E D B 40 64 B 3 PD - 1D - F



Similar documents
Jerry Chu 2010/07/07 Vincent Chang 2010/07/07

Address Summary Table: 128MB 256MB 512MB 1GB 2GB Module

Standard: 64M x 8 (9 components)

ADOVE1B163B2G. 1. General Description. 2. Features. 3. Pin Assignment. 4. Pin Description. 5. Block Diagram. 6. Absolute Maximum Ratings

ADQYF1A08. DDR2-1066G(CL6) 240-Pin O.C. U-DIMM 1GB (128M x 64-bits)

DDR SDRAM SODIMM. MT8VDDT3264H 256MB 1 MT8VDDT6464H 512MB For component data sheets, refer to Micron s Web site:

DDR2 SDRAM SODIMM MT16HTF12864H 1GB MT16HTF25664H 2GB

DDR SDRAM SODIMM. MT9VDDT1672H 128MB 1 MT9VDDT3272H 256MB MT9VDDT6472H 512MB For component data sheets, refer to Micron s Web site:

DDR SDRAM UDIMM MT16VDDT6464A 512MB MT16VDDT12864A 1GB MT16VDDT25664A 2GB

ADATA Technology Corp. DDR3-1600(CL11) 240-Pin VLP ECC U-DIMM 4GB (512M x 72-bit)

DDR2 SDRAM SODIMM MT8HTF3264HD 256MB MT8HTF6464HD 512MB MT8HTF12864HD 1GB For component data sheets, refer to Micron s Web site:

DDR SDRAM SODIMM MT16VDDF6464H 512MB MT16VDDF12864H 1GB

DDR3(L) 4GB / 8GB UDIMM

DDR3 SDRAM UDIMM MT8JTF12864A 1GB MT8JTF25664A 2GB

Note: Data Rate (MT/s) CL = 3 CL = 4 CL = 5 CL = 6. t RCD (ns) t RP (ns) t RC (ns) t RFC (ns)

are un-buffered 200-Pin Double Data Rate (DDR) Synchronous DRAM Small Outline Dual In-Line Memory Module (SO-DIMM). All devices

DOUBLE DATA RATE (DDR) SDRAM

Memory Module Specifications KVR667D2D8F5/2GI. 2GB 256M x 72-Bit PC CL5 ECC 240-Pin FBDIMM DESCRIPTION SPECIFICATIONS

Memory Module Specifications KVR667D2D4F5/4G. 4GB 512M x 72-Bit PC CL5 ECC 240-Pin FBDIMM DESCRIPTION SPECIFICATIONS

DDR2 Unbuffered SDRAM MODULE

User s Manual HOW TO USE DDR SDRAM

DDR3 Unbuffered DIMM Module

DDR SDRAM Small-Outline DIMM MT16VDDF6464H 512MB MT16VDDF12864H 1GB

GR2DR4B-EXXX/YYY/LP 1GB & 2GB DDR2 REGISTERED DIMMs (LOW PROFILE)

JEDEC STANDARD DDR2 SDRAM SPECIFICATION JESD79-2B. (Revision of JESD79-2A) JEDEC SOLID STATE TECHNOLOGY ASSOCIATION. January 2005

DDR SDRAM RDIMM MT36VDDF GB MT36VDDF GB

JEDEC STANDARD DDR3 SDRAM. JESD79-3C (Revision of Jesd79-3B, April 2008) JEDEC SOLID STATE TECHNOLOGY ASSOCIATION NOVEMBER 2008

1Gb DDR2 SDRAM. H5PS1G83EFR-xxC H5PS1G83EFR-xxI H5PS1G83EFR-xxL H5PS1G83EFR-xxJ. [TBD] H5PS1G83EFR-xxP H5PS1G83EFR-xxQ H5PS1G83EFR-G7x

IS42/45R86400D/16320D/32160D IS42/45S86400D/16320D/32160D

V58C2512(804/404/164)SB HIGH PERFORMANCE 512 Mbit DDR SDRAM 4 BANKS X 16Mbit X 8 (804) 4 BANKS X 32Mbit X 4 (404) 4 BANKS X 8Mbit X 16 (164)

