PSPICE Demonstrations and Exercises (SET: 14)

Similar documents
I-V Characteristics of BJT Common-Emitter Output Characteristics

Bipolar Junction Transistor Basics

Bipolar Junction Transistors

LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

BJT Characteristics and Amplifiers

BIPOLAR JUNCTION TRANSISTORS

LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

Transistor Models. ampel

Transistors. NPN Bipolar Junction Transistor

Lecture-7 Bipolar Junction Transistors (BJT) Part-I Continued

Lab 1: Introduction to PSpice

Voltage Divider Bias

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

The 2N3393 Bipolar Junction Transistor

Transistor Biasing. The basic function of transistor is to do amplification. Principles of Electronics

05 Bipolar Junction Transistors (BJTs) basics

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

Transistor Amplifiers

CIRCUITS LABORATORY. In this experiment, the output I-V characteristic curves, the small-signal low

AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level

The basic cascode amplifier consists of an input common-emitter (CE) configuration driving an output common-base (CB), as shown above.

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören

1Meg. 11.A. Resistive Circuit Nodal Analysis

Lecture 17. Bipolar Junction Transistors (BJT): Part 1 Qualitative Understanding - How do they work? Reading: Pierret , 11.

Bipolar Transistor Amplifiers

3 The TTL NAND Gate. Fig. 3.1 Multiple Input Emitter Structure of TTL

EE 242 EXPERIMENT 5: COMPUTER SIMULATION OF THREE-PHASE CIRCUITS USING PSPICE SCHEMATICS 1

BJT Circuit Configurations

University of California, Berkeley Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

2N6387, 2N6388. Plastic Medium-Power Silicon Transistors DARLINGTON NPN SILICON POWER TRANSISTORS 8 AND 10 AMPERES 65 WATTS, VOLTS

Fundamentals of Microelectronics

BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008

BJT Ebers-Moll Model and SPICE MOSFET model

Amplifier Teaching Aid

Common-Emitter Amplifier

Bob York. Transistor Basics - BJTs

Lab 7: Operational Amplifiers Part I

Qucs. A Tutorial. Getting Started with Qucs. Stefan Jahn Juan Carlos Borrás

2N4921G, 2N4922G, 2N4923G. Medium-Power Plastic NPN Silicon Transistors 1.0 AMPERE GENERAL PURPOSE POWER TRANSISTORS VOLTS, 30 WATTS

Vdc. Vdc. Adc. W W/ C T J, T stg 65 to C

TOSHIBA Transistor Silicon PNP Epitaxial Type (PCT Process) 2SA1020

Lab #9: AC Steady State Analysis

Years after US Student to Teacher Ratio

Figure 1: Common-base amplifier.

Series and Parallel Circuits

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P

Features: Characteristic Symbol Rating Unit. Collector-Emitter Voltage V CEO 100 Collector-Base Voltage I C

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57]

Copyright 2011 Linear Technology. All rights reserved.

MJD112 (NPN), MJD117 (PNP) Complementary Darlington Power Transistors. DPAK For Surface Mount Applications

BC327, BC327-16, BC327-25, BC Amplifier Transistors. PNP Silicon. These are Pb Free Devices* Features MAXIMUM RATINGS

DISCRETE SEMICONDUCTORS DATA SHEET

2N2222A. Small Signal Switching Transistor. NPN Silicon. MIL PRF 19500/255 Qualified Available as JAN, JANTX, and JANTXV.

TIP31, TIP32 High Power Bipolar Transistor

OrCAD Capture with PSpice and Allegro DE CIS with AMS Simulator. Describes how to create a PSpice Archive File with Capture

Lecture 12: DC Analysis of BJT Circuits.

