MOBILITY IN CITIES DATABASE



Similar documents
ADVOCATING PUBLIC TRANSPORT IN THE EUROPEAN UNION

START OFF AT The MOST STRATEGIC LOCATION

EMTA BAROMETER OF PUBLIC TRANSPORT IN EUROPEAN METROPOLITAN AREAS (2004)

Digital Infrastructure and Economic Development. An Impact Assessment of Facebook s Data Center in Northern Sweden executive summary

seeing the whole picture HAY GROUP JOB EVALUATION MANAGER

at the pace of business Leadership development In-house programs available! The Leadership Express Series Ottawa, ON

Europe s Most Dynamic Cities. City Momentum Index March 2015

Opportunities for Action in Financial Services. Sales Force Effectiveness: Moving Up the Middle and Managing New Prospects

Munich Re s growth strategy in emerging markets

Opportunities for Action in Consumer Markets. To Spend or Not to Spend: A New Approach to Advertising and Promotions

The Data Center of the Future: Creating New Jobs in Europe

Indian E-Retail Congress 2013

Corporate funding monitor 2015

Passenger Transport Mode Shares in World Cities

Denied Boarding Eligibility

Denied Boarding Eligibility

2015 City RepTrak The World s Most Reputable Cities

Fact sheet DTZ Fair Value Index TM methodology

DHL Global Energy Conference 2015 Outsourcing logistics Enhancing innovation or increasing risk?

Office Rents map EUROPE, MIDDLE EAST AND AFRICA. Accelerating success.

What Makes Cities Successful Randstad on the World Stage

Europe s office markets: Rent cycles weakening

DC pensions: All change from April 2015

Focus. Assessing the benefits of public transport. 1. Why focus on appraisal?

European office market recovery continues but at varying speeds

STATISTICS 2008:45 EUROPEAN METROPOLISES THE BALTIC SEA CITIES IN THE EUROPEAN CONTEXT

Flexible access and the annual allowance: How does it work?

ROLE SPECIFICATION INTERNATIONAL FINANCE CORPORATION

Opportunities for Action in Operations. Working Capital Productivity: The Overlooked Measure of Business Performance Improvement

Passive infrastructure sharing

11. Monitoring Performance monitoring in LTP2

Interim Hotel Survey. January June A Hogg Robinson Group Company. Hogg Robinson Group 2015

Freight Forwarders: Thinking Outside the Box

Rebound after a slow start

Opportunities for Action in Technology and Communications. Creating Value in Mobile Telecom: Beyond ARPU

PRODUCTS AND SERVICES TO MAKE YOUR TRIP MEMORABLE. European Driving Guide

How CPG manufacturers and retailers can collaborate to create offers that will make a difference. Implications of the Winning with Digital Study

Guide. Axis Webinar. User guide

Opportunities for Action in Financial Services. Growing Profits Under Pressure: Integrating Corporate and Investment Banking

Internet of Things, a key lever to reduce CO 2 emissions

Health Care Viewpoint

Kazakhstan Azerbaijan. 12 April April 2016

February 2012, Markör Marknad & Kommunikation AB

Accessing DC savings: The new rules.

Analysis - the worldwide reach of FATCA

European office sector recovery gains momentum

Finland Market Potential to Soder Airlines

EMEA Office MarketView

An introduction to the Rothschild businesses

Be clear about your talent management goals

Guide. Axis Webinar User Guide

Goodbye Spokesperson, Hello Steward

TDC Heavy Vehicle Forecasts - February 2010 Release 2008/09 HOUSEHOLD TRAVEL SURVEY. SUMMARY REPORT 2010 Release

UK/Europe Global Fares Guide

business opportunities, Paris excellence

SMART CITIES. Tony Dufays Director Regional Services UITP Brussels. 2 nd BRT Conference 29 th September, 2014, Ahmedabad

HSE HR Circular 005/ th February 2010.

The Global Financial Centres Index 16

Mercer Cost of Living Survey Worldwide Rankings, 2009 (including rental accommodation costs)

Norton Rose Group expands across Canada, Latin America and Kazakhstan. Creating one of the world s leading energy and mining practices

Improved Outlook? French Manufacturing Competitiveness Radar 2014/2015. Paris, March 2015

and 7 Queensland Transport, Moving People Connecting Communities: A Passenger Transport Strategy for Queensland , 2006

Opportunities for Action in Financial Services. Transforming Retail Banking Processes

Economic Growth Rates

Connecting people at A&O and beyond.