DDR2 VLP-Registered DIMM Module

DDR2 Unbuffered SDRAM MODULE

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

256K (32K x 8) Static RAM

1-Mbit (128K x 8) Static RAM

CMOS PARALLEL-TO-SERIAL FIFO 256 x 16, 512 x 16, 1,024 x 16

TSL INTEGRATED OPTO SENSOR

DDR2 SDRAM SODIMM MT8HTF12864HZ 1GB MT8HTF25664HZ 2GB. Features. 1GB, 2GB (x64, SR) 200-Pin DDR2 SDRAM SODIMM. Features

DDR2 SDRAM SODIMM MT4HTF6464HZ 512MB. Features. 512MB (x64, SR) 200-Pin DDR2 SODIMM. Features. Figure 1: 200-Pin SODIMM (MO-224 R/C C)

4M x 16Bits x 4Banks Mobile Synchronous DRAM

HEF4011B. 1. General description. 2. Features and benefits. 3. Ordering information. 4. Functional diagram. Quad 2-input NAND gate

Technical Note DDR2 Offers New Features and Functionality

CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset

DS1225Y 64k Nonvolatile SRAM

The 74LVC1G11 provides a single 3-input AND gate.

µpd6379, 6379A, 6379L, 6379AL

TSL250, TSL251, TLS252 LIGHT-TO-VOLTAGE OPTICAL SENSORS

IDT6116SA IDT6116LA. CMOS Static RAM 16K (2K x 8-Bit)

CD4027BMS. CMOS Dual J-K Master-Slave Flip-Flop. Pinout. Features. Functional Diagram. Applications. Description. December 1992

DDR2 SDRAM SODIMM MT4HTF1664H 128MB MT4HTF3264H 256MB MT4HTF6464H 512MB

INTEGRATED CIRCUITS. NE558 Quad timer. Product data Supersedes data of 2001 Aug Feb 14

DDR2 SDRAM SODIMM MT8HTF6464HDZ 512MB MT8HTF12864HDZ 1GB. Features. 512MB, 1GB (x64, DR) 200-Pin DDR2 SODIMM. Features

REV /2007 NANYA TECHNOLOGY CORP. NANYA TECHNOLOGY CORP. reserves the right to change Products and Specifications without notice.

Table 1 SDR to DDR Quick Reference

DDR2 SDRAM SODIMM MT16HTF12864HZ 1GB MT16HTF25664HZ 2GB MT16HTF51264HZ 4GB. Features. 1GB, 2GB, 4GB (x64, DR) 200-Pin DDR2 SDRAM SODIMM.

DDR2 SDRAM UDIMM MT18HTF6472AY 512MB MT18HTF12872AY 1GB MT18HTF25672AY 2GB MT18HTF51272AY 4GB. Features

IS61WV102416ALL IS61WV102416BLL IS64WV102416BLL 1M x 16 HIGH-SPEED ASYNCHRONOUS CMOS STATIC RAM WITH 3.3V SUPPLY JUNE 2014

3-to-8 line decoder, demultiplexer with address latches

SN54HC157, SN74HC157 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

POWER-VOLTAGE MONITORING IC WITH WATCHDOG TIMER

1.55V DDR2 SDRAM FBDIMM

Features. DDR3 SODIMM Product Specification. Rev. 1.7 Feb. 2016

DS1220Y 16k Nonvolatile SRAM

HEF4021B. 1. General description. 2. Features and benefits. 3. Ordering information. 8-bit static shift register

Spread-Spectrum Crystal Multiplier DS1080L. Features

3-input EXCLUSIVE-OR gate. The 74LVC1G386 provides a 3-input EXCLUSIVE-OR function.

4-Mbit (256K x 16) Static RAM

2SK1056, 2SK1057, 2SK1058

Technical Note DDR3 ZQ Calibration

Low-power configurable multiple function gate

Features. Modulation Frequency (khz) VDD. PLL Clock Synthesizer with Spread Spectrum Circuitry GND

Product Datasheet P MHz RF Powerharvester Receiver

LC898300XA. Functions Automatic adjustment to the individual resonance frequency Automatic brake function Initial drive frequency adjustment function

Table 1: Address Table

Features. DDR SODIMM Product Datasheet. Rev. 1.0 Oct. 2011

1-of-4 decoder/demultiplexer

Quad 2-input NAND Schmitt trigger

S-57M1 Series HIGH-SPEED BIPOLAR HALL EFFECT LATCH. Features. Applications. Package.

