics.

Science AS90191 Describe Aspects of Physics. Circuits and components Science AS90191 Describe Aspects of Physics. An electric current is the movement of electrons (negatively charged particles). A circuit is made up of components connected together

More information

REVIEW QUESTIONS. A6 Test Preparation

REVIEW QUESTIONS. A6 Test Preparation A6 Test Preparation Note: The lessons, exercises and tests in this manual are great preparation for taking the ASE A6 (electrical) certification test. However, that s only for the topics we ve covered.

More information

Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller Tristan@CatherineNorth.com

Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller Tristan@CatherineNorth.com Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller Tristan@CatherineNorth.com Series Circuits. A Series circuit, in my opinion, is the simplest circuit

More information

Direct-Current Circuits

Direct-Current Circuits Chapter 13 Direct-Current Circuits In This Chapter: Resistors in Series Resistors in Parallel EMF and Internal Resistance Kirchhoff s Rules Resistors in Series The equivalent resistance of a set of resistors

More information

FB-DC3 Electric Circuits: Series and Parallel Circuits

FB-DC3 Electric Circuits: Series and Parallel Circuits CREST Foundation Electrical Engineering: DC Electric Circuits Kuphaldt FB-DC3 Electric Circuits: Series and Parallel Circuits Contents 1. What are "series" and "parallel"? 2. Simple series circuits 3.

More information

Conceptual. Problems:

Conceptual. Problems: Conceptual 2. 4. A sht circuit can develop when the last bit of insulation frays away between the two conducts in a lamp cd. Then the two conducts touch each other, creating a low resistance path in parallel

More information

PARALLEL CIRCUITS. The voltage is the same across all components in a parallel circuit. Figure 1.

PARALLEL CIRCUITS. The voltage is the same across all components in a parallel circuit. Figure 1. Reading 6 Ron Bertrand VK2DQ http://www.radioelectronicschool.com PARALLEL CIRCUITS When two or more components are connected across one voltage source they form a parallel circuit. The two lamps in figure

More information

Parallel and Series Resistors, Kirchoff s Law

Parallel and Series Resistors, Kirchoff s Law Experiment 2 31 Kuwait University Physics 107 Physics Department Parallel and Series Resistors, Kirchoff s Law Introduction In this experiment the relations among voltages, currents and resistances for

More information

EMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors

EMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors Chapter 19 DC Electrical Circuits Topics in Chapter 19 EMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors

More information

Chapter 28A - Direct Current Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 28A - Direct Current Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 28A - Direct Current Circuits A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should

More information

Quiz: What is the voltage difference across the 25- resistance?

Quiz: What is the voltage difference across the 25- resistance? Quiz: What is the voltage difference across the 25- resistance? a) 0.1 V b) 2.5 V c) 6 V d) 25 V e) 60 V since I 25 I series : V 25 I series R 25 0.1 A 25 2.5 V In a parallel circuit, there are points

More information

UNIVERSITY OF TURKISH AERONAUTICAL ASSOCIATION DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEE203 ELECTRONIC CIRCUITS LABORATORY I

UNIVERSITY OF TURKISH AERONAUTICAL ASSOCIATION DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEE203 ELECTRONIC CIRCUITS LABORATORY I UNIVERSITY OF TURKISH AERONAUTICAL ASSOCIATION DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEE203 ELECTRONIC CIRCUITS LABORATORY I FALL 2014/2015 LAB 2: RESISTORS ASSOCIATION AND THE WHEATSTONE

More information

PHYSICS 176. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).

PHYSICS 176. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). PHYSICS 176 Experiment 3 Kirchhoff's Laws Equipment: Supplies: Digital Multimeter, Power Supply (0-20 V.). Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). A. Kirchhoff's Loop Law Suppose that

More information

Chapter 2 Objectives

Chapter 2 Objectives Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules

AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Name Period AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Dr. Campbell 1. Four 240 Ω light bulbs are connected in series. What is the total resistance of the circuit? What

More information

Basic AC Reactive Components IMPEDANCE

Basic AC Reactive Components IMPEDANCE Basic AC Reactive Components Whenever inductive and capacitive components are used in an AC circuit, the calculation of their effects on the flow of current is important. EO 1.9 EO 1.10 EO 1.11 EO 1.12

