# Chapter 22: Electric motors and electromagnetic induction

Size: px
Start display at page:

Transcription

1 Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on the wire. current force Figure 22.1 current second finger magnet magnet force thumb magnetic field first finger Moving coil loudspeaker magnetic field Figure 22.1 shows part of a wire carrying a current placed in the magnetic field produced by two strong magnets. The magnets have opposite poles facing and the field lines point from N to S. Please see the Appendix for additional information on particle accelerators. You need to be able to use Fleming s Left Hand Rule to work out the direction of the force that acts on the wire. This is also called the Motor Rule. The force acting upon the wire will make the wire move. The thumb of your left hand may be used to determine the direction of movement caused by the force on the wire. In order to remember what component the direction of the thumb shows remember: thumb shows the direction of movement caused by the force on the wire. (Alternatively, fumb force!!) The motor effect is also used in loudspeakers: the signal current produced by an amplifier is alternating, and by passing it through a coil in a magnetic field the current results in alternating forces on the coil. The coil is attached to a paper cone and this transfers the vibrations to the air. Worked Example 2 a) Copy and complete the following diagrams by drawing in magnetic field lines. b) Use Fleming s Left Hand Rule to work out the direction of the force that will act on the conductors shown in the magnetic fields, below. A B C a) Field lines should be drawn going from N to S b) A: F B: F C: F Shows a conductor carrying current flowing out of the plane of the paper perpendicularly towards you. Shows a conductor carrying current flowing into the plane of the paper perpendicularly away from you. The size of the force that acts on a current-carrying conductor placed at right angles to a magnetic field may be increased by either increasing the strength of the magnetic field or by increasing the current in the wire. 76

2 The electric motor In its simplest form a DC motor consists of a single turn coil of wire that is free to rotate in a magnetic field about an axle, as shown in Figure Carbon brushes make contact with the ends of the coil that are connected to a commutator so that a current can be passed through the coil. The sequence of diagrams in Figure 22.2 show the coil from an end-on view, making it easy to see how the forces acting on each side of the coil produce a turning effect about the axle. Figure 22.2c shows that the turning effect is zero when the coil is parallel to the permanent magnets (because the line of action of the forces passes through the axis of rotation). This might suggest that the coil stops in this position, but it will inevitably overshoot, and as soon as it does so, the commutator will reverse the direction of the current in the coil which means the coil will continue to spin. Worked Example 3 a) b) Figure 22.2 State three ways in which you could change the design of a DC motor to make it spin faster for a given load. Increase the strength of the magnetic field. Put more turns on the coil. Pass a larger current through the coil. (But note that if the maximum design current for a motor is exceeded then the motor is likely to burn out.) Electromagnetic induction and the generator magnet c) N S split-ring commutator carbon brushes pivot rotation produced Figure 22.3 Simple electric motor When a conductor is in a changing magnetic field a voltage will be induced in the conductor. The magnetic field can change if: the conductor is moving into, or out of, a magnetic field (see Figure 22.4a), a magnet is moving towards, or away from, the conductor (see Figure 22.4b) or the magnetic field is being varied (see Figure 22.4c). If the conductor is part of a closed electric circuit then the induced voltage will cause a current to flow. 77

3 a) b) c) moving a conductor out of (or into) a magnetic field induces a voltage. Figure 22.4 moving a magnet into (or out of) a long coil induces a voltage. varying the current in the top coil induces a voltage in the bottom coil. The size of the induced voltage in a coil can be increased by increasing the rate of change of the strength of the magnetic field, by having more turns on the coil and by having a coil of greater area. Worked Example 4 Look at the three situations shown below; in each case a small plane coil is in the field between two permanent magnets: A B C In A the coil is moving horizontally at constant speed between the two magnets. In B the coil is moving horizontally at constant speed out of the gap between the two magnets. In C the coil is stationary between the two magnets. In which situation, if any, is a voltage induced in the coil? In A the coil is moving in a uniform magnetic field so the amount of magnetic flux cutting the coil is not changing No induced voltage In B the coil is moving out of a uniform magnetic field so the amount of magnetic flux cutting the coil is decreasing Voltage induced In C the coil is not moving so the magnetic flux cutting the coil is constant No induced voltage Two types of generator The bicycle dynamo consists of a strong, small bar magnet which is spun by the wheel of the bicycle. It spins between the faces of a U-shaped iron core on which a coil of wire is wound. The changing magnetic field induces an alternating voltage in the coil. 78