CD4013BC Dual D-Type Flip-Flop

MADR TR. Quad Driver for GaAs FET or PIN Diode Switches and Attenuators. Functional Schematic. Features. Description. Pin Configuration 2

Spread Spectrum Clock Generator AK8126A

Features. DDR3 Unbuffered DIMM Spec Sheet

14-stage ripple-carry binary counter/divider and oscillator

MM74HCT373 MM74HCT374 3-STATE Octal D-Type Latch 3-STATE Octal D-Type Flip-Flop

SN28838 PAL-COLOR SUBCARRIER GENERATOR

INTEGRATED CIRCUITS. 74LVC08A Quad 2-input AND gate. Product specification IC24 Data Handbook Jun 30

DDR2 SDRAM UDIMM MT16HTF6464AY 512MB MT16HTF12864AY 1GB MT16HTF25664AY 2GB MT16HTF51264AY 4GB. Features

8-bit binary counter with output register; 3-state

RealSSD Embedded USB Mass Storage Drive MTFDCAE001SAF, MTFDCAE002SAF, MTFDCAE004SAF, MTFDCAE008SAF

CD40174BC CD40175BC Hex D-Type Flip-Flop Quad D-Type Flip-Flop

74HC377; 74HCT General description. 2. Features and benefits. 3. Ordering information

DS1220Y 16k Nonvolatile SRAM

MM74HC4538 Dual Retriggerable Monostable Multivibrator

SN54HC191, SN74HC191 4-BIT SYNCHRONOUS UP/DOWN BINARY COUNTERS

CAT28C64B F R E E. 64K-Bit CMOS PARALLEL EEPROM L E A D FEATURES DESCRIPTION BLOCK DIAGRAM

DDR2 Device Operations & Timing Diagram DDR2 SDRAM. Device Operations & Timing Diagram

INTEGRATED CIRCUITS. 74F74 Dual D-type flip-flop. Product specification Supercedes data of 1990 Oct 23 IC15 Data Handbook.

Transcription:

DATA SHEET 4G bits DDR2 Mobile RAM PoP (14mm 14mm, 240-ball FBGA) EDB4064B3PD Specifications Density: 4G bits Organization 2 pieces of 2Gb (8M words 32 bits 8 banks) in one package Independent 2-channel bus Data rate: 1066Mb (max.) Package: 240-ball FBGA Package size: 14.0mm 14.0mm Ball pitch: 0.5mm Lead-free (RoHS compliant) and Halogen-free Power supply VDD1 = 1.70V to 1.95V VDD2, VDDQ = 1.14V to 1.30V Interface: HSUL_12 Operating case temperature range TC = -30 C to +85 C Features DLL is not implemented Low power consumption Mobile RAM functions Partial Array Self-Refresh (PASR) Auto Temperature Compensated Self-Refresh (ATCSR) by built-in temperature sensor Deep power-down mode Per Bank Refresh This FBGA is suitable for Package on Package (PoP) Block Diagram CKE_a /CS_a VDD1_a/b VDD2_a/b VDDQ_a, VDDQ_b VREFCA_a, VREFCA_b VREFDQ_a, VREFDQ_b VSS_a/b CK_a, /CK_a CA0_a to CA9_a CK_b, /CK_b CA0_b to CA9_b 2G bits (64M x 32) 2G bits (64M x 32) DQS0_a to DQS3_a /DQS0_a to /DQS3_a DQ0_a to DQ31_a DM0_a to DM3_a ZQ_a DQS0_b to DQS3_b /DQS0_b to /DQS3_b DQ0_b to DQ31_b DM0_b to DM3_b ZQ_b CKE_b /CS_b Document No. E1830E30 (Ver. 3.0) Date Published March 2012 (K) Japan Printed in Japan URL: http://www.elpida.com Elpida Memory, Inc. 2011-2012