More information

Chapter 13 Electric Circuits

Chapter 13 Electric Circuits Chapter 13 Electric Circuits What is Electric Current? How does it resemble the flow of water in a pipe? Can you get a flashlight bulb to light, with a battery and a single wire? Electric Circuits and

More information

Light Bulbs in Parallel Circuits

Light Bulbs in Parallel Circuits Light Bulbs in Parallel Circuits In the last activity, we analyzed several different series circuits. In a series circuit, there is only one complete pathway for the charge to travel. Here are the basic

More information

Resistors and Ohms Law

Resistors and Ohms Law Resistors and Ohms Law A wire is an ideal conductor with no resistance (at least for our discussion). n contrast, a resistor is a component that purposefully impedes or opposes the flow of electrons. As

More information

4 Electrical Quantities and Ohm s Law

4 Electrical Quantities and Ohm s Law Ch a pt er 4 Electrical Quantities and Ohm s Law Learning Outcomes Define electric current, voltage, resistance, power, and energy, and list the unit of measurement of each. Identify the essential parts

More information

Lecture PowerPoints. Chapter 19 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 19 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 19 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Two kinds of electrical charges

Two kinds of electrical charges ELECTRICITY NOTES Two kinds of electrical charges Positive charge Negative charge Electrons are negatively charged Protons are positively charged The forces from positive charges are canceled by forces

More information

Concept-Development Practice Page 34-1

Concept-Development Practice Page 34-1 Electric Current Practice Page 34-1 1. Water doesn't flow in the pipe when (a) both ends are at the same level. Another way of saying this is that water will not flow in the pipe when both ends have the

More information

Tutorial 12 Solutions

Tutorial 12 Solutions PHYS000 Tutorial 2 solutions Tutorial 2 Solutions. Two resistors, of 00 Ω and 200 Ω, are connected in series to a 6.0 V DC power supply. (a) Draw a circuit diagram. 6 V 00 Ω 200 Ω (b) What is the total

More information

More Concepts. I = dq. Current is the rate of flow of charge around a circuit.

More Concepts. I = dq. Current is the rate of flow of charge around a circuit. RC Circuits In this presentation, circuits with multiple batteries, resistors and capacitors will be reduced to an equivalent system with a single battery, a single resistor, and a single capacitor. Kirchoff's

More information

Circuits-Circuit Analysis

Circuits-Circuit Analysis Base your answers to questions 1 through 3 on the information and diagram below. 4. A 9-volt battery is connected to a 4-ohm resistor and a 5-ohm resistor as shown in the diagram below. A 3.0-ohm resistor,

More information

Chapter 07. Series-Parallel Circuits

Chapter 07. Series-Parallel Circuits Chapter 07 Series-Parallel Circuits Source: Circuit Analysis: Theory and Practice Delmar Cengage Learning The Series-Parallel Network Complex circuits May be separated both series and/or parallel elements

More information

11 Internal resistance, series and parallel circuits, and the potential divider Exam practice questions

11 Internal resistance, series and parallel circuits, and the potential divider Exam practice questions Pages 68-72 Start by working out the resistance of each of the combinations: W: In series R = R + R 2 + R 3 = 5 Ω + 5 Ω + 5 Ω = 45 Ω X: Start by adding the two series resistors: 5 Ω + 5 Ω = 30 Ω Then combine

More information

MAGNETISM AND ELECTRICITY

MAGNETISM AND ELECTRICITY WEEK 19 MAGNETISM AND ELECTRICITY ELECTRIC CIRCUITS. 1 Resistance: After this lesson, you should be able to do the following: Know how to define resistance. Know what resistance is. Know the unit for resistance.

More information

Electric Currents. Electric Potential Energy 11/23/16. Topic 5.1 Electric potential difference, current and resistance

Electric Currents. Electric Potential Energy 11/23/16. Topic 5.1 Electric potential difference, current and resistance Electric Currents Topic 5.1 Electric potential difference, current and resistance Electric Potential Energy l If you want to move a charge closer to a charged sphere you have to push against the repulsive

More information

How does an electrical circuit work? Exploring Ohm s Law in parallel and series circuits

How does an electrical circuit work? Exploring Ohm s Law in parallel and series circuits Objective The purpose of this activity is to explore Ohm s Law in parallel and series circuits, to create a hypothesis. The hypothesis will be tested during an experiential activity using the Labdisc current

More information

CIRCUITS WORKSHEET. 1. Determine the equivalent (total) resistance for each of the following circuits below.