4 Larger generators have spinning coils of wire in the magnetic field of strong permanent magnets (or, in large generators, a magnetic field produced by electromagnets). Since the coil in which the voltage is being induced is spinning, the electrical connections are made by brushes which slide over slip rings. The transformer The function of a transformer is to change the size of an alternating voltage. This is done by having two separate coils with different numbers of turns. Transformers consist of a core made from thin sheets of a magnetically soft material clamped together. Two separate coils of wire, insulated from one another, are tightly wound onto the core. Transformers are designed to perform the job of changing voltage with very little power loss you may assume that they are 100% efficient. input (primary) voltage output (secondary) voltage primary turns secondary turns Vp Vs n 1 n 2 If n 1 > n 2 then the transformer steps down the input voltage; if n 2 > n 1 then the transformer steps up the input voltage. Worked Example 5 A transformer is designed to step down the mains voltage of 230 V to 11.5 V. If there are 1200 turns on the primary coil how many turns should be wound on the secondary coil? Rearrange Vp Vs n 1 n 2 to give n 2 Vs Vp n 1 So, n V 230 V 1200 Therefore, n 2 = 60 turns primary coil Figure 22.5 A transformer laminated iron core secondary coil Transmission of electrical energy Transformers are used in the transmission of electrical energy over large distances. Transmission lines have low but not zero resistance. Power loss due to this resistance is given by the formula P I 2 R, and this means that power losses between the power station and the consumers would be unacceptably large. As transformers are close to 100% efficient Power input power output so Vp Ip Vs Is Vp Vs Is Ip ( n 1 n 2 ) So if a transformer is used to step up the generated alternating voltage 50 times this means the current is stepped down 50 times Is 1/50 Ip The advantage of this is clear, since power loss along the transmission lines is proportional to current squared this will reduce the loss by (1/50) 2. The voltage is stepped down using transformers close to the consumers, again with very little power loss because of the near 100% efficiency of the transformer. 79

5 Practical work steel yoke to support the magnets You should have practical experience of both the motor and generator effects. A standard experiment to demonstrate that a current in a wire, placed at right angles to a magnetic field, produces a force on the wire is shown here. A short length of copper wire rests on two copper wire rails. When a current is passed through the wire it catapults out of the field sliding along the rails. (The motor effect.) The generator effect can be demonstrated by thrusting a strong magnet Figure 22.6 into a long, tightly wound coil connected to a galvanometer (sensitive ammeter). The induced voltage will circulate a detectable current. It can be seen that the induced voltage only occurs when the magnet is moving with respect to the coil. We can also observe that the direction of the induced voltage (and current) depends on the pole of the magnet entering the coil and its direction of travel. Faster movement induces a larger voltage. Warm-up questions 1 A compass needle points north as shown in a) below. a) b) A d) B An unknown object A is brought near to the compass and the compass deflects towards it as shown in b) and c). A second unknown object B is brought close to the compass and it responds as shown in d) and e). What does this tell you about objects A and B? 2 Steel is a magnetically hard substance and it is often used for making compass needles. What is meant by the term hard in this context? 3 The magnetic field around a magnet is often represented using field lines. a) What does the spacing of the field lines tell you about the magnetic field? b) What do the arrows on the field lines tell you about the magnetic field? 4 When a steel paper clip is suspended from a permanent magnet it is then able to pick up a further paper clip and this may be repeated several times to form a chain of paper clips hanging from the magnet. The paper clips have temporary or magnetism. [Supply the missing word.] 5 a) Show, with the aid of a field line sketch, how the magnetic field varies around a single bar magnet. e) A c) B b) Show how you would position two bar magnets to produce a region of strong and nearly uniform magnetic field. Add field lines to show the magnetic field. 6 Copy and complete the following magnetic field patterns for the three arrangements of currentcarrying conductors shown. A long straight conductor carrying a current into the plane of the paper at 90. A section through a plane circular coil carrying a current up out of plane of the paper on the left and down into the plane of the paper on the right. A long solenoid wound on a cardboard tube. Current flowing in and out as shown by the arrows. 7 State two ways in which the strength of the magnetic field produced by the solenoid in question 6 could be increased. 8 A uniform magnetic field is used in cloud chambers to distinguish between different particles produced by collisions between subatomic particles. It is possible to tell the difference between positively and negatively charged moving particles how do their paths differ, provided they are not moving parallel to the magnetic field lines? 9 Copy and complete the following paragraph: Fleming s Left Hand Rule is used to predict the direction of the on a carrying conductor in a. The thumb, first finger and second finger are arranged to point in three mutually perpendicular directions; the first finger points in the direction of 80

