AB07 Common Collector PNP Transistor Characteristics. Analog lab Experiment board. Ver 1.0

Size: px
Start display at page:

Download "AB07 Common Collector PNP Transistor Characteristics. Analog lab Experiment board. Ver 1.0"

Transcription

1 Common Collector PNP Transistor Characteristics Analog lab Experiment board Ver 1.0 QUALITY POLICY To be a Global Provider of Innovative and Affordable Electronic Equipments for Technology Training by enhancing Customer Satisfaction based on Research, Modern manufacturing techniques and continuous improvement in Quality of the products and Services with active participation of employees. An ISO 9001: 2000 company , Electronic Complex, Pardesipura INDORE , India.

2 Tel.: Fax: Web: 2

3 3

4 Common Collector PNP Transistor Characteristics TABLE OF CONTENTS 1.Introduction 4 2. Theory 6 3.Experiment 9 To study the characteristics of PNP transistor in common collector configuration and to evaluate Input resistance, Output resistance, and Current gain. 4.Datasheet 16 5.Warranty 18 6.List of Service Centers 19 7.List of Accessories with 20 4

5 INTRODUCTION is a compact, ready to use Transistor Characteristics experiment board. This is useful for students to plot different characteristics of PNP transistor in common collector configuration and to understand various region of operation of PNP transistor. It can be used as stand alone unit with external DC power supply or can be used with SCIENTECH Analog Lab ST2612 which has built in DC power supply, AC power supply, function generator, modulation generator, continuity tester, toggle switches, and potentiometer. List of Boards : Model AB01 AB02 AB03 AB04 AB05 AB06 AB08 AB09 AB10 AB11 AB14 AB15 AB16 AB17 AB18 AB19 AB20 AB21 AB22 AB23 AB25 AB28 AB29 AB30 AB31 AB32 Name Diode characteristics (Si, Zener, LED) Transistor characteristics (CB NPN) Transistor characteristics (CB PNP) Transistor characteristics (CE NPN) Transistor characteristics (CE PNP) Transistor characteristics (CC NPN) FET characteristics Rectifier Circuits Wheatstone Bridge Maxwell s Bridge Darlington Pair Common Emitter Amplifier Common Collector Amplifier Common Base Amplifier Cascode Amplifier RC-Coupled Amplifier Direct Coupled Amplifier Class a Amplifier Class B Amplifier (push pull emitter follower) Class C Tuned Amplifier Phase Locked Loop (FM Demodulator & Frequency Divider / Multiplier) Multivibrator ( Mono stable / Astable) F-V and V-F Converter V-I and I-V Converter Zener Voltage Regulator Transistor Series Voltage Regulator 5

6 AB33 AB41 AB42 AB43 AB44 AB45 AB51 AB52 AB53 AB54 AB56 AB65 AB66 AB67 AB68 AB80 AB81 AB82 AB83 AB84 AB85 AB88 AB89 AB90 AB91 AB92 AB93 AB96 AB97 AB101 AB102 AB106 Transistor Shunt Voltage Regulator Differential Amplifier (Transistorized) Operational Amplifier (Inverting / Non-inverting / Differentiator) Operational Amplifier (Adder/Scalar) Operational Amplifier (Integrator/ Differentiator) Schmitt Trigger and Comparator Active filters (Low Pass and High Pass) Active Band Pass Filter Notch Filter Tschebyscheff Filter Fiber Optic Analog Link Phase Shift Oscillator Wien Bridge Oscillators Colpitt Oscillator Hartley Oscillator RLC Series and RLC Parallel Resonance Kirchoff s Laws (Kirchhoff s Current Law & Kirchhoff s Voltage Law) Thevenin s and Maximum power Transfer Theorem Reciprocity and Superposition Theorem Tellegen s Theorem Norton s theorem Diode Clipper Diode Clampers Two port network parameter Optical Transducer (Photovoltaic cell) Optical Transducer (Photoconductive cell/ldr) Optical Transducer (PhotoTransistor) Temperature Transducer (RTD & IC335) Temperature Transducer (Thermocouple) DSB Modulator and Demodulator SSB Modulator and Demodulator FM Modulator and Demodulator and many more 6

7 THEORY Transistor characteristics are the curves, which represent relationship between different dc currents and voltages of a transistor. These are helpful in studying the operation of a transistor when connected in a circuit. The three important characteristics of a transistor are: 1. Input characteristic. 2. Output characteristic. 3. Constant current transfer characteristic. Input Characteristic : In common collector configuration, it is the curve plotted between the input current (IB) verses input voltage (VBC) for various constant values of output voltage (VEC). This characteristic reveals that for fixed value of output voltage VEC, It is quite different from CB and CE configuration. This different is due to the fact that input voltage VBC is largely determined by the value of VEC. As the base to collector voltage increases, VBE is reduced thereby reducing IB. The approximated plot for input characteristic is shown in fig. 1. Fig. 1 7