3. On the top menu bar, click on File > New > Project as shown in Fig. 2 below: Figure 2 Window for Orcad Capture CIS

Figure 1. Diode circuit model

BD238. Low voltage PNP power transistor. Features. Applications. Description. Low saturation voltage PNP transistor

Peak Atlas DCA. Semiconductor Component Analyser Model DCA55. User Guide

2N4401. General Purpose Transistors. NPN Silicon. Pb Free Packages are Available* Features MAXIMUM RATINGS THERMAL CHARACTERISTICS


TIP41, TIP41A, TIP41B, TIP41C (NPN); TIP42, TIP42A, TIP42B, TIP42C (PNP) Complementary Silicon Plastic Power Transistors

2N6056. NPN Darlington Silicon Power Transistor DARLINGTON 8 AMPERE SILICON POWER TRANSISTOR 80 VOLTS, 100 WATTS

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

PHOTOTRANSISTOR OPTOCOUPLERS

TIP140, TIP141, TIP142, (NPN); TIP145, TIP146, TIP147, (PNP) Darlington Complementary Silicon Power Transistors

Fundamentals of Signature Analysis

Lecture 060 Push-Pull Output Stages (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

Field-Effect (FET) transistors

DATA SHEET. PBSS5540Z 40 V low V CEsat PNP transistor DISCRETE SEMICONDUCTORS. Product data sheet Supersedes data of 2001 Jan Sep 21.

MPS2222, MPS2222A. NPN Silicon. Pb Free Packages are Available* Features MAXIMUM RATINGS MARKING DIAGRAMS THERMAL CHARACTERISTICS

Scatter Plots with Error Bars

Document Contents Introduction Layout Extraction with Parasitic Capacitances Timing Analysis DC Analysis

P2N2222ARL1G. Amplifier Transistors. NPN Silicon. These are Pb Free Devices* Features.

Table 1 Comparison of DC, Uni-Polar and Bi-polar Stepper Motors

CONSTRUCTING A VARIABLE POWER SUPPLY UNIT

DATA SHEET. BC875; BC879 NPN Darlington transistors DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1999 May 28.

45 V, 100 ma NPN/PNP general-purpose transistor

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Plots, Curve-Fitting, and Data Modeling in Microsoft Excel

Diodes and Transistors

POWER SUPPLY MODEL XP-15. Instruction Manual ELENCO

DISCRETE SEMICONDUCTORS DATA SHEET BC856; BC857; BC858

LAB IV. SILICON DIODE CHARACTERISTICS

BD241A BD241C. NPN power transistors. Features. Applications. Description. NPN transistors. Audio, general purpose switching and amplifier transistors

Differential transistor amplifiers

AB07 Common Collector PNP Transistor Characteristics. Analog lab Experiment board. Ver 1.0

2N3906. General Purpose Transistors. PNP Silicon. Pb Free Packages are Available* Features MAXIMUM RATINGS

2N3903, 2N3904. General Purpose Transistors. NPN Silicon. Pb Free Packages are Available* Features. MAXIMUM RATINGS

SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY

Low Noise, Matched Dual PNP Transistor MAT03

OrCAD Flow Tutorial. Product Version 10.0 Februaruy 2004

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

Bipolar transistor biasing circuits

2N3903, 2N3904. General Purpose Transistors. NPN Silicon. Features Pb Free Package May be Available. The G Suffix Denotes a Pb Free Lead Finish

Transcription:

ELEC ENG 2EI5 Electronic Devices and Circuits I Page: 1 of 7 ELEC ENG 2EI5 ELECTRONIC DEVICES and CIRCUITS I Term II, January April 2005 Instructor: Dr. M. Bakr Prepared by: Dr. M. Bakr and Anthony Bilinski Objective: To learn and use the PSpice model and its parameters for Bipolar Junction Transistors(BJT). To understand and explain the output and transfer characteristics of the BJT. Example 1) Sketch the common-emitter output characteristic for the npn Bipolar Junction transistor in the shown circuit for I B =10µA. Verify your result using a simulation in PSpice. Vary the collector-emitter voltage V CE between -5V and 10V with a step size of 10mV. Perform this sweep for base currents I B ={10µA, 30µA, 50µA}. Plot the resulting collector current waveforms. For the BJT the saturation current is I S =0.1fA Analysis: To determine the shape of the output characteristic calculate the collector current as a function of the collector-emitter voltage V CE. For V CE <0.2 (an assumed small voltage). The transistor is operating in the reverse-active region. I E =-β R I B =-50µA. I C =I E /α R =-60µA. For -0.2<V CE <0.2V the transistor is operating in the saturation region and appears as a closed switch with varying currents maintaining I B +I C -I E =0. For V CE >0.2 the transistor is operating in the forward active region. I C =β F I B and I E =I C /α F =260µA. The ±0.2V value is an assumed small voltage range around 0V. Collector Current ( µa) Common-emitter Output Characte risitic of the NPN transistor 300 250 200 150 100 50 0-5 -3-1 -50 1 3 5-100 Voltage V CE (Volts)

