BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011

Size: px
Start display at page:

Download "BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011"

Transcription

1 AM BASIC ELECTRONICS AC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for Pubic Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT HUACHUCA ARIZONA

2 AM Basic Electronics DC Circuits Analysis This Page Intentionally Left Blank ii Ver. 1.0

3 AM Basic Electronics - DC Circuit Analysis CHANGE PAGE LIST OF EFFECTIVE PAGES INSERT LATEST CHANGED PAGES. DISTROY SUPERSEDED PAGES NOTE The portion of this text effected by the changes is indicated by a vertical line in the outer margins of the page. Changes to illustrations are indicated by shaded or screened areas or by miniature pointing hands. Changes of issue for original and changed pages are: ORIGIONAL..0. Page Change NO. No. Title Page NO. Change No. Page No. Change No. *Zero in this column indicates an original page A Change 0 US Army 2. RETAIN THIS NOTICE AND INSERT BEFORE TABLE OF CONTENTS. 3. Holders of AM will verify that page changes and additions indicated above have been entered. This notice page will be retained as a check sheet. This issuance, together with appended pages, is a separate publication. Each notice is to be retained by the stocking points until the standard is completely revised of canceled. Ver. 1.0 iii

4 AM Basic Electronics DC Circuits Analysis This Page Intentionally Left Blank iv Ver. 1.0

5 AM Basic Electronics - DC Circuit Analysis CONTENTS 1 AC CIRCUIT ANALYSIS REFERENCE Introduction Alternating Current Frequency and Cycle Resistance in AC Circuits Inductance in an AC Circuit INDUCTIVE REACTANCE POWER Power Factor More Cosine o INDUCTIVE REACTANCE IN SERIES AND PARALLEL CAPACITIVE REACTANCE PARALLEL RESONANCE Impedance of a Parallel Resonant Circuit Resonant Frequency and Bandwidth Ver. 1.0 v

6 AM Basic Electronics DC Circuits Analysis IMPROVEMENTS (Suggested corrections, or changes to this document, should be submitted through your State Director to the Regional Director. Any Changes will be made by the National documentation team. DISTRIBUTION Distribution is unlimited. VERSIONS The Versions are designated in the footer of each page if no version number is designated the version is considered to be 1.0 or the original issue. Documents may have pages with different versions designated; if so verify the versions on the Change Page at the beginning of each document. REFERENCES The following references apply to this manual: Allied Communications Publications (ACP): ACP Glossary of Communications Electronics Terms US Army FM/TM Manuals 1. TM Electrical Design, Lightning and Static Electricity Protection 2. TM Facilities Engineering Electrical Facilities Safety 3. TM Grounding and Bonding in Command, Control, Communications, Computer, Intelligence, Surveillance, and Reconnaissance (C4ISR) Facilities 4. TM Electrical Fundamentals, Direct Current 5. TM-664 Basic Theory and Use of Electronic Test Equipment US Army Handbooks 1. MIL-HDBK Grounding, Bonding and Shielding Design Practices Commercial References 1. Basic Electronics, Components, Devices and Circuits; ISBN X, By William P Hand and Gerald Williams Glencoe/McGraw Hill Publishing Co. 2. Standard Handbook for Electrical Engineers - McGraw Hill Publishing Co. CONTRIBUTORS This document has been produced by the Army MARS Technical Writing Team under the authority of Army MARS HQ, Ft Huachuca, AZ. The following individuals are subject matter experts who made significant contributions to this document. William P Hand vi Ver. 1.0

7

8 ii Ver. 1.0

9 1 AC CIRCUIT ANALYSIS 1.1 REFERENCE Basic Electronics, Components, Devices and Circuits; ISBN X By William P Hand and Gerald Williams Introduction Alternating current (ac) is probably the most common, and most important, available form of electricity. Alternating current is a current that begins at zero, rises to some set value, and then falls to zero again. It then reverses its direction of current flow and rises to the same set value in the reverse direction, and then falls to zero again. This reversal of current flow direction is in contrast to direct current (dc), which always maintains the same direction of flow. Standard alternating current can be plotted on a graph as shown in Figure 1-1. The graph shows how the waveform is produced by an alternating current generator as the armature (rotating part) rotates through 360 circular degrees for each cycle Alternating Current Figure 1-1 A Sine Wave Voltage As the generator armature moves through one 360 degree rotation (full circle), the generator voltage goes through one complete cycle, as shown in Figure 1-1. The curve displayed in the figure can also be described by the mathematical equation e = E m sin ωt (ω = 2Nf) where e equals the voltage, Em the maximum value of generated voltage, and wt the angular velocity multiplied by the time. When a generator produces an ac voltage, the current arising from it varies in step with the voltage. Like the voltage, the current can be represented graphically by a sine wave and by the following equation: i = Im sin ωt 1-1 Ver. 1.0