8 Output Characteristic : This is the curve plotted between the output current IE verses output voltage VCE for various constant values of input current IB. The output characteristic has three basic region of interest as indicated in fig.2 the active region, cutoff region and saturation region. In active region the collector base junction is reverse biased while the base emitter junction is forward biased. This region is normally employed for linear (undistorted) amplifier. In cutoff region the collector base junction and base emitter junction of the transistor both are reverse biased. In this region transistor acts as an OFF switch. In saturation region the collector base junction and base emitter junction of the transistor both are forward biased. In this region transistor acts as an ON switch. Fig. 2 8

9 Constant current transfer Characteristic : This is the curve plotted between output emitter current IE verses input base current IB for constant value of output voltage VCE. The approximated plot for this characteristic is shown in Fig 3. Fig. 3 9

10 EXPERIMENT Objective : To study the characteristics of PNP transistor in common collector configuration and to evaluate 1. Input resistance 2. Output resistance 3. Current gain Apparatus required : 1. Analog board of. 2. DC power supplies +12V, -5V from external source or ST2612 Analog Lab. 3. Digital Multimeter (3 numbers) mm patch cords. Circuit diagram : Circuit used to plot different characteristics of transistor is shown in Fig 4. 10

11 Fig. 4 11

12 Procedure : Connect -5V and +12V dc power supplies at their indicated position from external source or ST2612 Analog Lab. To plot input characteristics proceed as follows : 1. Rotate both the potentiometer P1 and P2 fully in CCW (counter clockwise direction). 2. Connect Ammeter between test point 2 and 3 to measure input base current IB(uA). 3. Short or connect a 2mm patch cord between test point 4 and 5 4. Connect one voltmeter between test point 1 and ground to measure input voltage VCB and other voltmeter between test point 6 and ground to measure output voltage VCE. 5. Switch ON the power supply. 6. Vary potentiometer P2 and set a value of output voltage VCE at some constant value (4.5V, 5V, ) 7. Vary the potentiometer P1 so as to increase the value of input voltage VCB in step and measure the corresponding values of input current I B for different constant value of output voltage VCE in an observation Table Rotate potentiometer P1 fully in CCW direction. 9. Repeat the procedure from step 6 for different sets of output voltage VEC. 10. Plot a curve between input voltages VBC and input current IB as shown in Fig 1 using suitable scale with the help of observation Table l. This curve is the required input characteristic. 12

13 Observation Table 1 : S.no. Input voltage VBC V V V V V V V V V V Input current IB(uA) at constant value of output voltage VEC = 4.5V VEC = 5V VEC =5.5V To plot output characteristics proceed as follows : 1. Switch OFF the power supply. 2. Rotate both the potentiometer P1 and P2 fully in CCW (counter clockwise direction). 3. Connect voltmeter between test point 6 and ground to measure output voltage VEC. 4. Connect one Ammeter between test point 2 and 3 to measure input current IB(uA) and other Ammeter between test point 4 and 5 to measure output current IE(mA). 5. Switch ON the power supply. 6. Vary potentiometer P1 and set a value of input current IB at some constant value (0uA i.e. input open circuit/remove ammeter between test point 2 and 3, 1uA, 2uA...) 13

14 7. Vary the potentiometer P2 so as to increase the value of output voltage VEC from zero to maximum value in step and measure the corresponding values of output current IE for different constant value of input current IB in an observation table Rotate potentiometer P2 fully in CCW direction. 9. Repeat the procedure from step 6 for different sets of input current IB. 10. Plot a curve between output voltage VEC and output current IE as shown in Fig 2 using suitable scale with the help of observation table 2. This curve is the required output characteristic. Observation Table 2 : Output current IE (ma) at constant value of Output input voltage S.no. voltage IB = 0uA VCE IB =10uA IB =20uA IB =30uA IB =40uA (open) V V V V V V V V V To plot constant current transfer characteristics proceed as follows: 1. Switch OFF the power supply. 2. Rotate both the potentiometer P1 and P2 fully in CCW (counter clockwise direction). 14

15 3. Connect voltmeter between test point 6 and ground to measure output voltage VCE. 4. Connect one Ammeter between test point 2 and 3 to measure input current IB (ma) and other Ammeter between test point 4 and 5 to measure output current IE (ma). 5. Switch ON the power supply. 6. Vary potentiometer P2 and set a value of output voltage VCE at constant value. 7. Vary the potentiometer P1 so as to increase the value of input current IB in step and measure the corresponding values of output current IE in an observation Table Plot a curve between output current IE and input current IB as shown in Fig 3 using suitable scale with the help of observation Table 3. This curve is the required Transfer characteristic. Observation Table 3 : S.no. Input current IB (ua) Output current IE (ma) at constant output voltage VEC = 3V