ELEC ENG 2EI5 Electronic Devices and Circuits I Page: 2 of 7 Building the Circuit: The circuit consists of 3 components: A current source, voltage source and an npn BJT. The name of the generic model for the npn BJT is QBreakN. Similarly the pnp transistor is referred to as QBreakP. These devices can be found in the BREAKOUT library. Construct the circuit as shown. Q1 Qbreakn 0Vdc VCE IB 0Adc Rename the ground node to be 0. Now edit the PSpice model parameters for the npn transistor: Select the npn transistor by clicking on it and then from the edit menu click PSpice Model to load the model editor. The QBreak model for the BJT has many parameters. Some of them are summarized in the shown table. Symbol I S β F V AF r B β R Spice Name Is Bf VAf Rb Br Model Parameter Saturation Current Forward current gain Forward Early Voltage Base ohmic resistance Reverse current gain Default Value 0.1fA 100 0Ω 1 In the PSpice Model Editor change the forward and reverse Beta parameters to 25 and 5 respectively as given in the problem statement. Save the changes and return to the schematic editor.

ELEC ENG 2EI5 Electronic Devices and Circuits I Page: 3 of 7 View the netlist to see how PSpice represents the BJT in this format. Netlist: * source PSET14EXAMPLE1 Q_Q1 N00065 N00118 0 Qbreakn V_VCE N00065 0 0Vdc I_IB 0 N00118 DC 0Adc The BJT statement begins with Q followed by a unique name. The nodes to which the element is connected are then listed in the order of those connected to the collector, base, and emitter. Take note that the collector current I C is the negative(-) of the current through the source V CE. Simulating the Circuit: To construct the common-emitter output characteristics for the npn transistor a DC Sweep simulation must be performed on V CE for each of the requested values of I B. Create a new simulation profile and for the analysis type select DC Sweep. Set up the primary sweep of VCE as shown. The model for the operation of the BJT transistor used in Jaeger is actually a simplified version of a more complex model called the Gummel-Poon Model. It is this complex model that forms the heart of the model used by PSpice for simulation. Calculations using the simplified model should not exhibit very much deviation from the more complex and accurate model used by Spice however the results may differ slightly. Select a Parametric Sweep as shown and set it up to sweep the current source I B for the values specified in the problem statement. Ensure the box beside the Parametric Sweep option contains a checkmark and click OK to complete the set-up and return to the schematic. Run the simulation.

ELEC ENG 2EI5 Electronic Devices and Circuits I Page: 4 of 7 The probe window appears. Click the Add traces Button and add a trace for the collector current I C which is given by the negative of the output variable I(VCE). The resulting graph is shown. 2.0mA 1.0mA To determine which curves corresponds to which value of the current I B click on a curve with the right mouse button and select information. A dialog will appear containing information about the state of the circuit when the simulation was performed. Thus the green curves corresponds to I B =10µA. 0A -1.0mA -5V 0V 5V 10V -I(VCE) V_VCE Labels can be added to each curve using the Text Label Button. Click the text label button and type I B =10uA. 2.0mA 1.0mA IB=50uA IB=30uA Click OK and stamp the label beside the green curve to which it corresponds. Repeat for the other two plots which correspond to 30µA and 50µA. IB=10uA 0A -1.0mA -5V 0V 5V 10V -I(VCE) V_VCE Notice that the collector current is higher when I B is higher. Note that in the reverse and forward active regions the collector current is virtually constant and does not depend on V CE but in the saturation region the current varies quite dramatically with small changes in V CE.