DTZ Research. Property Times Europe Office Q Rebound in take-up and new supply. 21 February Summary. Authors. Contact

European Market Study

Opportunities for Action. Achieving Success in Business Process Outsourcing and Offshoring

EMEA Office MarketView

Customer Relationship. Opportunities for Action in the Pulp and Paper Industry. Management in the Paper Industry

INTRODUCTION TO MATHEMATICAL MODELLING

Brand Management Services

managing talent to meet pharma s next great challenge: global market access Life Sciences and Healthcare Services

Equity Capital Markets Team Germany

AOS STUDLEY OCCUPANCY COST INDEX

Group 1 Group 2 Group 3 Group 4

BEST EXECUTION POLICY

Eurotunnel 2020 potential traffic estimate (Extract)

Emirates Economic Impact in Europe

Transport Demand Management

Phoenix Agenda Inside Tomorrow s Retail Bank

SRM How to maximize vendor value and opportunity

Cargo Sales & Service Presentation. Air Logistics UK

THINK Global: Risk and return

Greater than the Sum of its Parts: Professionalizing the Supervisory Board

Achieving Export Sales Growth

PRESS KIT. Smart investments. An easier life in the city A responsible & sustainable approach

Global Real Estate Outlook

Transcription:

JUNE 2015 MOBILITY IN CITIES DATABASE SYNTHESIS REPORT INTRODUCTION After a period of erosion, public transport is on a growing trend again, particularly in developed economies, where urban sprawl tends to be slowing down. In developing and transition economies, urban mobility demand is pushed up by population and economic growth. 1 This puts public transport networks under pressure; furthermore the share of public transport tends to be declining in those cities, while car ownership is soaring. Overall, public transport growth is the strongest where efforts to increase its supply are matched by policies that manage private vehicle demand and increase urban density. This report provides information on the evolution of urban mobility patterns in the last 20 years, highlighting new trends and different trajectories for different groups of cities. In particular, it shows which policies underpin strong growth in the modal share of public transport and other sustainable modes. At the mid-term of the UITP strategy of doubling the market share of public transport by 2025, this report will provide support and inspiration to cities gearing themselves towards reaching this ambitious objective. The report also highlights important relationships between the modal share of public transport and the characteristics of the urban transport system. Data used in this report were collected for 60 metropolitan areas worldwide for the year 2012. 2 The database covers demography, the economy, urban structure, the number and use of private vehicles (including taxi), the road network, public transport networks (infrastructure and rolling stock, supply and demand, farebox revenue), and mobility patterns. These data were compared to those collected for the years 1995 and 2001, in previous editions of the Mobility in Cities Database, when the same detailed definitions for data and metropolitan areas could be used. The harmonisation of data between cities and through time was made difficult by the dispersion of sources, the diversity of methodologies, and the limited availability of data. Detailed common definitions were used to provide data of the best possible quality. OVERALL URBAN MOBILITY TRENDS URBAN DENSITY In the second half of the twentieth century urban planning, particularly in developed countries, has focused on private cars as the primary means of transport for residents, leading to urban sprawl, characterised by a 70 Population density - Cities in developed countries decrease in urban density and longer distances travelled. In the sampled cities within developed countries, this trend, which could be observed until the turn of the new millennium, appears to have been reversed. On average, density in developed cities dropped in 2001, compared with the 1995 figure, but has now increased again, the 2012 figure being on par with the corresponding 1995 value. 68.0 68.2 65 64.5 60 1995 2001 2012 Fig. 1. Average urban density in developed cities expressed in terms of inhabitants per urban hectare; 20 cities in sample. 1 Cities in developed countries are those from OECD countries plus Hong Kong, Singapore and Dubai. The rest of the cities in the sample were grouped as developing. 2 Larger cities are over-represented in the sample.