Ordering Information Part number Organization (words x bits) Clock frequency Data rate Read latency Package EDB4064B3PD-1D-F 64M 64 533MHz 1066Mb 8 EDB4064B3PD-8D-F (64M 32 2pcs) 400MHz 800Mb 6 240-ball FBGA Part Number E D B 40 64 B 3 PD - 1D - F Elpida Memory Type D: Packaged Device Product Family B: DDR2 Mobile RAM Density/Chip select 40: 4Gb/2-CS Organization 64: x64 Power Supply, Interface B: VDD1 = 1.8V, VDD2 = VDDQ = 1.2V, S4B device, HSUL Environment Code F: Lead Free (RoHS compliant) and Halogen Free Speed 1D: 1066Mb 8D: 800Mb Package PD: BGA for PoP Revision 2

CONTENTS Specifications... 1 Block Diagram... 1 Features... 1 Ordering Information... 2 Part Number... 2 Pin Configurations... 4 Pin Descriptions... 5 Pin Capacitance... 6 Package Drawing... 7 Mode Register Specification... 8 1. Electrical Conditions... 9 1.1 Absolute Maximum Ratings... 9 1.2 Recommended DC Operating Conditions... 9 2. Electrical Specifications... 10 2.1 DC Characteristics 1... 10 2.2 DC Characteristics 2... 12 2.3 AC Characteristics...13 3

Pin Configurations /xxx indicate active low signal. 240-ball FBGA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 A B C D E F G H J K L M N P NU VSS_a/b VDD2_a/b DQ31_a VDDQ_a VSS_a/b DQ26_a DQ24_a DQS3_a DM3_a DQ15_a DQ13_a VSS_a/b VDDQ_a DQ8_a VSS_a/b VREFDQ _a VSS_a/b NC VSS_a/b DQ30_a DQ29_a DQ27_a VDDQ_a VSS_a/b /DQS3_a VSS_a/b DQ14_a DQ12_a DQ11_a DQ9_a /DQS1_a VDDQ_a VSS_a/b VDD2 /DQS0_a DM0_a DQ6_a DQ4_a _a/b VDD1_a/b DQ16_b DQ28_a DQ25_a VDDQ_a VDDQ_a DQ10_a DQS1_a DM1_a DQS0_a VDDQ_a DQ17_b VDDQ_b DQ18_b DQ19_b VSS_a/b DQ20_b DQ21_b VDDQ_b DQ22_b DQ23_b VSS_a/b DQS2_b /DQS2_b VDDQ_b DM2_b VSS_a/b DQ0_b DQ1_b VDDQ_b DQ2_b DQ3_b VSS_a/b DQ4_b DQ5_b VDDQ_b DQ6_b DQ7_b VDD1 _a/b VDDQ_a VSS_a/b DQ7_a DQ5_a VSS_a/b VDDQ_a VDD1_a/b VSS_a/b NU DQ3_a DQ1_a DQ0_a NC DQ2_a VSS_a/b VDDQ_a /DQS2_a VSS_a/b DQS2_a DQ23_a DQ22_a VDDQ_a DQ21_a DQ20_a VSS_a/b DQ19_a DQ18_a VDDQ_a DQ17_a DQ16_a VSS_a/b VDD2_a/b CA0_b VDD1_a/b VSS_a/b CA3_b DM2_a VDD2_a/b CA1_b VSS_a/b CA2_b CA4_b NC NC R VDDQ_b DQS0_b /DQS0_b CKE_b /CS_b NC T VSS_a/b VSS_a/b /CK_b CK_b U VREFDQ_b VSS_a/b DM0_b VDD2_a/b NC VSS_a/b V NC NC VSS_a/b VREFCA_b W DM1_b VDD2_a/b VDD2_a/b CA5_b NC VSS_a/b Y VDDQ_b VSS_a/b CA7_b CA6_b AA AB AC AD AE AF AG /DQS1_b DQS1_b DQ8_b VDDQ_b DQ9_b DQ10_b DQ11_b VSS_a/b DQ13_b DQ12_b VDD1_a/b DQ14_b VSS_a/b VSS_a/b VDDQ_b DQ15_b VDDQ_b DQS3_b DQ27_b DQ25_b DQ26_b DQ30_b VDD2_a/b NU VSS_a/b VDD2_a/b DM3_b /DQS3_b DQ24_b VDDQ_b VSS_a/b DQ29_b DQ31_b VDD1_a/b ZQ_a CA8_a VSS_a/b VREFCA VSS_a/b /CK_a NC NC CA3_a NC CA1_a VDD1_a/b NU _a CA6_a (Top view) CA5_a VDD2_a/b CA4_a VSS_a/b DQ28_b VDDQ_b VSS_a/b VSS_a/b CA9_a CA7_a NC VSS_a/b NC CK_a CKE_a /CS_a CA2_a VSS_a/b CA0_a VDD2_a/b NU NU VDD2_a/b CA9_b CA8_b VSS_a/b ZQ_b NU NU VDD1_a/b NU NU NU NU NU NU NU NU NU NU 4