10 where i equals the current, Im the maximum value of generated current, and ωt the angular velocity multiplied by the time Frequency and Cycle While the coil in a generator rotates 360 (one complete revolution), the output voltage goes through one complete cycle. During one cycle, the voltage increases from zero to positive Em in one direction, decreases to zero, increases in the opposite direction to negative Em, and then decreases again to zero, The first 180 (one-half of the voltage cycle) is called the positive alternation and the last 180, from 180 to 360, is called the negative alternation. The value of the Em voltage at 90 is called the amplitude or peak voltage. The time required for a positive and a negative alternation is called the period. The number of complete cycles per second is the frequency of the sine wave. When the angular velocity, ω, at which the coil rotates, is expressed in radians per second, the mathematical relation between ω and f is given by the equation ω = 2Nf Resistance in AC Circuits Resistance is the property by which a conductor opposes the flow of current. The resistance of a conductor opposes alternating current in the same way that it opposes direct current Inductance in an AC Circuit The discussion of induction you learned that a coil opposes a change in the current through it by building up a counter voltage. This counter voltage is an induced voltage that is equal to where ei is the counter voltage, L the inductance in henrys, Li the change in current, and Lt the change in time. The term Li / Lt is the rate of change in current with respect to time (how fast the current changes). Reference Figure 1-2. Figure 1-2 Phase Shift In alternating current, the instantaneous value of i is e i = Ll m cos ωt This is the equation for the instantaneous value of the alternating voltage. It is also the equation of a cosine curve, a curve that has the same shape as a sine wave curve but differs in phase from it by 900 (I j 4 cycle). This phase difference exists because the counter voltage reaches its maximum not at the time of maximum current, but at the time the current is changing most rapidly; that is, at 1-2 Ver. 1.0

11 the time when i is zero. The counter voltage is in such a direction as to oppose the change in current. Hence, if i is increasing, the counter voltage will be in the opposite direction to the current. Figure illustrates this condition. When i is decreasing, the direction of the voltage is the same as that of the current. The counter voltage (ec) lags the current (i) by 90 degrees. e c Figure 1-3 Voltage and Current Relationships in an Inductor An Analogy in Figure 1-4 what is in the black box? By Ohm's law 10 volts will drive ½ amp of current through 20 ohms of resistance: Figure 1-4 Black Box Example Because there are 10 ohms of resistance visible in the drawing, we must assume that the black box contains a 10 ohm resistor. There is another alternative, however. A 5 volt battery connected in opposition to the battery Bl makes the total potential applied across the 10 ohm resistor only 5 volts (reference Figure 1-5) again by Ohm's law, 1-3 Ver. 1.0

12 Figure 1-5 The Secret of the Black Box 1-4 Ver. 1.0

13 2 INDUCTIVE REACTANCE The counter voltage produced in a coil with an alternating current passing through it opposes the applied voltage. As in the previous analogy, the opposing voltage reduces the current. This apparent opposition to current flow in an inductor is called inductive reactance. The unit of measurement is the ohm. The higher the inductance value of the coil, the greater will be the counter voltage, and larger counter voltages mean higher reactances. The counter voltage is also dependent upon how fast the field is changing. The rate of change for alternating current is determined by the frequency (frequency implies a cyclical change). Inductive reactance is found by using the formula, X L = 2NfL where X L = the inductive reactance in ohms, 2N = 6.28, L = the inductance in henrys, and f = the frequency in hertz. Example 6-1 Problem: Find the inductive reactance of a 10 Henry inductor at a frequency of 60 hertz (Hz): Solution: 2.1 POWER X L = 2NfL X L = 6.28 x 60 x10 = 3768 In a dc circuit, power is equal to E x I (voltage times current). In an ac circuit, the actual power is less than the voltage-current product, whenever there is any phase shift in the circuit. This is true because maximum voltage and maximum current do not occur at the same time. The maximum voltage-current product is never realized and thus the maximum power is not produced. The voltage-current product (E x I) is called apparent power. The true power depends upon the phase angle and is expressed by the formula: true power = apparent power X cosine of the phase angle, or true power = E x I cosine o The cosine is simply the ratio of resistance to Impedance. The cosine is a trigonometric relationship defined as: 2-1 Ver. 1.0