6 Warm-up questions the, the second finger points in the direction of the and the thumb indicated the direction of the on the conductor. Fleming s Left Hand Rule is also known as the rule. 10 Imagine that there is a uniform magnetic field acting over the area of this page directed perpendicularly into the page shown below. A current flows through a wire placed in the field. a) Copy the drawing and use Fleming s Left Hand Rule to find the direction of the force that acts on the conductor and mark it clearly on your diagram. b) State two ways in which the force on the conductor could be made weaker. 11 In which of the following will there be a voltage induced in the systems of conductors shown? moving into a coil. moving out of a coil. moving whilst completely inside a coil. at rest inside a coil. 12 Show, with the aid of a clear, labelled diagram, the key features of a transformer. 13 A transformer is designed to step a voltage down from 120 V to 6 V. Explain how the design you have shown in question 12 can do this. 14 What is the advantage of stepping up the voltage of electricity generated at a power station to a much higher voltage before transmitting electrical energy via the National Grid? 15 Transformers are assumed to be virtually 100% efficient. What does this mean in terms of electrical power input and output? 16 A generator consists of a coil which is driven mechanically to rotate in a magnetic field. How do the following factors affect the size of the voltage induced in the coil (if at all): a) The coil has more turns. b) The coil rotates faster. c) The magnetic field is made stronger. Notes 81

### 1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

### DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

### ELECTRODYNAMICS 05 AUGUST 2014

ELECTRODYNAMICS 05 AUGUST 2014 In this lesson we: Lesson Description Discuss the motor effect Discuss how generators and motors work. Summary The Motor Effect In order to realise the motor effect, the

### The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

### DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.

DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into

### Magnetic Fields and Their Effects

Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases

### STUDY GUIDE: ELECTRICITY AND MAGNETISM

319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: info@questionsgalore.net Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three

### Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets

Linear DC Motors The purpose of this supplement is to present the basic material needed to understand the operation of simple DC motors. This is intended to be used as the reference material for the linear

### Inductance. Motors. Generators

Inductance Motors Generators Self-inductance Self-inductance occurs when the changing flux through a circuit arises from the circuit itself. As the current increases, the magnetic flux through a loop due

### Motor Fundamentals. DC Motor

Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical

### Magnetism. Magnetism. Magnetic Fields and Magnetic Domains. Magnetic Fields and Magnetic Domains. Creating and Destroying a Magnet

Magnetism Magnetism Opposite poles attract and likes repel Opposite poles attract and likes repel Like electric force, but magnetic poles always come in pairs (North, South) Like electric force, but magnetic