URBAN DENSITY AND MODAL SPLIT Urban residents mobility choices are strongly linked with density. In denser areas there is a higher propensity to opt for modes other than private cars. The shorter trip distances associated with high density areas naturally lend themselves to more walking and cycling. Higher density areas also involve high concentration of activities, thereby allowing public transport to efficiently connect the locations where the origins or destinations of trips are concentrated. 10 Modal share of sustainable transport modes (walking, cycling and public transport trips as a percentage of total trips) 9 8 Ankara Prague Vienna 7 Tokyo Berlin Singapore London Munich 6 Paris Budapest Stockholm Geneva 5 Oslo Milan Hamburg Zurich Jerusalem Turin 4 Shizuoka Goteborg Birmingham Strasbourg Rome Niigata Brisbane Abu Dhabi Mashhad Barcelona Casablanca Lagos Delhi Hong Kong R² = 0.43 0 50 100 150 200 250 300 Urban population density Fig. 2. Share of total daily trips undertaken by sustainable transport modes walking, cycling and public transport out of the total number of daily trips (vertical axis) explained by urban population density in metropolitan area (horizontal axis). MOTORISATION The total number of cars owned by urban residents increased at a different pace around the world: in developed cities there was an average annual growth of 2.9% from 1995 to 2001 and only of 1.5% per year since 2001. In the developing cities considered, the total number of cars nearly quadrupled between 1995 and 2012 (at an annual growth rate of 8.3%) creating considerable pressure on urban transport infrastructure. While population increase plays a role in the growth in the number of cars, the comparison of motorisation rates shows different dynamics for cities in 450 400 350 345 Motorisation 403 developed and developing countries. The rate of motorisation in developed cities has almost stopped growing between 2001 and 2012. Motorisation grew by an annual average of 2.3% between 1995 and 2001, while the annual average growth has been 0.5% after that. Cities in developing countries saw a strong increase in motorisation between 1995 and 2012 (4.6% average annual growth), but it must be said that developing cities still have a much lower motorisation rate. 418 300 250 254 200 150 100 117 50 0 1995 2001 2012 2 Cities in developed countries Cities in developing countries Fig. 3. Average rate of motorisation expressed in registered cars per 1000 inhabitants in 20 cities in developed countries and 5 cities in developing countries.

Furthermore, it is interesting to note a shift in the use of cars within cities in developed countries. Analysing data from city-wide mobility surveys, UITP calculated the average annual distance travelled in cars, whether as a driver or a passenger. The data refer to trips undertaken by residents within the area. Since 1995 we notice a consistent downward trend in distances travelled by private vehicles: the average distance travelled in cars by each resident has decreased from 4,700 kilometres annually in 1995, to 4,400 in 2001 and 3,800 in 2012. These developments would seem to suggest that the context is quite conducive to public transport growth in cities within developed economies, while being more challenging in those within developing economies. PUBLIC TRANSPORT SUPPLY In developed cities, the total supply of public transport, expressed in vehicle x km, has increased by an average of 2.3% annually between 1995 and 2001 and by 1.2% per year since. In developing cities supply grew by an estimated 3.9% annually from 1995 to 2012 (see figure 4). On average, the supply of public transport per urban resident has remained stable since 2001, at just over 100 vehicle x kilometres per inhabitant in cities within developed economies. Cities such as Beijing, Geneva, Madrid, Oslo, or London have increased supply at a higher rate than the population increase over the 2001-2012 period. Conversely, while 200 Public transport supply in Vehicle x km the total supply of public transport in Singapore increased significantly, by approximately, it did not grow as fast as the population (+ 6). However, it must be noted that expressing public transport supply in terms of vehicle x kilometres, as done above, has the disadvantage of overlooking the replacement of older vehicles by newer ones of higher capacity. Analysing data on the number of place x kilometres provided by operators showed that cities such as Vienna, Geneva, Hong Kong, or Warsaw improved public transport supply in this way. On average, in the developed cities analysed supply expressed in place x kilometres increased at an annual rate of 1.8%, between 2001 and 2012, above the corresponding figure for vehicle x kilometres. 190 180 Index 1995=100 160 140 120 114 130 100 80 1995 2012 Cities in developed countries Cities in developing countries Fig. 4. Average evolution of public transport supply between 1995 and 2012 in 21 cities in developed countries and 4 cities in developing countries. PUBLIC TRANSPORT DEMAND The total number of journeys 3 by public transport in developed cities has steadily increased at a rate of 1.5% per year up to 2001 and 1.6% per year afterwards. In developing cities, the corresponding average annual rate of growth in demand was 2.7%. In cities in developed economies public transport demand per capita grew from an average of 395 trips per capita in 1995, to 414 in 2001 and it continued to grow afterwards, albeit at a slower pace, reaching an average of 419 journeys per inhabitant in 2012. 3 A public transport journey is befined as a boarding in a public transport vehicle. 3