16 16

17 Calculations : 1. Input resistance: It is the ratio of change in the input voltage VBC to change in the input current IB at constant value of output voltage VEC or it is the reciprocal of the slope obtained from the input characteristic. Mathematically To calculate input resistance determine the slope from the input characteristic curve obtained from observation Table 1. Reciprocal of this slope will give the required input resistance. 2. Output resistance: It is the ratio of change in the output voltage VEC to change in the output current IE at constant value of input current IB or it is the reciprocal of the slope obtained from the output characteristic. Mathematically To calculate output resistance determine the slope from the output characteristic curve obtained from observation Table 2. Reciprocal of this slope will give the required output resistance. 3. Current gain: It is the ratio of change in the output current I E to change in the input current IB at constant value of output voltage VEC or it is the slope obtained from the constant current transfer characteristic. It is denoted by αac 17

18 Mathematically αac = Slope of constant current transfer characteristic = IE IB To calculate current gain, determine the slope from the constant current transfer characteristic curve obtained from observation Table 3. This slope is the required current gain. Results : Input resistance Rin = Output resistance Rout = Current Gain αac = 18

19 DATASHEET 19

20 20

21 WARRANTY 1) We guarantee the instrument against all manufacturing defects during 24 months from the date of sale by us or through our dealers. 2) The guarantee covers manufacturing defects in respect of indigenous components and material limited to the warranty extended to us by the original manufacturer, and defect will be rectified as far as lies within our control. 3) The guarantee will become INVALID. a) If the instrument is not operated as per instruction given in the instruction manual. b) If the agreed payment terms and other conditions of sale are not followed. c) If the customer resells the instrument to another party. d) Provided no attempt have been made to service and modify the instrument. 4) The non-working of the instrument is to be communicated to us immediately giving full details of the complaints and defects noticed specifically mentioning the type and sr. no. of the instrument, date of purchase etc. 5) The repair work will be carried out, provided the instrument is dispatched securely packed and insured with the railways. To and fro charges will be to the account of the customer. DESPATCH PROCEDURE FOR SERVICE Should it become necessary to send back the instrument to factory please observe the following procedure: 1) Before dispatching the instrument please write to us giving fully details of the fault noticed. 2) After receipt of your letter our repairs dept. will advise you whether it is necessary to send the instrument back to us for repairs or the adjustment is possible in your premises. Dispatch the instrument (only on the receipt of our advice) securely packed in original packing duly insured and freight paid along with accessories and a copy of the details noticed to us at our factory address. 21

22 LIST OF SERVICE CENTERS 1. 90, Electronic Complex Pardesipura, INDORE First Floor, C-19, F.I.E., Patparganj Industrial Area, DELHI New no.2, Old no.10, 4th street Venkateswara nagar, Adyar CHENNAI /19, 4th main street Ganganagar, BANGALORE ,1st floor, 123-Hariram Mansion, Dada Saheb Phalke road, Dadar (East), MUMBAI , Sadashiv Peth, Gyan Prabodhini Lane, PUNE Scientech Technologies Pvt. Ltd SPS Apartment, 1st Floor 2, Ahmed Mamoji Street, Behind Jaiswal Hospital, Liluah, HOWRAH W.B. 8. Scientech Technologies Pvt. Ltd Flat No. 205, 2nd Floor, Lakshminarayana Apartments C wing, Street No. 17, Himaytnagar, HYDERABAD Ph : (0731) info@scientech.bz Ph : (011) , Fax : (011) ndel@scientech.bz Ph : (044) , Fax : (044) chennai@scientech.bz Ph : (080) Fax : (080) bangalore@scientech.bz Ph : (022) Fax : (022) stplmum@scientech.bz Ph : (020) Fax : (020) pune@scientech.bz Ph : kolkata@scientech.bz Ph : (040) hyd@scientech.bz 22

23 LIST OF ACCESSORIES 1. 2mm Patch cord (red)...2 Nos. 2. 2mm Patch cord (black)...2 Nos. 3. 2mm Patch cord (blue)...1 Nos. 23

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Class B Amplifier (Push-Pull Emitter Follower) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Silicon, Zener, LED Diode Characteristics Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

More information

DB19. 4-Bit Parallel Adder/ Subtractor. Digital Lab Experiment Board Ver. 1.0

DB19. 4-Bit Parallel Adder/ Subtractor. Digital Lab Experiment Board Ver. 1.0 4-Bit Parallel Adder/ Subtractor Digital Lab Experiment Board Ver. 1.0 QUALITY POLICY To be a Global Leader of Innovative, Competitive and Eco friendly Electronic Equipment, Software Products and Turn-key

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 4 Bit Binary Ripple Counter (Up-Down Counter) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

More information

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012 1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper

More information

Content Map For Career & Technology

Content Map For Career & Technology Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations

More information

DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING

DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING SESSION WEEK COURSE: Electronic Technology in Biomedicine DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING DESCRIPTION GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class