CIRCUITS WORKSHEET. 1. Determine the equivalent (total) resistance for each of the following circuits below. CCUTS WOKSHEET. Determine the uivalent (total) resistance for each of the following circuits below. 7 5 70. 59 59 70 5 7. Determine the total voltage (electric potential) for each of the following circuits

More information

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory Introduction to Electricity & Magnetism Dr Lisa Jardine-Wright Cavendish Laboratory Examples of uses of electricity Christmas lights Cars Electronic devices Human body Electricity? Electricity is the presence

More information

Ohm's Law and Circuits

Ohm's Law and Circuits 2. Conductance, Insulators and Resistance A. A conductor in electricity is a material that allows electrons to flow through it easily. Metals, in general, are good conductors. Why? The property of conductance

More information

Electric Circuits. 1 Electric Current and Electromotive Force

Electric Circuits. 1 Electric Current and Electromotive Force 1 Electric Current and Electromotive Force The flow of electric charges: Electric currents power light bulbs, TV sets, computers etc. Definition of electric current: The current is the rate at which charge

More information

SOLUTION The energy used by the dryer is. 60 s 1.00 min = J. Energy = Pt = IVt = (16 A)(240 V)(45 min) For the computer, we have

SOLUTION The energy used by the dryer is. 60 s 1.00 min = J. Energy = Pt = IVt = (16 A)(240 V)(45 min) For the computer, we have 3. SSM REASONING According to Equation 6.1b, the energy used is Energy = Pt, where P is the power and t is the time. According to Equation.6a, the power is P = IV, wherei is the current and V is the voltage.

More information

PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members:

PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members: PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members: Goals: To explore the basic principles of electric circuits, and how to measure them. Materials: Electrical resistors

More information

Lesson Plan. Parallel Resistive Circuits Part 1 Electronics

Lesson Plan. Parallel Resistive Circuits Part 1 Electronics Parallel Resistive Circuits Part 1 Electronics Lesson Plan Performance Objective At the end of the lesson, students will demonstrate the ability to apply problem solving and analytical techniques to calculate

More information

ELECTRICITY: CIRCUIT QUESTIONS

ELECTRICITY: CIRCUIT QUESTIONS ELECTRICITY: CIRCUIT QUESTIONS Resistors in a DC circuit (2014;2) Sandra is investigating electrical circuits in the lab. She connects various resistors in combination. The current drawn from the supply

More information

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Electric Circuits) July 16 th, 2013

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Electric Circuits) July 16 th, 2013 Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Electric Circuits) July 16 th, 2013 1 What is an electrical circuit? An electrical network

More information

EE 201 ELECTRIC CIRCUITS. Class Notes CLASS 8

EE 201 ELECTRIC CIRCUITS. Class Notes CLASS 8 EE 201 ELECTRIC CIRCUITS Class Notes CLASS 8 The material covered in this class will be as follows: Nodal Analysis in the Presence of Voltage Sources At the end of this class you should be able to: Apply

More information

Preamble. Kirchoff Voltage Law (KVL) Series Resistors. In this section of my lectures we will be. resistor arrangements; series and

Preamble. Kirchoff Voltage Law (KVL) Series Resistors. In this section of my lectures we will be. resistor arrangements; series and Preamble Series and Parallel Circuits Physics, 8th Edition Custom Edition Cutnell & Johnson Chapter 0.6-0.8, 0.0 Pages 60-68, 69-6 n this section of my lectures we will be developing the two common types

More information

l E ectri c i C i rcu ts Physics 1

l E ectri c i C i rcu ts Physics 1 Electric Circuits i Physics 1 Potential Difference oltageemf n a battery, a series of chemical reactions occur in which electrons are transferred from one terminal to another. There is a potential difference

More information

Physics 133: tutorial week 4 Ohm s law, electrical power, emf and internal resistance.