14 2.1.1 Power Factor The cosine of o (theta) is also known as the power factor. It is often multiplied by 100 so that it can be expressed as a percentage. In the case of the previous example the cosine of o was found to be 0.6. Multiplying by 100, the power factor is 60%. This is interpreted to mean that the true power is equal to 60% of the apparent power More Cosine o 1. Series Circuits Only: The cosine of o can also be expressed as: 2. Parallel Circuits Only: The cosine of o can also be expressed as: where E R is the voltage across the resistor, I R is the current through it, E Z is the voltage across the total impedance, and I Z is the circuit current. These quantities can also be plotted on a vector diagram. If cosine values are plotted against time, the result will be a curve identical in shape to the sine curve, but displaced in time by INDUCTIVE REACTANCE IN SERIES AND PARALLEL When inductances are connected in series and are not close enough to be in the magnetic field of each other, the inductances and their inductive reactances add like resistances connected in series. Thus, in a series circuit the sum of the inductive reactances can be expressed by the equation, and the sum. of the inductances by the equation, When inductances are connected in parallel, their inductances and the inductive reactances add by the sum of the reciprocals method, like resistances connected in parallel. In a parallel circuit, the sum of the inductive reactances is expressed by the equation, 2-2 Ver. 1.0

15 and the sum of the inductances, by the equation, 2-3 Ver. 1.0

16

17 3 CAPACITIVE REACTANCE A capacitor also exhibits an opposition to current in an ac circuit. The mechanism is similar to that of inductive reactance in the sense that the opposition is due to an opposing voltage instead of heat-producing resistance. Capacitive reactance (X c ) also produces a 90 phase shift, but in the opposite direction from the phase shift in an inductor. In a capacitor, the current leads the voltage by 90 where current lags by 90 in an inductor. Figure 3-1shows a vector diagram of resistance, capacitive reactance, and inductive reactance. The reactance of a capacitor is also dependent upon the frequency of the ac sine wave current. However, capacitive reactance decreases as the frequency increases as opposed to inductive reactance which increases as the frequency increases. Figure 3-1 Resistance, Capacitive Reactance, and Inductive Reactance The formula for capacitive reactance is Where X c = capacitive reactance 2N= 6.28 f = the frequency in hertz (cycles per second) C = capacitance in farads Example 6-7 Problem: Find the capacitive reactance of a 1 µfd capacitor at 60 Hz. Solution: 3-1 Ver. 1.0

18 Therefore X c = 2650 Ohms If there is only capacitance in the circuit, the special forms of ac Ohms law apply. where I = current, E = voltage, and X c = capacitive reactance. 3.1 PARALLEL RESONANCE The parallel resonant circuit shown in Figure 3-2 is often called a tank circuit. The unique resonant condition provides energy storage in the capacitor that is exactly equal to the energy storage in the magnetic field of the inductor. Assuming the capacitor to be fully charged to start, the capacitor will discharge through the inductor storing the capacitor's stored energy in the inductor's magnetic field. When the capacitor is discharged, the inductor's field begins to collapse, driving its stored energy back into the capacitor. Thus, current will continue to circulate from inductor to capacitor and back again. Figure 3-2 Resonant tank circuit If there were no losses in the circuit, the current would circulate forever. In real circuits there is always some resistance and this resistance gradually dissipates the energy in the form of heat. The 3-2 Ver. 1.0