Pin Descriptions [DDR2 Mobile RAM_a] Pin name CK_a, /CK_a CKE_a /CS_a CA0_a to CA9_a DM0_a to DM3_a DQ0_a to DQ31_a DQS0_a to DQS3_a, /DQS0_a to /DQS3_a VDDQ_a Function Clock Clock enable Chip select DDR command/address inputs Input data mask Data input/output Data strobe I/O power supply (Address configurations: Row:R0-R13, Column:C0-C8, Bank:BA0-BA2) VREFCA_a VREFDQ_a ZQ_a Reference voltage for CA input receiver Reference voltage for DQ input receiver Reference pin for output drive strength calibration [DDR2 Mobile RAM_b] Pin name CK_b, /CK_b CKE_b /CS_b CA0_b to CA9_b DM0_b to DM3_b DQ0_b to DQ31_b DQS0_b to DQS3_b, /DQS0_b to /DQS3_b VDDQ_b Function Clock Clock enable Chip select DDR command/address inputs Input data mask Data input/output Data strobe I/O power supply (Address configurations: Row:R0-R13, Column:C0-C8, Bank:BA0-BA2) VREFCA_b VREFDQ_b ZQ_b Reference voltage for CA input receiver Reference voltage for DQ input receiver Reference pin for output drive strength calibration [Common] Pin name VDD1_a/b VDD2_a/b VSS_a/b NC *1 NU *2 Function Core Power Supply 1 for a and b channels Core Power Supply 2 for a and b channels and input receiver power supply Ground for a and b channels No connection Not usable Notes: 1. Not internally connected. 2. Don t connect. Internally connected. 5

Pin Capacitance Parameter Symbol Pins min. max. Unit Note Input capacitance CI1 CK_a, /CK_a, CK_b, /CK_b 1.5 3.0 pf 1, 2 CI2 All other DDR2 Mobile RAM input only pins 1.5 3.5 pf 1, 2 Data input/output capacitance CI/O DQ_a, DQ_b, DM_a, DM_b, DQS_a, /DQS_a, DQS_b, /DQS_b 2.0 4.5 pf 1, 2, 3 CZQ ZQ_a, ZQ_b 1.5 3.0 pf 1, 2, 3 Notes: 1. This parameter is not subject to production test. It is verified by design and characterization. 2. These parameters are measured on f = 100MHz, VOUT = VDDQ/2, TA = +25 C. 3. DOUT circuits are disabled. 6

Package Drawing 240-ball FBGA Solder ball: Lead free 14.0 ± 0.1 INDEX MARK 0.20 S B EDB4064B3PD Unit: mm 14.0 ± 0.1 0.20 S A 0.10 S 0.73 ± 0.07 S 0.08 S 0.25 ± 0.05 B 240 φ0.325 ± 0.05 φ0.05 M S AB A 0.5 13.0 INDEX MARK 0.5 13.0 ECA-TS2-0438-01 7