More information

Transistor Amplifiers

Transistor Amplifiers Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

More information

Bipolar Transistor Amplifiers

Bipolar Transistor Amplifiers Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

More information

REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO)

REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO) CARIBBEAN EXAMINATIONS COUNCIL REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO) Copyright 2008 Caribbean

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor

More information

Amplifier Teaching Aid

Amplifier Teaching Aid Amplifier Teaching Aid Table of Contents Amplifier Teaching Aid...1 Preface...1 Introduction...1 Lesson 1 Semiconductor Review...2 Lesson Plan...2 Worksheet No. 1...7 Experiment No. 1...7 Lesson 2 Bipolar

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Physical Structure & Symbols NPN Emitter (E) n-type Emitter region p-type Base region n-type Collector region Collector (C) B C Emitter-base junction (EBJ) Base (B) (a) Collector-base

More information

POWER SUPPLY MODEL XP-15. Instruction Manual ELENCO

POWER SUPPLY MODEL XP-15. Instruction Manual ELENCO POWER SUPPLY MODEL XP-15 Instruction Manual ELENCO Copyright 2013 by Elenco Electronics, Inc. REV-A 753020 All rights reserved. No part of this book shall be reproduced by any means; electronic, photocopying,

More information

ELABOTrainingsSysteme Aus- und Weiterbildung GmbH. Electrical Engineering Electronics Digital Technology. www.elabo-ts.com

ELABOTrainingsSysteme Aus- und Weiterbildung GmbH. Electrical Engineering Electronics Digital Technology. www.elabo-ts.com Aus- und Weiterbildung GmbH Electrical Engineering Electronics Digital Technology www.elabo-ts.com Principles of Electrical Engineering... Analysis of electrical-engineering systems on component level

More information

Transistor Biasing. The basic function of transistor is to do amplification. Principles of Electronics

Transistor Biasing. The basic function of transistor is to do amplification. Principles of Electronics 192 9 Principles of Electronics Transistor Biasing 91 Faithful Amplification 92 Transistor Biasing 93 Inherent Variations of Transistor Parameters 94 Stabilisation 95 Essentials of a Transistor Biasing

More information

Bipolar Junction Transistor Basics

Bipolar Junction Transistor Basics by Kenneth A. Kuhn Sept. 29, 2001, rev 1 Introduction A bipolar junction transistor (BJT) is a three layer semiconductor device with either NPN or PNP construction. Both constructions have the identical

More information

OPERATIONAL AMPLIFIER

OPERATIONAL AMPLIFIER MODULE3 OPERATIONAL AMPLIFIER Contents 1. INTRODUCTION... 3 2. Operational Amplifier Block Diagram... 3 3. Operational Amplifier Characteristics... 3 4. Operational Amplifier Package... 4 4.1 Op Amp Pins

More information

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 (1) Instrument is a device for determining (a) the magnitude of a quantity (b) the physics of a variable (c) either of the above

More information

The 2N3393 Bipolar Junction Transistor

The 2N3393 Bipolar Junction Transistor The 2N3393 Bipolar Junction Transistor Common-Emitter Amplifier Aaron Prust Abstract The bipolar junction transistor (BJT) is a non-linear electronic device which can be used for amplification and switching.

More information

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1 Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment

More information

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

More information

Study Guide for the Electronics Technician Pre-Employment Examination

Study Guide for the Electronics Technician Pre-Employment Examination Bay Area Rapid Transit District Study Guide for the Electronics Technician Pre-Employment Examination INTRODUCTION The Bay Area Rapid Transit (BART) District makes extensive use of electronics technology

More information

Voltage Divider Bias

Voltage Divider Bias Voltage Divider Bias ENGI 242 ELEC 222 BJT Biasing 3 For the Voltage Divider Bias Configurations Draw Equivalent Input circuit Draw Equivalent Output circuit Write necessary KVL and KCL Equations Determine

More information

VCE Physics and VCE Systems Engineering: Table of electronic symbols

VCE Physics and VCE Systems Engineering: Table of electronic symbols VCE Physics and VCE Systems Engineering: Table of electronic symbols In response to requests from teachers the VCAA has produced a table of commonly used electronic symbols. Practicing teachers have provided

More information

Transistors. NPN Bipolar Junction Transistor

Transistors. NPN Bipolar Junction Transistor Transistors They are unidirectional current carrying devices with capability to control the current flowing through them The switch current can be controlled by either current or voltage ipolar Junction

More information

TRANSISTOR/DIODE TESTER

TRANSISTOR/DIODE TESTER TRANSISTOR/DIODE TESTER MODEL DT-100 Lesson Manual ELENCO Copyright 2012, 1988 REV-G 753115 Elenco Electronics, Inc. Revised 2012 FEATURES Diode Mode: 1. Checks all types of diodes - germanium, silicon,