19 smaller the resistance (in dotted lines) the faster the circulating energy is dissipated. "Q" is measured by the relationship Q= X L / R. It can also be written as Q = X c /R because, at resonance, X L = X c. A high value of the quality Q means the energy of a tank circuit will circulate longer than it will with a lower value Q Impedance of a Parallel Resonant Circuit Because X L cancels X c at resonance, the impedance is simply the resistance if the resistance is in parallel as shown in Figure 1-8. If the resistance is in series, the impedance approaches infinity. The reason for this is the circulating current. The only current demanded by the parallel tank is that which is lost in heat by the series resistance. With a small series resistance and a large value for XL (and X c ), the current required to maintain the circulating current is very small. A small current means high impedance. A parallel tank has high impedance at resonance Resonant Frequency and Bandwidth Every parallel inductor-capacitor circuit will be resonant at some frequency. When you examine Figure 3-3, you will see that as the frequency increases, X L increases and X c decreases. The X C curve in the figure is going downward while the X L curve is going upward. The two curves must inevitably cross somewhere. The point at which they cross (point 0) is the resonant frequency, because at this point X L = X c. The resonant frequency is designated f o. The resonant frequency can be determined for any inductor / capacitor combination by using the following formula: Where fa is the frequency of resonance 2N is the constant; 2 X L is the inductance in henrys C is the capacitance in farads Curve A in Figure 3-3 is called the resonant frequency curve, or bandwidth curve. Resonance does not occur at a single frequency because all real inductors have' some resistance. The more resistance there is in the circuit, the flatter and wider the curve will be. A narrow, tall curve results when the Q is high (Q = X L I R) and will be squat and: X and Z FREQUENCY Figure 3-3 X L, X c, and the Resonant Frequency. 3-3 Ver. 1.0

20 broad when the Q is low. The bandwidth defined as those frequencies within the cu.1 where the curve is above 70.7% of the ic'_ curve height. Figure 3-4 shows a high Q and a low I resonant frequency curve. Note the band of frequencies covered by the low Q curve is wider than that covered by the high Q tank circuit. In many applications, resistance is deliberately added to the circuit to make it respond to a wider band of frequencies. In other applications the resistance is kept small to respond to only a narrow band of frequencies. The bandwidth of a circuit can be found by the equation, Bandwidth Where bandwidth is measured at the 70.7% point on the resonance curve 3-4 Ver. 1.0

21 fa = the resonant frequency Q = the figure of merit of the tank Q = X L /R, where X L is the inductive reactance at the resonant frequency, and R is the series resistance in the tank. Figure 3-4 Q and bandwidth. 3-5 Ver. 1.0

22 NOTES: 3-6 Ver. 1.0

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC

More information

AC Generators. Basic Generator

AC Generators. Basic Generator AC Generators Basic Generator A basic generator consists of a magnetic field, an armature, slip rings, brushes and a resistive load. The magnetic field is usually an electromagnet. An armature is any number

More information

ANALYTICAL METHODS FOR ENGINEERS

ANALYTICAL METHODS FOR ENGINEERS UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

More information

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49 Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large

More information

Critical thin-film processes such as deposition and etching take place in a vacuum

Critical thin-film processes such as deposition and etching take place in a vacuum WHITEPAPER INTRODUCING POWER SUPPLIES AND PLASMA Critical thin-film processes such as deposition and etching take place in a vacuum SYSTEMS chamber in the presence of a plasma. A plasma is an electrically

More information

Measuring Impedance and Frequency Response of Guitar Pickups

Measuring Impedance and Frequency Response of Guitar Pickups Measuring Impedance and Frequency Response of Guitar Pickups Peter D. Hiscocks Syscomp Electronic Design Limited [email protected] www.syscompdesign.com April 30, 2011 Introduction The CircuitGear

More information

DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4

DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4 DOE-HDBK-1011/3-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 3 of 4 U.S. Department of Energy Washington, D.C. 20585 FSC-6910 Distribution Statement A. Approved for public release;

More information

Aircraft Electrical System

Aircraft Electrical System Chapter 9 Aircraft Electrical System Introduction The satisfactory performance of any modern aircraft depends to a very great degree on the continuing reliability of electrical systems and subsystems.

More information

Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.

Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Lesson 3 DIRECT AND ALTERNATING CURRENTS Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Objectives. When you have completed this lesson, you should be able

More information

ε: Voltage output of Signal Generator (also called the Source voltage or Applied

ε: Voltage output of Signal Generator (also called the Source voltage or Applied Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

More information

Effect of Frequency on Inductive Reactance

Effect of Frequency on Inductive Reactance TUNED CIRCUITS Effect of Frequency on Inductive Reactance Resonance The ideal series-resonant circuit How the Parallel-LC Circuit Stores Energy Parallel resonance Resonant circuits as filter circuits Pulsed

More information

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across? PHYS Practice Problems hapters 8- hapter 8. 45. The peak value of an alternating current in a 5-W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,

More information

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage

More information

Inductors in AC Circuits

Inductors in AC Circuits Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

More information

Diodes have an arrow showing the direction of the flow.