Mode Register Specification The following table shows the specifications of mode register values (MR5, 6, 7, 8) for the manufacturer ID and the device descriptions such as DRAM type, density, I/O and die revision. MR# MA <7:0> OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0 0 0 0 0 0 0 1 1 5 05h Manufacturer ID : ELPIDA 0 0 0 0 0 0 1 0 6 06h Die Revision : Revision C 0 0 0 0 0 0 0 0 7 07h RFU : Default value 0 0 0 1 0 1 0 0 8 08h I/O : 32 Density of Die : 2Gbit Type : S4 Note: 1. The register values specify monolithic die information in a package. Therefore, please refer to the block diagram for understanding whole memory configuration of the product containing multiple dice in a package. 8

1. Electrical Conditions All voltages are referenced to VSS (GND) Execute power-up and Initialization sequence before proper device operation is achieved. EDB4064B3PD Operation or timing that is not specified is illegal, and after such an event, in order to guarantee proper operation, the DDR2 Mobile RAM Device must be powered down and then restarted through the specialized initialization sequence before normal operation can continue. 1.1 Absolute Maximum Ratings Caution Table 1 Absolute Maximum Ratings Parameter Symbol min. max. Unit Note VDD1 supply voltage relative to VSS VDD1-0.4 2.3 V 2 VDD2 supply voltage relative to VSS VDD2-0.4 1.6 V 2 VDDQ supply voltage relative to VSSQ VDDQ -0.4 1.6 V 2, 3 Voltage on any ball relative to VSS VIN, VOUT -0.4 1.6 V Storage Temperature TSTG -55 125 C Notes: 1. Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. See Power-Ramp section Power-up, initialization and Power-Off in the individual DDR2 Mobile RAM data sheet for relationship between power supplies. 3. VREF 0.6 x VDDQ; however, VREF may be VDDQ provided that VREF 300mV. 4. Storage Temperature is the case surface temperature on the center/top side of the DDR2 Mobile RAM Device. For the measurement conditions, please refer to JESD51-2 standard. Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. 1.2 Recommended DC Operating Conditions Table 2 Recommended DC Operating Conditions(TC = -30 C to +85 C) Parameter Symbol min. typ. max. Unit Core Power1 VDD1 1.70 1.80 1.95 V Core Power2, Input Buffer Power VDD2 1.14 1.20 1.30 V I/O Buffer Power VDDQ 1.14 1.20 1.30 V 9

2. Electrical Specifications 2.1 DC Characteristics 1 Symbol (TC = -30 C to +85 C, VDD1 = 1.70V to 1.95V, VDD2, VDDQ = 1.14V to 1.30V) Power Supply Table 3 IDD Specification Parameters and Operating Conditions 1066 800 Unit Parameter/Condition max. max. IDD0_1 VDD1 14 14 ma All devices in operating one bank active-precharge IDD0_2 VDD2 80 76 ma tck = tck(avg)min; trc = trcmin; CKE is HIGH; /CS is HIGH between valid commands; IDD0_IN VDDQ 2.0 2.0 ma CA bus inputs are SWITCHING; Data bus inputs are STABLE IDD2P_1 VDD1 0.6 0.6 ma All devices in idle power-down standby current IDD2P_2 VDD2 1.6 1.6 ma tck = tck(avg)min; CKE is LOW; /CS is HIGH; All banks idle; CA bus inputs are SWITCHING; IDD2P_IN VDDQ 0.2 0.2 ma Data bus inputs are STABLE EDB4064B3PD IDD2PS_1 VDD1 0.6 0.6 ma All devices in idle power-down standby current with clock stop IDD2PS_2 VDD2 1.6 1.6 ma CK=LOW, /CK=HIGH; CKE is LOW; /CS is HIGH; All banks idle; CA bus inputs are STABLE; IDD2PS_IN VDDQ 0.2 0.2 ma Data bus inputs are STABLE IDD2N_1 VDD1 1.2 1.2 ma All devices in idle non power-down standby current IDD2N_2 VDD2 28 24 ma tck = tck(avg)min; CKE is HIGH; /CS is HIGH; All banks idle; CA bus inputs are SWITCHING; IDD2N_IN VDDQ 2.0 2.0 ma Data bus inputs are STABLE IDD2NS_1 VDD1 1.2 1.2 ma All devices in idle non power-down standby current with clock stop IDD2NS_2 VDD2 14 14 ma CK=LOW, /CK=HIGH; CKE is HIGH; /CS is HIGH; All banks idle; CA bus inputs are STABLE; IDD2NS_IN VDDQ 2.0 2.0 ma Data bus inputs are STABLE IDD3P_1 VDD1 1.4 1.4 ma All devices in active power-down standby current IDD3P_2 VDD2 8.0 8.0 ma tck = tck(avg)min; CKE is LOW; /CS is HIGH; One bank active; CA bus inputs are SWITCHING; IDD3P_IN VDDQ 0.2 0.2 ma Data bus inputs are STABLE IDD3PS_1 VDD1 1.4 1.4 ma All devices in active power-down standby current with clock stop IDD3PS_2 VDD2 8.0 8.0 ma CK=LOW, /CK=HIGH; CKE is LOW; /CS is HIGH; One bank active; CA bus inputs are STABLE; IDD3PS_IN VDDQ 0.2 0.2 ma Data bus inputs are STABLE IDD3N_1 VDD1 3.0 3.0 ma All devices in active non power-down standby current IDD3N_2 VDD2 34 30 ma tck = tck(avg)min; CKE is HIGH; /CS is HIGH; One bank active; CA bus inputs are SWITCHING; IDD3N_IN VDDQ 2.0 2.0 ma Data bus inputs are STABLE IDD3NS_1 VDD1 3.0 3.0 ma All devices in active non power-down standby current with clock stop IDD3NS_2 VDD2 20 20 ma CK=LOW, /CK=HIGH; CKE is HIGH; /CS is HIGH; One bank active; CA bus inputs are STABLE; IDD3NS_IN VDDQ 2.0 2.0 ma Data bus inputs are STABLE IDD4R_1 IDD4R_2 VDD1 VDD2 4.0 320 4.0 250 ma ma All devices in operating burst read tck = tck(avg)min; /CS is HIGH between valid commands; One bank active; BL = 4; RL = RLmin; CA bus inputs are SWITCHING; 50% data change each burst transfer; 10