### Build A Simple Electric Motor (example #1)

PHY115 Experiment 11 Build A Simple Electric Motor (example #1) MATERIAL This is the necessary equipment. Present any list of material in your written lab report. 1.5 V battery in series 1 ceramic magnet

### ElectroMagnetic Induction. AP Physics B

ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday

### The DC Motor. Physics 1051 Laboratory #5 The DC Motor

The DC Motor Physics 1051 Laboratory #5 The DC Motor Contents Part I: Objective Part II: Introduction Magnetic Force Right Hand Rule Force on a Loop Magnetic Dipole Moment Torque Part II: Predictions Force

### Physics 30 Worksheet #10 : Magnetism From Electricity

Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron

### Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral

### Preview of Period 16: Motors and Generators

Preview of Period 16: Motors and Generators 16.1 DC Electric Motors What causes the rotor of a motor to spin? 16.2 Simple DC Motors What causes a changing magnetic field in the simple coil motor? 16.3

### Induced voltages and Inductance Faraday s Law

Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic

### Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

### Chapter 21. Magnetic Forces and Magnetic Fields

Chapter 21 Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at one end and a south magnetic pole (S) at the other.

### 2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux

### UNIT 3 AUTOMOBILE ELECTRICAL SYSTEMS

UNIT 3 AUTOMOBILE ELECTRICAL SYSTEMS Automobile Electrical Structure 3.1 Introduction Objectives 3.2 Ignition System 3.3 Requirement of an Ignition System 3.4 Types of Ignition 3.4.1 Battery or Coil Ignition

### AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

AC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

### physics 112N magnetic fields and forces

physics 112N magnetic fields and forces bar magnet & iron filings physics 112N 2 bar magnets physics 112N 3 the Earth s magnetic field physics 112N 4 electro -magnetism! is there a connection between electricity

### Force on Moving Charges in a Magnetic Field

[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

### Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory

Introduction to Electricity & Magnetism Dr Lisa Jardine-Wright Cavendish Laboratory Examples of uses of electricity Christmas lights Cars Electronic devices Human body Electricity? Electricity is the presence

### This topic explores the key concepts of magnetism as they relate to: the phenomenon of magnetism magnetic forces and fields a theory of magnetism.

Magnetism Introduction This topic explores the key concepts of magnetism as they relate to: the phenomenon of magnetism magnetic forces and fields a theory of magnetism. Key concepts of magnetism The activities

### Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5

Solutions to Homework Questions 5 Chapt19, Problem-2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat

### General Physics (PHY 2140)

General Physics (PHY 2140) Lecture 12 Electricity and Magnetism Magnetism Magnetic fields and force Application of magnetic forces http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 19 1 Department

### MEASURING INSTRUMENTS. By: Nafees Ahmed, Asstt, Prof, EE Deptt, DIT, Dehradun

MEASURING INSTRUMENTS By: Nafees Ahmed, Asstt, Prof, EE Deptt, DIT, Dehradun MEASURING INSTRUMENTS The device used for comparing the unknown quantity with the unit of measurement or standard quantity is

### Understanding the Alternator

http://www.autoshop101.com THIS AUTOMOTIVE SERIES ON ALTERNATORS HAS BEEN DEVELOPED BY KEVIN R. SULLIVAN PROFESSOR OF AUTOMOTIVE TECHNOLOGY AT SKYLINE COLLEGE SAN BRUNO, CALIFORNIA ALL RIGHTS RESERVED

### DC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

DC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

### GETTING CURRENT: Generating Electricity Using a Magnet

GETTING CURRENT: Generating Electricity Using a Magnet PLANNING OVERVIEW SUBJECT AREAS: Physical Science, Math, Language Arts TIMING: Preparation: 30 minutes Activity: 1-2 45-minute class periods Summary

### Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6 Signature Name (Print): 4 Digit ID: Section: Instructions: Answer all questions 24 multiple choice questions. You may need to do some calculation.