Diodes have an arrow showing the direction of the flow. The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,

More information

RLC Series Resonance

RLC Series Resonance RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function

More information

Chapter 12 Driven RLC Circuits

Chapter 12 Driven RLC Circuits hapter Driven ircuits. A Sources... -. A ircuits with a Source and One ircuit Element... -3.. Purely esistive oad... -3.. Purely Inductive oad... -6..3 Purely apacitive oad... -8.3 The Series ircuit...

More information

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated? Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux

More information

Alternating-Current Circuits

Alternating-Current Circuits hapter 1 Alternating-urrent ircuits 1.1 A Sources... 1-1. Simple A circuits... 1-3 1..1 Purely esistive load... 1-3 1.. Purely Inductive oad... 1-5 1..3 Purely apacitive oad... 1-7 1.3 The Series ircuit...

More information

Frequency response: Resonance, Bandwidth, Q factor

Frequency response: Resonance, Bandwidth, Q factor Frequency response: esonance, Bandwidth, Q factor esonance. Let s continue the exploration of the frequency response of circuits by investigating the series circuit shown on Figure. C + V - Figure The

More information

Three phase circuits

Three phase circuits Three phase circuits THREE PHASE CIRCUITS THREE-PHASE ADVANTAGES 1. The horsepower rating of three-phase motors and the kva rating of three-phase transformers are 150% greater than single-phase motors

More information

RLC Resonant Circuits

RLC Resonant Circuits C esonant Circuits Andrew McHutchon April 20, 203 Capacitors and Inductors There is a lot of inconsistency when it comes to dealing with reactances of complex components. The format followed in this document

More information

CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis

CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis CIRCUITS LABORATORY EXPERIMENT 3 AC Circuit Analysis 3.1 Introduction The steady-state behavior of circuits energized by sinusoidal sources is an important area of study for several reasons. First, the

More information

Chapter 35 Alternating Current Circuits

Chapter 35 Alternating Current Circuits hapter 35 Alternating urrent ircuits ac-ircuits Phasor Diagrams Resistors, apacitors and nductors in ac-ircuits R ac-ircuits ac-ircuit power. Resonance Transformers ac ircuits Alternating currents and

More information

GenTech Practice Questions

GenTech Practice Questions GenTech Practice Questions Basic Electronics Test: This test will assess your knowledge of and ability to apply the principles of Basic Electronics. This test is comprised of 90 questions in the following

More information

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009 Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing - Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines

More information

The W5JCK Guide to the Mathematic Equations Required for the Amateur Extra Class Exam

The W5JCK Guide to the Mathematic Equations Required for the Amateur Extra Class Exam The W5JCK Guide to the Mathematic Equations Required for the Amateur Extra Class Exam This document contains every question from the Extra Class (Element 4) Question Pool* that requires one or more mathematical

More information

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and

More information

Impedance Matching. Using transformers Using matching networks

Impedance Matching. Using transformers Using matching networks Impedance Matching The plasma industry uses process power over a wide range of frequencies: from DC to several gigahertz. A variety of methods are used to couple the process power into the plasma load,

More information

EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits

EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits 1. Introduction and Goal: Exploring transient behavior due to inductors and capacitors in DC circuits; gaining experience with lab instruments.

More information

Measurement of Capacitance

Measurement of Capacitance Measurement of Capacitance Pre-Lab Questions Page Name: Class: Roster Number: Instructor:. A capacitor is used to store. 2. What is the SI unit for capacitance? 3. A capacitor basically consists of two

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the

More information

Reading assignment: All students should read the Appendix about using oscilloscopes.