Physics 133: tutorial week 4 Ohm s law, electrical power, emf and internal resistance. Physics 133: tutorial week 4 Ohm s law, electrical power, emf and internal resistance. 41. The heating element of a clothes drier has a resistance of 11Ïand is connected across a 240V electrical outlet.

More information

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY. EE100 Basics of Electrical

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY. EE100 Basics of Electrical APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY EE100 Basics of Electrical SAMPLE QUESTION PAPER Maximum Marks 100 Part- A (10 questions) Attempt all the questions 10*4=40 1. We have two identical 10 V electromotive

More information

Series-Parallel Circuits. Objectives

Series-Parallel Circuits. Objectives Series-Parallel Circuits Objectives Identify series-parallel configuration Analyze series-parallel circuits Apply KVL and KCL to the series-parallel circuits Analyze loaded voltage dividers Determine the

More information

R1 R2 R3. Figure1. Resistances in series V1 I. Figure 2. Equivalent circuit of figure 1 if RE= R1+R2+R3 VRE =V

R1 R2 R3. Figure1. Resistances in series V1 I. Figure 2. Equivalent circuit of figure 1 if RE= R1+R2+R3 VRE =V Supplementary Notes for Unit 2 - Part A (Unit 3 and 4 exams also includes the topics detailed in this note) Series circuits A series circuit is a circuit in which resistors are arranged in a chain, so

More information

Series and Parallel Circuits

Series and Parallel Circuits Series and Parallel Circuits Direct-Current Series Circuits A series circuit is a circuit in which the components are connected in a line, one after the other, like railroad cars on a single track. There

More information

OHM S LAW AND RESISTANCE

OHM S LAW AND RESISTANCE OHM S LAW AND RESISTANCE Resistance is one of the basic principles of Ohm s law, and can be found in virtually any device used to conduct electricity. Georg Simon Ohm was a German physicist who conducted

More information

f. The current at location A is equal to the current at location B. e. The current at location B is greater than the current at location E.

f. The current at location A is equal to the current at location B. e. The current at location B is greater than the current at location E. 1. Answer: The current outside the branches of a combination circuit is everywhere the same. The current inside of the branches is always less than that outside of the branches. When comparing the current

More information

Reavis High School Physics Honors Curriculum Snapshot

Reavis High School Physics Honors Curriculum Snapshot Reavis High School Physics Honors Curriculum Snapshot Unit 1: Mathematical Toolkit Students will be able to: state definition for physics; measure length using a meter stick; measure the time with a stopwatch

More information

Fig. 1 Analogue Multimeter Fig.2 Digital Multimeter

Fig. 1 Analogue Multimeter Fig.2 Digital Multimeter ELECTRICAL INSTRUMENT AND MEASUREMENT Electrical measuring instruments are devices used to measure electrical quantities such as electric current, voltage, resistance, electrical power and energy. MULTIMETERS

More information

Touch Screen Technology. Taking apart a tablet

Touch Screen Technology. Taking apart a tablet Touch Screen Technology Topics covered: 1) Resistance, Capacitance, Charge, Voltage, and Current 2) Introduction to simple circuits Taking apart a tablet For example, an ipad2 Touchscreen Motherboard Lots

More information

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior.

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior. Ohm s Law Object To study resistors, Ohm s law, linear behavior, and non-linear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which

More information

Apprentice Telecommunications Technician Test (CTT) Study Guide

Apprentice Telecommunications Technician Test (CTT) Study Guide Apprentice Telecommunications Technician Test (CTT) Study Guide 1 05/2014 Study Guide for Pacific Gas & Electric Company Apprentice Telecommunications Technician Qualifying Test (CTT) About the Test The

More information

1. What is the potential difference across a 5 ohm resistor which carries a current of 5 A? a. 100 V b. 25 V c. 4 V d. 1 V

1. What is the potential difference across a 5 ohm resistor which carries a current of 5 A? a. 100 V b. 25 V c. 4 V d. 1 V 3s 1. What is the potential difference across a 5 ohm resistor which carries a current of 5 A? a. 100 V b. 25 V c. 4 V d. 1 V 2. A superconducting wire's chief characteristic is which of the following?

More information