ELEC ENG 2EI5 Electronic Devices and Circuits I Page: 5 of 7 Using the cursor measure the collector current in the reverse and forward active regions to determine if our calculations were correct. Click the Toggle Cursor button to activate the cursor. Use cursor A1 and its controlling left mouse button to move the cursor to any point in the reverse active region on the curve corresponding to I B =10µA. the value is read from the second column as -60µA. This is exactly the value previously calculated. Now move the cursor to any point on the same plot in the forward active region. The value is again read from the second column as 250µA. The value calculated was 260µA and thus there is a minor and negligible difference between the two results. Example 2) Sketch the common-emitter transfer characteristic for the npn Bipolar Junction transistor for the case when V BC =0. The CE transfer characteristic shows the relationship between the collector current I C and the Base-emitter voltage V BE. Verify your result using a simulation in PSpice. Discuss the similarities between this characteristic and that of a pn junction diode. For the BJT the saturation current is I S =0.1fA Analysis: Since V BC =0 the equation for the collector current reduces V to BE I C = I S exp 1. This is exactly the formula for VT the diode current. Common-Emitter Transfer Characterisitic for the npn BJT 3.5 Collector Current (Amps) 3 2.5 2 1.5 1 0.5 0 0 0.2 0.4 0.6 0.8 1 Base-Em itter Voltage (Volts)

ELEC ENG 2EI5 Electronic Devices and Circuits I Page: 6 of 7 Building the Circuit: The circuit is basically the same as that used in Example 1 above. Again a 0Vdc voltage source is used to function as an ammeter to monitor the collector current I C. The Circuit is shown to the right. Netlist: V_Ammeter-IC 0Vdc Q1 *source PSET14EXAMPLE2 Q_Q1 N00087 N00007 0 Qbreakn V_VBE N00007 0 0Vdc V_V_Ammeter-IC N00007 N00087 0Vdc 0Vdc VBE Qbreakn Simulating the Circuit: Create a new simulation profile and set-up a DC Sweep for the voltage V BE as shown. Run the simulation and add a trace for the collector current which corresponds to the current through the 0Vdc ammeter voltage source. The resulting plot is shown below. 3.0A 2.0A 1.0A 0A 0V 0.2V 0.4V 0.6V 0.8V 1.0V I(V_Ammeter-IC) V_VBE

ELEC ENG 2EI5 Electronic Devices and Circuits I Page: 7 of 7 View the semi log plot of the transfer characteristic by clicking the Log Y Axis button. The plot appears as a straight line. To find the slop of this line we use the cursor. Applying cursor 1 at approximately 100pA and cursor 2 at approximately 10µA account for 5 decades. Thus the voltage difference between these two points divided by 5 gives the voltage difference per decade. Voltage 297.727mV = = 59.5mV/decade 60mV/decade decade 5 decades An increase of only 60mV in the base-emitter voltage will increase the collector current by a factor of 10. Similar Circuits and Exercises: Problem 1) Sketch the common-base output characteristic for the npn Bipolar Junction transistor in the shown circuit for I E =0.2mA. Verify your result using a simulation in PSpice. Vary the collector-base voltage V CB between -0.85V and 5V with a step size of 10mV. Perform this sweep for emitter currents I E ={0.2mA, 0.6mA, 1mA}. Plot the resulting collector current waveforms. Problem 2) Sketch the common-emitter output characteristic for the pnp Bipolar Junction transistor in the shown circuit for I B =10µA. Verify your result using a simulation in PSpice. Vary the emitter-collector voltage V CE between -5V and 10V with a step size of 10mV. Perform this sweep for base currents I B ={10µA, 30µA, 50µA}. Plot the resulting collector current waveforms.