More information

Wires & Connections Component Circuit Symbol Function of Component. Power Supplies Component Circuit Symbol Function of Component

Wires & Connections Component Circuit Symbol Function of Component. Power Supplies Component Circuit Symbol Function of Component Lista Dei Simboli Dei Circuiti Per i Componenti Elettronici Wires & Connections Wire Wires joined Wires not joined To pass current very easily from one part of a circuit to another. A 'blob' should be

More information

Lab 1: DC Circuits. Student 1, student1@ufl.edu Partner : Student 2, student2@ufl.edu

Lab 1: DC Circuits. Student 1, student1@ufl.edu Partner : Student 2, student2@ufl.edu Lab Date Lab 1: DC Circuits Student 1, student1@ufl.edu Partner : Student 2, student2@ufl.edu I. Introduction The purpose of this lab is to allow the students to become comfortable with the use of lab

More information

6.101 Final Project Report Class G Audio Amplifier

6.101 Final Project Report Class G Audio Amplifier 6.101 Final Project Report Class G Audio Amplifier Mark Spatz 4/3/2014 1 1 Introduction For my final project, I designed and built a 150 Watt audio amplifier to replace the underpowered and unreliable

More information

Common Base BJT Amplifier Common Collector BJT Amplifier

Common Base BJT Amplifier Common Collector BJT Amplifier Common Base BJT Amplifier Common Collector BJT Amplifier Common Collector (Emitter Follower) Configuration Common Base Configuration Small Signal Analysis Design Example Amplifier Input and Output Impedances

More information

Regulated D.C. Power Supply

Regulated D.C. Power Supply 442 17 Principles of Electronics Regulated D.C. Power Supply 17.1 Ordinary D.C. Power Supply 17.2 Important Terms 17.3 Regulated Power Supply 17.4 Types of Voltage Regulators 17.5 Zener Diode Voltage Regulator

More information

LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS 1. OBJECTIVE In this lab, you will study the DC characteristics of a Bipolar Junction Transistor (BJT). 2. OVERVIEW In this lab, you will inspect the

More information

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören W04 Transistors and Applications W04 Transistors and Applications ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors

More information

LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS 1. OBJECTIVE In this lab, you will study the DC characteristics of a Bipolar Junction Transistor (BJT). 2. OVERVIEW You need to first identify the physical

More information

BJT Characteristics and Amplifiers

BJT Characteristics and Amplifiers BJT Characteristics and Amplifiers Matthew Beckler beck0778@umn.edu EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor

More information

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT. Course Curriculum. ELECTRONIC COMPONENTS AND CIRCUITS (Code: 3330905) Electrical Engineering

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT. Course Curriculum. ELECTRONIC COMPONENTS AND CIRCUITS (Code: 3330905) Electrical Engineering GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT Course Curriculum ELECTRONIC COMPONENTS AND CIRCUITS (Code: 3330905) Diploma Programme in which this course is offered Semester in which offered Electrical

More information

AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level

AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level AMPLFERS Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd devices that increase the voltage, current, or power level have at least three terminals with one controlling the flow between

More information

Series-Parallel Circuits. Objectives

Series-Parallel Circuits. Objectives Series-Parallel Circuits Objectives Identify series-parallel configuration Analyze series-parallel circuits Apply KVL and KCL to the series-parallel circuits Analyze loaded voltage dividers Determine the

More information

Jeong-Yeol Yoon. Introduction to Biosensors. From Electric Circuits to Immunosensors. f) Springer

Jeong-Yeol Yoon. Introduction to Biosensors. From Electric Circuits to Immunosensors. f) Springer Jeong-Yeol Yoon Introduction to Biosensors From Electric Circuits to Immunosensors f) Springer Contents 1 Introduction 1 1.1 Sensors 1 1.2 Transducers 2 1.3 Biosensors 4 1.4 Bioreceptors 5 1.5 Transducers

More information

ANALOG & DIGITAL ELECTRONICS

ANALOG & DIGITAL ELECTRONICS ANALOG & DIGITAL ELECTRONICS Course Instructor: Course No: PH-218 3-1-0-8 Dr. A.P. Vajpeyi E-mail: apvajpeyi@iitg.ernet.in Room No: #305 Department of Physics, Indian Institute of Technology Guwahati,

More information

Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B.

Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B. Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology Electronics & Communication Engineering B.Tech III Semester 1. Electronic Devices Laboratory 2. Digital Logic Circuit Laboratory 3.

More information

Lecture 12: DC Analysis of BJT Circuits.