6 London 5 Geneva 4 Oslo Singapore Change in public transport demand Berlin Vienna Paris Stockholm Prague Munich Hong Kong Tehran Rome Warsaw Johannesburg Beijing Tallinn - Athens Budapest Madrid - Casablanca - - 4 5 6 Change in population Fig. 5. Change in the number of metropolitan area residents between 2001 and 2012 (horizontal axis) and change in the number of total journeys undertaken by public transport between 2001 and 2012 (vertical axis). The dotted line shows equal changes in the two variables. It is also expected that the number of journeys by public transport in a city varies with resident population. In the graph above the red line describes equal changes in public transport demand and resident population, between 2001 and 2012. In cities plotted above the line, like Berlin, Hong Kong or Paris, the number of journeys by public transport increased at a faster pace than the resident population. MODAL SPLIT 4 The share of public transport trips out of motorised and mechanised urban trips (referred in this document as the modal share of public transport) increased, on average, by about between 2001 and 2012 in developed Percentage of mechanised and motorised trips 45% 4 35% 25% 15% 5% 34.1% Public transport modal share 35.5% 33.2% 39.7% 1995 2001 2012 Cities in developed countries cities. This is a reversal of the trend observed between 1995 and 2001, when the modal share of public transport had been slowly decreasing. By contrast, in developing cities, the modal share of public transport decreased, on average, by 33% between 1995 and 2012. Cities in developing countries Fig. 6. Average public transport modal share in 2012 calculated as the share of daily trips by public transport out of the total number of motorised and mechanised trips in 16 cities in developed countries an 4 cities in developing countries. 23.7% 4 4 Mobility figures used by UITP consider each door-to-door movement as one trip. Each trip is assigned to a principal mode (walking, cycling, public transport, private motorised).

MODAL CHOICE AND RELATIVE SPEED 10 9 Modal share of sustainable travel modes (% of the total trips by public transport, cycling and walking) 8 7 6 5 4 0.5 1 1.5 2 2.5 3 3.5 4 Relative door to door speed of trips by private cars vs. public transport Fig. 7. Modal share of sustainable travel modes calculated as the share of walking, cycling and public transport trips out of the total number of urban trips as explained by the relative door-to-door speed of private cars and public transport. Using data on the average lengths and durations of trips undertaken in metropolitan areas, UITP computed the average door-to-door speed of different transport modes, and investigated if the relative speed of the modes influences residents modal choice. Door-to-door speed gives a more accurate representation of the traveller s experience as it also takes into account time spent while transferring on different public transport modes, as well as walking stages to or from the parking space or public stops. It is interesting to note that in five of the cities analysed the door-to-door speed of trips by public transport was better, or on par with that of trips by private car, while in an additional nine cities the ratio between door-to-door speeds is below 1.5. The graph suggests that when private and public motorised transport modes are comparable in terms of speed, urban residents are more likely to move away from private cars. EXPLORING URBAN MOBILITY TRAJECTORIES The analysis of the database highlights different trajectories for different groups of cities. Each trajectory is associated with specific variations of urban density, motorisation, public transport supply - expressed in vehicle x km per inhabitant and distance travelled by private car - expressed in passenger x km per inhabitant. The description of these different trajectories sheds light on the adequate policy mix needed to reach the objective of increasing the modal share of public transport worldwide. Table 1 provides a synthesis of the groups of cities and their respective variations across the indicators considered. TRAJECTORY 1: ON TRACK FOR BETTER MOBILITY In Vienna, Paris, London, Oslo, Prague and Geneva, the modal share of public transport increased by or more between 2001 and 2012. In Vienna, following two decades of regular growth, the share of daily trips made by public transport reached 54% in 2012 one of the highest in Europe. Another case in point is Prague, where a decline in public transport modal share was reversed. Urban density increased in Vienna, London, Oslo and Prague between 1995 and 2012. The motorisation rate decreased in Vienna, London, Pa- 5