### Eðlisfræði 2, vor 2007

[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

### Candidate Number. General Certificate of Education Advanced Level Examination June 2012

entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 212 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Monday

### Two bar magnets are brought near each other as shown. The magnets... A) attract B) repel C) exert no net force on each other.

Magnetic Fields and Forces Learning goals: Students will be able to Predict the direction of the magnet field for different locations around a bar magnet and an electromagnet. Relate magnetic field strength

### Physics 221 Experiment 5: Magnetic Fields

Physics 221 Experiment 5: Magnetic Fields August 25, 2007 ntroduction This experiment will examine the properties of magnetic fields. Magnetic fields can be created in a variety of ways, and are also found

### Force on a square loop of current in a uniform B-field.

Force on a square loop of current in a uniform B-field. F top = 0 θ = 0; sinθ = 0; so F B = 0 F bottom = 0 F left = I a B (out of page) F right = I a B (into page) Assume loop is on a frictionless axis

### PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

### AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.

### 1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

### Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge

### Making an Electromagnet Grade 4

TEACHING LEARNING COLLABORATIVE (TLC) PHYSICAL SCIENCE Making an Electromagnet Grade 4 Created by: Maria Schetter (Terrace Heights Elementary School), Stella Winckler (Lucerne Elementary School), Karen

### Review Questions PHYS 2426 Exam 2

Review Questions PHYS 2426 Exam 2 1. If 4.7 x 10 16 electrons pass a particular point in a wire every second, what is the current in the wire? A) 4.7 ma B) 7.5 A C) 2.9 A D) 7.5 ma E) 0.29 A Ans: D 2.

### Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name

Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region

### Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.

Lesson 3 DIRECT AND ALTERNATING CURRENTS Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Objectives. When you have completed this lesson, you should be able

### Magnetic electro-mechanical machines

Magnetic electro-mechanical machines Lorentz Force A magnetic field exerts force on a moving charge. The Lorentz equation: f = q(e + v B) f: force exerted on charge q E: electric field strength v: velocity

### PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

### Candidate Number. General Certificate of Education Advanced Level Examination June 2010

entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 1 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Friday 18

### Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces - Magnetism - Magnetic Field - Magnetic Field Lines and Magnetic Flux - Motion of Charged Particles in a Magnetic Field - Applications of Motion of Charged

### Chen. Vibration Motor. Application note

Vibration Motor Application note Yangyi Chen April 4 th, 2013 1 Table of Contents Pages Executive Summary ---------------------------------------------------------------------------------------- 1 1. Table

### Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes

### Motors and Generators

Motors and Generators Electro-mechanical devices: convert electrical energy to mechanical motion/work and vice versa Operate on the coupling between currentcarrying conductors and magnetic fields Governed

### 104 Practice Exam 2-3/21/02

104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero

### The generation and supply of electricity within the U.K is achieved through the use of a 3-phase system.

Three Phase Electricity Supplies and Systems The generation and supply of electricity within the U.K is achieved through the use of a 3-phase system. This consists of 3 separate phase conductors along

### Chapter 30 - Magnetic Fields and Torque. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 30 - Magnetic Fields and Torque A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should

Last Name: First Name: Physics 102 Spring 2006: Exam #2 Multiple-Choice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged

### Principles and Working of DC and AC machines

BITS Pilani Dubai Campus Principles and Working of DC and AC machines Dr Jagadish Nayak Constructional features BITS Pilani Dubai Campus DC Generator A generator consists of a stationary portion called

### CHAPTER 16 -- MAGNETIC FIELDS QUESTION & PROBLEM SOLUTIONS

Solutions--Ch. 16 (Magnetic Fields) CHAPTER 16 -- MAGNETIC FIELDS QUESTION & PROBLEM SOLUTIONS 16.1) What is the symbol for a magnetic field? What are its units? Also, what are magnetic fields, really?