Lecture 12: DC Analysis of BJT Circuits. Whites, 320 Lecture 12 Page 1 of 9 Lecture 12: D Analysis of JT ircuits. n this lecture we will consider a number of JT circuits and perform the D circuit analysis. For those circuits with an active mode

More information

Common-Emitter Amplifier

Common-Emitter Amplifier Common-Emitter Amplifier A. Before We Start As the title of this lab says, this lab is about designing a Common-Emitter Amplifier, and this in this stage of the lab course is premature, in my opinion,

More information

2N6056. NPN Darlington Silicon Power Transistor DARLINGTON 8 AMPERE SILICON POWER TRANSISTOR 80 VOLTS, 100 WATTS

2N6056. NPN Darlington Silicon Power Transistor DARLINGTON 8 AMPERE SILICON POWER TRANSISTOR 80 VOLTS, 100 WATTS NPN Darlington Silicon Power Transistor The NPN Darlington silicon power transistor is designed for general purpose amplifier and low frequency switching applications. High DC Current Gain h FE = 3000

More information

Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads.

Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. Whites, EE 3 Lecture 18 Page 1 of 10 Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. We discussed using transistors as switches in the last lecture.

More information

Dependent Sources: Introduction and analysis of circuits containing dependent sources.

Dependent Sources: Introduction and analysis of circuits containing dependent sources. Dependent Sources: Introduction and analysis of circuits containing dependent sources. So far we have explored timeindependent (resistive) elements that are also linear. We have seen that two terminal

More information

Lab 3 - DC Circuits and Ohm s Law

Lab 3 - DC Circuits and Ohm s Law Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in

More information

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

More information

Table 1 Comparison of DC, Uni-Polar and Bi-polar Stepper Motors

Table 1 Comparison of DC, Uni-Polar and Bi-polar Stepper Motors Electronics Exercise 3: Uni-Polar Stepper Motor Controller / Driver Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles

More information

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Programmable Single-/Dual-/Triple- Tone Gong SAE 800 Programmable Single-/Dual-/Triple- Tone Gong Preliminary Data SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone, 2 tones, 3 tones

More information

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode) Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive

More information

Vincennes University ELEC 100- Basic Electricity & Electronics ELEC 110-Basic Component & Circuit Analysis

Vincennes University ELEC 100- Basic Electricity & Electronics ELEC 110-Basic Component & Circuit Analysis Indiana Department of Education Academic Content Framework ELECTRONICS AND COMPUTER TECHNOLOGY I Electronics and Computer Technology I introduces students to the fundamental electronic concepts necessary

More information

Lecture-7 Bipolar Junction Transistors (BJT) Part-I Continued

Lecture-7 Bipolar Junction Transistors (BJT) Part-I Continued 1 Lecture-7 ipolar Junction Transistors (JT) Part-I ontinued 1. ommon-emitter (E) onfiguration: Most JT circuits employ the common-emitter configuration shown in Fig.1. This is due mainly to the fact that

More information

Diodes and Transistors

Diodes and Transistors Diodes What do we use diodes for? Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double input voltage)

More information

Troubleshooting accelerometer installations

Troubleshooting accelerometer installations Troubleshooting accelerometer installations Accelerometer based monitoring systems can be tested to verify proper installation and operation. Testing ensures data integrity and can identify most problems.

More information

Vdc. Vdc. Adc. W W/ C T J, T stg 65 to + 200 C

Vdc. Vdc. Adc. W W/ C T J, T stg 65 to + 200 C 2N6284 (NPN); 2N6286, Preferred Device Darlington Complementary Silicon Power Transistors These packages are designed for general purpose amplifier and low frequency switching applications. Features High

More information

Op Amp Circuit Collection

Op Amp Circuit Collection Op Amp Circuit Collection Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits. Section 1 Basic Circuits Inverting Amplifier Difference

More information

Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Analog & Digital Electronics Course No: PH-18 Lec 3: Rectifier and Clipper circuits Course nstructors: Dr. A. P. VAJPEY Department of Physics, ndian nstitute of Technology Guwahati, ndia 1 Rectifier Circuits:

More information

Frequency Response of Filters

Frequency Response of Filters School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

More information

Course: Bachelor of Science (B. Sc.) 1 st year. Subject: Electronic Equipment Maintenance. Scheme of Examination for Semester 1 & 2

Course: Bachelor of Science (B. Sc.) 1 st year. Subject: Electronic Equipment Maintenance. Scheme of Examination for Semester 1 & 2 UPDATED SCHEME OF EXAMS. & SYLLABI FOR B.SC. Course: Bachelor of Science (B. Sc.) 1 st year Subject: Electronic Equipment Maintenance Scheme of Examination for Semester 1 & 2 (i) Theory: Two papers of

More information

3 The TTL NAND Gate. Fig. 3.1 Multiple Input Emitter Structure of TTL

3 The TTL NAND Gate. Fig. 3.1 Multiple Input Emitter Structure of TTL 3 The TTL NAND Gate 3. TTL NAND Gate Circuit Structure The circuit structure is identical to the previous TTL inverter circuit except for the multiple emitter input transistor. This is used to implement