Reading assignment: All students should read the Appendix about using oscilloscopes. 10. A ircuits* Objective: To learn how to analyze current and voltage relationships in alternating current (a.c.) circuits. You will use the method of phasors, or the vector addition of rotating vectors

More information

Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture - 33 3 phase System 4

Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture - 33 3 phase System 4 Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore Lecture - 33 3 phase System 4 Hello everybody. So, in the last class we have been

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

More information

Trigonometry for AC circuits

Trigonometry for AC circuits Trigonometry for AC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Lecture - 4 Diode Rectifier Circuits

Lecture - 4 Diode Rectifier Circuits Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

More information

Line Reactors and AC Drives

Line Reactors and AC Drives Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences

More information

Electrical Resonance

Electrical Resonance Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

More information

Apprentice Telecommunications Technician Test (CTT) Study Guide

Apprentice Telecommunications Technician Test (CTT) Study Guide Apprentice Telecommunications Technician Test (CTT) Study Guide 1 05/2014 Study Guide for Pacific Gas & Electric Company Apprentice Telecommunications Technician Qualifying Test (CTT) About the Test The

More information

Induced voltages and Inductance Faraday s Law

Induced voltages and Inductance Faraday s Law Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic

More information

Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Z +

Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Z + Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Quick Review of Reflection Coefficient The Smith chart is a method of graphing reflection coefficients and impedance, and is often useful

More information

Chapter 11. Inductors ISU EE. C.Y. Lee

Chapter 11. Inductors ISU EE. C.Y. Lee Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive

More information

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA What are phasors??? In normal practice, the phasor represents the rms maximum value of the positive half cycle of the sinusoid

More information

= V peak 2 = 0.707V peak

= V peak 2 = 0.707V peak BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard

More information

Phasors. Phasors. by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department. ^ V cos (wt + θ) ^ V sin (wt + θ)

Phasors. Phasors. by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department. ^ V cos (wt + θ) ^ V sin (wt + θ) V cos (wt θ) V sin (wt θ) by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 1 Vector

More information

EE301 Lesson 14 Reading: 10.1-10.4, 10.11-10.12, 11.1-11.4 and 11.11-11.13

EE301 Lesson 14 Reading: 10.1-10.4, 10.11-10.12, 11.1-11.4 and 11.11-11.13 CAPACITORS AND INDUCTORS Learning Objectives EE301 Lesson 14 a. Define capacitance and state its symbol and unit of measurement. b. Predict the capacitance of a parallel plate capacitor. c. Analyze how

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

VOLTAGE REGULATOR AND PARALLEL OPERATION

VOLTAGE REGULATOR AND PARALLEL OPERATION VOLTAGE REGULATOR AND PARALLEL OPERATION Generator sets are operated in parallel to improve fuel economy and reliability of the power supply. Economy is improved with multiple paralleled generators by

More information

Direction of Induced Current

Direction of Induced Current Direction of Induced Current Bar magnet moves through coil Current induced in coil A S N v Reverse pole Induced current changes sign B N S v v Coil moves past fixed bar magnet Current induced in coil as

More information

Alternating Current Circuits and Electromagnetic Waves

Alternating Current Circuits and Electromagnetic Waves Arecibo, a large radio telescope in Puerto Rico, gathers electromagnetic radiation in the form of radio waves. These long wavelengths pass through obscuring dust clouds, allowing astronomers to create

More information

Power Factor Correction for Power Systems First Semester Report Spring Semester 2007

Power Factor Correction for Power Systems First Semester Report Spring Semester 2007 Power Factor Correction for Power Systems First Semester Report Spring Semester 2007 by Pamela Ackerman Prepared to partially fulfill the requirements for EE401 Department of Electrical and Computer Engineering

More information

104 Practice Exam 2-3/21/02

104 Practice Exam 2-3/21/02 104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero

More information

Application Guide. Power Factor Correction (PFC) Basics

Application Guide. Power Factor Correction (PFC) Basics Power Factor Correction (PFC) Basics Introduction Power Factor, in simple terms, is a number between zero and one that represents the ratio of the real power to apparent power. Real power (P), measured

More information

Transmission Lines. Smith Chart

Transmission Lines. Smith Chart Smith Chart The Smith chart is one of the most useful graphical tools for high frequency circuit applications. The chart provides a clever way to visualize complex functions and it continues to endure

More information

ES250: Electrical Science. HW7: Energy Storage Elements

ES250: Electrical Science. HW7: Energy Storage Elements ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

More information

USE OF A SINGLE ELEMENT WATTMETER OR WATT TRANSDUCER ON A BALANCED THREE-PHASE THREE-WIRE LOAD WILL NOT WORK. HERE'S WHY.