### Mapping the Magnetic Field

I Mapping the Magnetic Field Mapping the Magnetic Field Vector Fields The electric field, E, and the magnetic field, B, are two examples of what are termed vector fields, quantities which have both magnitude

### Physics 25 Exam 3 November 3, 2009

1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,

### E/M Experiment: Electrons in a Magnetic Field.

E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.

### Basics of Electricity

Basics of Electricity Generator Theory PJM State & Member Training Dept. PJM 2014 8/6/2013 Objectives The student will be able to: Describe the process of electromagnetic induction Identify the major components

### Magnetic Fields. I. Magnetic Field and Magnetic Field Lines

Magnetic Fields I. Magnetic Field and Magnetic Field Lines A. The concept of the magnetic field can be developed in a manner similar to the way we developed the electric field. The magnitude of the magnetic

### Lab 37: Magnetic Field ; Magnets - Drawing magnetic fields - Magnetic poles - Forces between magnets

Lab 37: Magnetic Field ; Magnets - Drawing magnetic fields - Magnetic poles - Forces between magnets 1) The following simple magnet configurations were shown to you in class - draw the magnetic field lines

### Objectives 200 CHAPTER 4 RESISTANCE

Objectives Explain the differences among conductors, insulators, and semiconductors. Define electrical resistance. Solve problems using resistance, voltage, and current. Describe a material that obeys

### Magnetism Basics. Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment. Net Effect = Zero!

Magnetism Basics Source: electric currents Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment Net Effect = Zero! Net Effect = Additive! Bipolar: all magnets

1 Electromagnetic Induction: Faraday's Law OBJECTIVE: To understand how changing magnetic fields can produce electric currents. To examine Lenz's Law and the derivative form of Faraday's Law. EQUIPMENT:

### NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR

INDEX NO. : M-142 TECHNICAL MANUAL FOR NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR Manufactured by : PREMIER TRADING CORPORATION (An ISO 9001:2000 Certified Company) 212/1, Mansarover Civil

### Chapter 33. The Magnetic Field

Chapter 33. The Magnetic Field Digital information is stored on a hard disk as microscopic patches of magnetism. Just what is magnetism? How are magnetic fields created? What are their properties? These

### Inductors. AC Theory. Module 3

Module 3 AC Theory What you ll learn in Module 3. Section 3.1 Electromagnetic Induction. Magnetic Fields around Conductors. The Solenoid. Section 3.2 Inductance & Back e.m.f. The Unit of Inductance. Factors

### ELECTRICITE ET MAGNETISME.

Created by Neevia Personal Converter trial version Physique Fondamentale ELECTRICITE ET MAGNETISME. LA LOI D INDUCTION DE FARADAY (Faraday Law Induction) Magnetic Flux Faraday's Law of Induction Lenz's

### Lab 14: 3-phase alternator.

Lab 14: 3-phase alternator. Objective: to obtain the no-load saturation curve of the alternator; to determine the voltage regulation characteristic of the alternator with resistive, capacitive, and inductive

### Think About This How do the generators located inside the dam convert the kinetic and potential energy of the water into electric energy?

What You ll Learn You will describe how changing magnetic fields can generate electric potential differences. You will apply this phenomenon to the construction of generators and transformers. Why It s

### Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor

Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor At first glance, a brushless direct-current (BLDC) motor might seem more complicated than a permanent magnet brushed DC motor,

### Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

### Magnetic Field of a Circular Coil Lab 12

HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,

### Magnetic fields of charged particles in motion

C H A P T E R 8 Magnetic fields of charged particles in motion CONCEPTS 8.1 Source of the magnetic field 8. Current loops and spin magnetism 8.3 Magnetic moment and torque 8.4 Ampèrian paths QUANTTATVE

### The DC Motor/Generator Commutation Mystery. Commutation and Brushes. DC Machine Basics

The DC Motor/Generator Commutation Mystery One small, yet vital piece of the DC electric motor puzzle is the carbon brush. Using the correct carbon brush is a key component for outstanding motor life,