More information

Chapter 19 Operational Amplifiers

Chapter 19 Operational Amplifiers Chapter 19 Operational Amplifiers The operational amplifier, or op-amp, is a basic building block of modern electronics. Op-amps date back to the early days of vacuum tubes, but they only became common

More information

Design and Applications of HCPL-3020 and HCPL-0302 Gate Drive Optocouplers

Design and Applications of HCPL-3020 and HCPL-0302 Gate Drive Optocouplers Design and Applications of HCPL-00 and HCPL-00 Gate Drive Optocouplers Application Note 00 Introduction The HCPL-00 (DIP-) and HCPL-00 (SO-) consist of GaAsP LED optically coupled to an integrated circuit

More information

Peak Atlas DCA. Semiconductor Component Analyser Model DCA55. User Guide

Peak Atlas DCA. Semiconductor Component Analyser Model DCA55. User Guide GB55-7 Peak Atlas DCA Semiconductor Component Analyser Model DCA55 User Guide Peak Electronic Design Limited 2000/2007 In the interests of development, information in this guide is subject to change without

More information

The basic cascode amplifier consists of an input common-emitter (CE) configuration driving an output common-base (CB), as shown above.

The basic cascode amplifier consists of an input common-emitter (CE) configuration driving an output common-base (CB), as shown above. Cascode Amplifiers by Dennis L. Feucht Two-transistor combinations, such as the Darlington configuration, provide advantages over single-transistor amplifier stages. Another two-transistor combination

More information

Series and Parallel Circuits

Series and Parallel Circuits Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)

More information

Operating instructions

Operating instructions Operating instructions Torque transducer type AE with replaceable strain gauge measuring element Model TQ 505 Operating instructions no. 1079 Torque Transducer TQ 505 Page 1 / 16 1. Contents 1. List of

More information

OPERATIONAL AMPLIFIERS. o/p

OPERATIONAL AMPLIFIERS. o/p OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A

More information

Understanding Low Drop Out (LDO) Regulators

Understanding Low Drop Out (LDO) Regulators Understanding Low Drop Out (LDO) Regulators Michael Day, Texas Instruments ABSTRACT This paper provides a basic understanding of the dropout performance of a low dropout linear regulator (LDO). It shows

More information

MAS.836 HOW TO BIAS AN OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic

More information

Single Supply Op Amp Circuits Dr. Lynn Fuller

Single Supply Op Amp Circuits Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585)

More information

Automatic Voltage Regulator User s Manual

Automatic Voltage Regulator User s Manual Resp. dept. R&D We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express authority is strictly forbidden. Copyright

More information

Y.LIN ELECTRONICS CO.,LTD.

Y.LIN ELECTRONICS CO.,LTD. Features Current transfer ratio (CTR 50~600% at I F =5mA, V CE =5V) High isolation voltage between input and output (Viso=5000 V rms ) Creepage distance >7.62 mm Operating temperature up to +110 C Compact

More information

STUDY OF CELLPHONE CHARGERS

STUDY OF CELLPHONE CHARGERS STUDY OF CELLPHONE CHARGERS Author : Suraj Hebbar Systems Lab, CeNSE,IISc Banglore ABSTRACT This report shows charging nature of different cellphone chargers with different cellphones. Here we took into

More information

CHAPTER 2 POWER AMPLIFIER

CHAPTER 2 POWER AMPLIFIER CHATER 2 OWER AMLFER 2.0 ntroduction The main characteristics of an amplifier are Linearity, efficiency, output power, and signal gain. n general, there is a trade off between these characteristics. For

More information

School of Engineering Department of Electrical and Computer Engineering

School of Engineering Department of Electrical and Computer Engineering 1 School of Engineering Department of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #4 Title: Operational Amplifiers 1 Introduction Objectives

More information

Bob York. Transistor Basics - BJTs

Bob York. Transistor Basics - BJTs ob York Transistor asics - JTs ipolar Junction Transistors (JTs) Key points: JTs are current-controlled devices very JT has a base, collector, and emitter The base current controls the collector current

More information

TDA2040. 20W Hi-Fi AUDIO POWER AMPLIFIER

TDA2040. 20W Hi-Fi AUDIO POWER AMPLIFIER 20W Hi-Fi AUDIO POWER AMPLIFIER DESCRIPTION The TDA2040 is a monolithic integrated circuit in Pentawatt package, intended for use as an audio class AB amplifier. Typically it provides 22W output power

More information

C Standard AC Motors

C Standard AC Motors C Standard AC Standard AC C-1 Overview, Product Series... C-2 Constant... C-9 C-21 C-113 Reversible C-147 Overview, Product Series Constant Reversible Electromagnetic Brake C-155 Electromagnetic Brake

More information

Optocoupler, Phototransistor Output, with Base Connection

Optocoupler, Phototransistor Output, with Base Connection CNY7 Optocoupler, Phototransistor FEATURES Isolation test voltage 5 V RMS A 6 B Long term stability i79 C NC 5 C E Industry standard dual-in-line package Lead (Pb-free component Component in accordance