USE OF A SINGLE ELEMENT WATTMETER OR WATT TRANSDUCER ON A BALANCED THREE-PHASE THREE-WIRE LOAD WILL NOT WORK. HERE'S WHY. USE OF A SINGLE ELEMENT WATTMETER OR WATT TRANSDUCER ON A BALANCED THREE-PHASE THREE-WIRE LOAD WILL NOT WORK. HERE'S WHY. INTRODUCTION Frequently customers wish to save money by monitoring a three-phase,

More information

ElectroMagnetic Induction. AP Physics B

ElectroMagnetic Induction. AP Physics B ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday

More information

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions

More information

Experiment 8: Undriven & Driven RLC Circuits

Experiment 8: Undriven & Driven RLC Circuits Experiment 8: Undriven & Driven RLC Circuits Answer these questions on a separate sheet of paper and turn them in before the lab 1. RLC Circuits Consider the circuit at left, consisting of an AC function

More information

SERIES-PARALLEL DC CIRCUITS

SERIES-PARALLEL DC CIRCUITS Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills

More information

Study Guide for the Electronics Technician Pre-Employment Examination

Study Guide for the Electronics Technician Pre-Employment Examination Bay Area Rapid Transit District Study Guide for the Electronics Technician Pre-Employment Examination INTRODUCTION The Bay Area Rapid Transit (BART) District makes extensive use of electronics technology

More information

RC Circuits and The Oscilloscope Physics Lab X

RC Circuits and The Oscilloscope Physics Lab X Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for

More information

First Year (Electrical & Electronics Engineering)

First Year (Electrical & Electronics Engineering) Z PRACTICAL WORK BOOK For The Course EE-113 Basic Electrical Engineering For First Year (Electrical & Electronics Engineering) Name of Student: Class: Batch : Discipline: Class Roll No.: Examination Seat

More information

Chapter 25 Alternating Currents

Chapter 25 Alternating Currents Physics Including Human Applications 554 Chapter 25 Alternating Currents GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each

More information

Properties of electrical signals

Properties of electrical signals DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Half-wave rectifier

More information

The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies

The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies DATE: November 17, 1999 REVISION: AUTHOR: John Merrell Introduction In some short circuit studies, the X/R ratio is ignored when comparing

More information

The Time Constant of an RC Circuit

The Time Constant of an RC Circuit The Time Constant of an RC Circuit 1 Objectives 1. To determine the time constant of an RC Circuit, and 2. To determine the capacitance of an unknown capacitor. 2 Introduction What the heck is a capacitor?

More information

DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

More information

8 Speed control of Induction Machines

8 Speed control of Induction Machines 8 Speed control of Induction Machines We have seen the speed torque characteristic of the machine. In the stable region of operation in the motoring mode, the curve is rather steep and goes from zero torque

More information

An equivalent circuit of a loop antenna.

An equivalent circuit of a loop antenna. 3.2.1. Circuit Modeling: Loop Impedance A loop antenna can be represented by a lumped circuit when its dimension is small with respect to a wavelength. In this representation, the circuit parameters (generally

More information

APPLICATION NOTE AP050830

APPLICATION NOTE AP050830 APPLICATION NOTE AP050830 Selection and use of Ultrasonic Ceramic Transducers Pro-Wave Electronics Corp. E-mail: [email protected] URL: http://www.prowave.com.tw The purpose of this application note

More information

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of

More information

Electrical Fundamentals Module 3: Parallel Circuits

Electrical Fundamentals Module 3: Parallel Circuits Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310- Electrical Fundamentals 2 Module 3 Parallel Circuits Module

More information

Experiment NO.3 Series and parallel connection

Experiment NO.3 Series and parallel connection Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.