### Chapter 22 Magnetism

22.6 Electric Current, Magnetic Fields, and Ampere s Law Chapter 22 Magnetism 22.1 The Magnetic Field 22.2 The Magnetic Force on Moving Charges 22.3 The Motion of Charged particles in a Magnetic Field

### 45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?

PHYS Practice Problems hapters 8- hapter 8. 45. The peak value of an alternating current in a 5-W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,

### TEACHER S CLUB EXAMS GRADE 11. PHYSICAL SCIENCES: PHYSICS Paper 1

TEACHER S CLUB EXAMS GRADE 11 PHYSICAL SCIENCES: PHYSICS Paper 1 MARKS: 150 TIME: 3 hours INSTRUCTIONS AND INFORMATION 1. This question paper consists of 12 pages, two data sheets and a sheet of graph

### Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2005 Experiment 5: Magnetic Fields of a Bar Magnet and of the Earth OBJECTIVES 1. To examine the magnetic field associated with a

### FORCE ON A CURRENT IN A MAGNETIC FIELD

7/16 Force current 1/8 FORCE ON A CURRENT IN A MAGNETIC FIELD PURPOSE: To study the force exerted on an electric current by a magnetic field. BACKGROUND: When an electric charge moves with a velocity v

### Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 Magnets

### Electric Motor. Your Activity Build a simple electric motor. Material. Create. Science Topics. What s going on? 2 Jumbo Safety Pins (or Paper Clips)

Electric Motor Your Activity Build a simple electric motor Material D-Cell Battery Coil made out of magnet wire 2 Jumbo Safety Pins (or Paper Clips) Scissors (or sand paper) 1 Rubber Band Ceramic Magnet

### Principles of Adjustable Frequency Drives

What is an Adjustable Frequency Drive? An adjustable frequency drive is a system for controlling the speed of an AC motor by controlling the frequency of the power supplied to the motor. A basic adjustable

### MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES Simple machines: lifting devices e.g. lever systems, inclined plane, screw jack, pulley blocks, Weston differential

### Module P4.4 Electromagnetic induction

F L E X I B L E L E A R N I N G A P P R O A C H T O P H Y S I C S Module P4.4 Electromagnetic induction 1 Opening items 1.1 Module introduction 1.2 Fast track questions 1.3 Ready to study? 2 Introducing

### v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

### Aircraft Electrical System

Chapter 9 Aircraft Electrical System Introduction The satisfactory performance of any modern aircraft depends to a very great degree on the continuing reliability of electrical systems and subsystems.

### 5. Measurement of a magnetic field

H 5. Measurement of a magnetic field 5.1 Introduction Magnetic fields play an important role in physics and engineering. In this experiment, three different methods are examined for the measurement of

### Introduction. Upon completion of Basics of AC Motors you should be able to:

Table of Contents Introduction...2 AC Motors...4 Force and Motion...6 AC Motor Construction... 12 Magnetism... 17 Electromagnetism... 19 Developing a Rotating Magnetic Field...24 Rotor Rotation...29 Motor

### Magnetostatics (Free Space With Currents & Conductors)

Magnetostatics (Free Space With Currents & Conductors) Suggested Reading - Shen and Kong Ch. 13 Outline Review of Last Time: Gauss s Law Ampere s Law Applications of Ampere s Law Magnetostatic Boundary

### Inductors & Inductance. Electronic Components

Electronic Components Induction In 1824, Oersted discovered that current passing though a coil created a magnetic field capable of shifting a compass needle. Seven years later, Faraday and Henry discovered

### A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS

A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS Joseph J. Stupak Jr, Oersted Technology Tualatin, Oregon (reprinted from IMCSD 24th Annual Proceedings 1995) ABSTRACT The

### F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below.

PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 9 Magnetic Force on a Current Carrying Wire Equipment: Supplies: Unit. Electronic balance, Power supply, Ammeter, Lab stand Current Loop PC Boards, Magnet