More information

PLL frequency synthesizer

PLL frequency synthesizer ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 4 Lab 4: PLL frequency synthesizer 1.1 Goal The goals of this lab exercise are: - Verify the behavior of a and of a complete PLL - Find capture

More information

Type SA-1 Generator Differential Relay

Type SA-1 Generator Differential Relay ABB Automation Inc. Substation Automation and Protection Division Coral Springs, FL 33065 Instruction Leaflet 41-348.11C Effective: November 1999 Supersedes I.L. 41-348.11B, Dated August 1986 ( ) Denotes

More information

MAINTENANCE & ADJUSTMENT

MAINTENANCE & ADJUSTMENT MAINTENANCE & ADJUSTMENT Circuit Theory The concept of PLL system frequency synthesization is not of recent development, however, it has not been a long age since the digital theory has been couplet with

More information

Theory of Transistors and Other Semiconductor Devices

Theory of Transistors and Other Semiconductor Devices Theory of Transistors and Other Semiconductor Devices 1. SEMICONDUCTORS 1.1. Metals and insulators 1.1.1. Conduction in metals Metals are filled with electrons. Many of these, typically one or two per

More information

Lecture 27: Mixers. Gilbert Cell

Lecture 27: Mixers. Gilbert Cell Whites, EE 322 Lecture 27 Page 1 of 9 Lecture 27: Mixers. Gilbert Cell Mixers shift the frequency spectrum of an input signal. This is an essential component in electrical communications (wireless or otherwise)

More information

OBJECTIVE QUESTIONS IN ANALOG ELECTRONICS

OBJECTIVE QUESTIONS IN ANALOG ELECTRONICS 1. The early effect in a bipolar junction transistor is caused by (a) fast turn-on (c) large collector-base reverse bias (b)fast turn-off (d) large emitter-base forward bias 2. MOSFET can be used as a

More information

LM139/LM239/LM339 A Quad of Independently Functioning Comparators

LM139/LM239/LM339 A Quad of Independently Functioning Comparators LM139/LM239/LM339 A Quad of Independently Functioning Comparators INTRODUCTION The LM139/LM239/LM339 family of devices is a monolithic quad of independently functioning comparators designed to meet the

More information

MC34063A MC34063E DC-DC CONVERTER CONTROL CIRCUITS

MC34063A MC34063E DC-DC CONVERTER CONTROL CIRCUITS MC34063A MC34063E DC-DC CONVERTER CONTROL CIRCUITS OUTPUT SWITCH CURRENT IN EXCESS OF 1.5A 2% REFERENCE ACCURACY LOW QUIESCENT CURRENT: 2.5mA (TYP.) OPERATING FROM 3V TO 40V FREQUENCY OPERATION TO 100KHz

More information

Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial

Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial Cornerstone Electronics Technology and Robotics I Week 15 Voltage Comparators Tutorial Administration: o Prayer Robot Building for Beginners, Chapter 15, Voltage Comparators: o Review of Sandwich s Circuit:

More information

Lab 8: DC generators: shunt, series, and compounded.

Lab 8: DC generators: shunt, series, and compounded. Lab 8: DC generators: shunt, series, and compounded. Objective: to study the properties of DC generators under no-load and full-load conditions; to learn how to connect these generators; to obtain their

More information

2N6387, 2N6388. Plastic Medium-Power Silicon Transistors DARLINGTON NPN SILICON POWER TRANSISTORS 8 AND 10 AMPERES 65 WATTS, 60-80 VOLTS

2N6387, 2N6388. Plastic Medium-Power Silicon Transistors DARLINGTON NPN SILICON POWER TRANSISTORS 8 AND 10 AMPERES 65 WATTS, 60-80 VOLTS 2N6388 is a Preferred Device Plastic MediumPower Silicon Transistors These devices are designed for generalpurpose amplifier and lowspeed switching applications. Features High DC Current Gain h FE = 2500

More information

Positive Feedback and Oscillators

Positive Feedback and Oscillators Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

More information

Operational Amplifier as mono stable multi vibrator

Operational Amplifier as mono stable multi vibrator Page 1 of 5 Operational Amplifier as mono stable multi vibrator Aim :- To construct a monostable multivibrator using operational amplifier 741 and to determine the duration of the output pulse generated

More information

If an occupancy of room is zero, i.e. room is empty then light source will be switched off automatically

If an occupancy of room is zero, i.e. room is empty then light source will be switched off automatically EE389 Electronic Design Lab Project Report, EE Dept, IIT Bombay, Nov 2009 Fully-automated control of lighting and security system of a Room Group No: D2 Bharat Bhushan (06d04026) Sravan

More information

Fundamentals of Microelectronics

Fundamentals of Microelectronics Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors

More information