More information

Table of Contents. The Basics of Electricity 2. Using a Digital Multimeter 4. Testing Voltage 8. Testing Current 10. Testing Resistance 12

Table of Contents. The Basics of Electricity 2. Using a Digital Multimeter 4. Testing Voltage 8. Testing Current 10. Testing Resistance 12 Table of Contents The Basics of Electricity 2 Using a Digital Multimeter 4 IDEAL Digital Multimeters An Introduction The Basics of Digital Multimeters is designed to give you a fundamental knowledge of

More information

BASIC ELECTRONICS TRANSISTOR THEORY. December 2011

BASIC ELECTRONICS TRANSISTOR THEORY. December 2011 AM 5-204 BASIC ELECTRONICS TRANSISTOR THEORY December 2011 DISTRIBUTION RESTRICTION: Approved for Public Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT

More information

AC CIRCUITS - CAPACITORS AND INDUCTORS

AC CIRCUITS - CAPACITORS AND INDUCTORS EXPRIMENT#8 AC CIRCUITS - CAPACITORS AND INDUCTORS NOTE: Two weeks are allocated for this experiment. Before performing this experiment, review the Proper Oscilloscope Use section of Experiment #7. Objective

More information

FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

More information

Energy in Electrical Systems. Overview

Energy in Electrical Systems. Overview Energy in Electrical Systems Overview How can Potential Energy be stored in electrical systems? Battery Stored as chemical energy then transformed to electrical energy on usage Water behind a dam Water

More information

AC Power. by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department

AC Power. by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 1 Voltage Waveform Consider the

More information

SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY

SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY Page 1 of 25 PURPOSE: The purpose of this lab is to simulate the LCC circuit using MATLAB and ORCAD Capture CIS to better

More information

Electrical Installation Calculations: Advanced

Electrical Installation Calculations: Advanced Electrical Installation Calculations: Advanced This page intentionally left blank Electrical Installation Calculations: Advanced FOR TECHNICAL CERTIFICATE AND NVQ LEVEL 3 SEVENTH EDITION A. J. WATKINS

More information

Power measurement in balanced 3 phase circuits and power factor improvement. 1 Power in Single Phase Circuits. Experiment no 1

Power measurement in balanced 3 phase circuits and power factor improvement. 1 Power in Single Phase Circuits. Experiment no 1 Experiment no 1 Power measurement in balanced 3 phase circuits and power factor improvement 1 Power in Single Phase Circuits Let v = m cos(ωt) = cos(ωt) is the voltage applied to a R-L circuit and i =

More information

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012 1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper

More information

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law. 260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2014

Candidate Number. General Certificate of Education Advanced Level Examination June 2014 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

More information

Chapter 10. RC Circuits ISU EE. C.Y. Lee

Chapter 10. RC Circuits ISU EE. C.Y. Lee Chapter 10 RC Circuits Objectives Describe the relationship between current and voltage in an RC circuit Determine impedance and phase angle in a series RC circuit Analyze a series RC circuit Determine

More information

Inductors. AC Theory. Module 3

Inductors. AC Theory. Module 3 Module 3 AC Theory What you ll learn in Module 3. Section 3.1 Electromagnetic Induction. Magnetic Fields around Conductors. The Solenoid. Section 3.2 Inductance & Back e.m.f. The Unit of Inductance. Factors

More information

Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller [email protected]

Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller Tristan@CatherineNorth.com Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller [email protected] Parallel Circuits. Parallel Circuits are a little bit more complicated

More information

TAN δ (DELTA) CABLE TESTING OVERVIEW AND ANSWERS TO FREQUENTLY ASKED QUESTIONS. What Is Tan δ, Or Tan Delta?

TAN δ (DELTA) CABLE TESTING OVERVIEW AND ANSWERS TO FREQUENTLY ASKED QUESTIONS. What Is Tan δ, Or Tan Delta? TAN δ (DELTA) CABLE TESTING OVERVIEW AND ANSWERS TO FREQUENTLY ASKED QUESTIONS What Is Tan δ, Or Tan Delta? Tan Delta, also called Loss Angle or Dissipation Factor testing, is a diagnostic method of testing

More information

Application Note. So You Need to Measure Some Inductors?

Application Note. So You Need to Measure Some Inductors? So You Need to Measure Some nductors? Take a look at the 1910 nductance Analyzer. Although specifically designed for production testing of inductors and coils, in addition to measuring inductance (L),

More information

Unified Lecture # 4 Vectors

Unified Lecture # 4 Vectors Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

More information

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module

Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module Module 1 www.learnabout-electronics.org Power Supplies 1.0 Power Supply Basics What you ll learn in Module 1 Section 1.0 Power Supply Basics. Basic functions of a power supply. Safety aspects of working

More information

Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R

Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R Quality factor, Q Reactive components such as capacitors and inductors are often described with a figure of merit called Q. While it can be defined in many ways, it s most fundamental description is: Q

More information