ris and Geneva between 2001 and 2012, marking a reversal of trend in all four cities. In London, Paris and Geneva, the motorisation rate was actually lower in 2012 than in 1995. For instance it fell to 307 cars per 1000 inhabitants in London. These cities implemented a range of traffic restriction measures in the past ten years (such as congestion charging in London or parking restrictions in Paris). In this context, distances travelled by private car per person decreased by more than in Vienna, Paris, London, Oslo, and Prague between 1995 and 2012. Public transport supply (expressed in vehicle x km) per inhabitant increased in all six cities, including in those exhibiting strong population increases, such as London and Oslo. In these cities the volume of public transport supply increased by 37% between 1995 and 2012. TRAJECTORY 2: MAINTAINING THE STATUS QUO In Berlin, Munich, Helsinki, and Barcelona, the modal share of public transport compared to that of private cars was broadly similar in 1995 and 2012, but the share of walking and cycling increased significantly. In Hamburg, Glasgow and Tokyo, the relative share of all modes was broadly similar in 1995 and 2012 even though it fluctuated during this period. The motorisation rate increased in all cities except for Munich. Average distances travelled by private car per person increased everywhere, except for Tokyo. Tokyo reflects a general decrease in trip length as the population is growing faster in the central area - within 10 km of the city centre than further out within the metropolitan area. Public transport supply per inhabitant increased everywhere (except in Helsinki where its growth was not as fast as the population). This shows that the development of public transport supply alone may not be sufficient to increase the modal share of public transport, it must also be complemented by private vehicle demand management measures. Furthermore, public transport must be integrated in urban planning and design policies aimed at maintaining urban density. Only by combining these measures in an integrated way can cities reap the full benefits of supply improvements. TRAJECTORY 3: UNDER PRESSURE The modal share of public transport has decreased by or more in Tehran, Casablanca, Johannesburg and Delhi between 1995 and 2012. It represents less than of the trips in these cities, which are characterised by strong population growth and economic development. In that economic context, motorisation is increasing very fast: it tripled in Delhi and quadrupled in Tehran between 1995 and 2012. In these cities, the growth in public transport supply did not match the growth in population. Keeping the attractiveness of public transport thus requires massive investments. OTHER TRAJECTORIES Quite a unique case, Hong Kong sees public transport having a dominant role (about 8 of trips in 2012). Public transport supply per inhabitant increased by more than between 1995 and 2012. In spite of a strong growth in motorisation (460 cars per 1000 inhabitants in 2012), the modal share of public transport in Dubai increased by 15% between 2001 and 2012, while public transport supply doubled during the same period. The erosion of the modal share of public transport in Budapest (-4 between 1995 and 2012) is relatively typical of Eastern European cities. Public transport supply decreased by about between 1995 and 2012 and motorisation is catching up with the level of other similar European cities. 6

Table 1: Summary of developments in selected cities across five indicators between 1995 and 2012: public transport modal share, urban density, motorisation rate, passenger x kilometres travelled by private cars per capita and public transport supply per capita. City Vienna Paris London Oslo Prague Geneva Barcelona Berlin Munich Helsinki Hamburg Glasgow Tokyo Tehran Casablanca Delhi Hong Kong Budapest Singapore Dubai Public transport modal share Urban density Motorisation rate On track for better mobility Maintaining the status quo Under pressure Other trajectories The colours in each cell represent the evolution over the studied period according to the following scale: Growth above Relative stability: the variation is between - and + Decrease by or more Data not available, or not verified at the time of publication Passenger x km per inhabitant in private cars Vehicle x km per inhabitant by public transport 7

PUBLIC TRANSPORT AND USE OF URBAN SPACE FOR MOBILITY It has been demonstrated that public transport enables a more efficient use of urban road space. Additionally, the graph below showsthe relationship between public transport modal share and functional use of urbanised land within metropolitan areas. There is a negative relation between the two, as illustrated in the chart above: when public transport is more widely used i.e. a higher modal share of trips the percentage of the urban space serving the transport function is lower. Given that land is one of the scarcest resources in cities, aiming for a higher use of public transport could bring the added benefits of allowing urbanised space to serve other functions, which can in turn improve the liveability, or productivity of the metropolitan area. 35% Share of urbanised area used for land transport 25% 15% 5% 4 5 6 7 8 9 Public transport modal share (% of motorised and mechanised trips) Fig. 8. The share of the urbanised area used for transport calculated as the ratio between the urban surface used for land transport and the total urbanised surface explained by the modal share of public transport calculated as the share of trips undertaken by public transport out of the number of daily motorised and mechanised trips. CONCLUSION The modal share of public transport is growing in cities which demonstrated a long term commitment not only to improving public transport supply, but also to managing demand for individual mobility and controlling urban sprawl. Data presented in this report shows that reaching the objective of doubling the market share of public transport by 2025 would require increased efforts in terms of public transport supply improvements, private vehicle demand management and integrated urban planning policies. This study also highlighted the need to improve the availability and comparability of urban transport data, and to develop new methodologies to better describe new mobility habits and intermodal travel. The data gathered and quoted throughout this synthesis report will be released in electronic format. UITP wishes to thank its member organisations and contacts worldwide for their continuous support during this exercise. This is a publication of the International Association of Public Transport. UITP has over 1,400 member companies in 96 countries throughout the world and represents the interests of key players in this sector. Its membership includes transport authorities, operators, both private and public, in all modes of collective passenger transport, and the industry. UITP addresses the economic, technical, organisation and management aspects of passenger transport, as well as the development of policy for mobility and public transport world-wide. For further information please contact Jérôme Pourbaix, Mircea Steriu, Pedram Saeidizand. rue Sainte-Marie 6, B-1080 Brussels Belgium Tel +32 (0)2 673 61 00 Fax +32 (0)2 660 10 72 info@uitp.org www.uitp.org