Symbol Table 3 IDD Specification Parameters and Operating Conditions (cont d) Power Supply 1066 800 Unit Parameter/Condition max. max. IDD4W_1 VDD1 4.0 4.0 ma All devices in operating burst write IDD4W_2 VDD2 360 280 ma tck = tck(avg)min; /CS is HIGH between valid commands; One bank active; BL = 4; WL = WLmin; IDD4W_IN VDDQ 2.0 2.0 ma CA bus inputs are SWITCHING; 50% data change each burst transfer; IDD5_1 VDD1 46 46 ma All devices in all bank auto-refresh IDD5_2 VDD2 164 160 ma tck = tck(avg)min; CKE is HIGH between valid commands; trc = trfcabmin; Burst refresh; IDD5_IN VDDQ 2.0 2.0 ma CA bus inputs are SWITCHING; Data bus inputs are STABLE; EDB4064B3PD IDD5AB_1 VDD1 4.0 4.0 ma All devices in all bank auto-refresh IDD5AB_2 VDD2 30 24 ma tck = tck(avg)min; CKE is HIGH between valid commands; trc = trefi; CA bus inputs are SWITCHING; IDD5AB_IN VDDQ 2.0 2.0 ma Data bus inputs are STABLE; IDD5PB_1 VDD1 4.0 4.0 ma All devices in per bank auto-refresh IDD5PB_2 VDD2 30 24 ma tck = tck(avg)min; CKE is HIGH between valid commands; trc = trefi/8; IDD5PB_IN VDDQ 2.0 2.0 ma CA bus inputs are SWITCHING; Data bus inputs are STABLE; IDD8_1 VDD1 20 20 µa All devices in deep power-down IDD8_2 VDD2 20 20 µa CK = LOW, /CK = HIGH; CKE is LOW; CA bus inputs are STABLE; IDD8_IN VDDQ 20 20 µa Data bus inputs are STABLE; Notes: 1. IDD values published are the maximum of the distribution of the arithmetic mean. 2. IDD current specifications are tested after the device is properly initialized. 11

Table 4 IDD6 Full and Partial Array Self-Refresh Current Parameter Symbol Value Unit Condition Self-Refresh Current +45 C IDD6_1 420 µa All devices in self-refresh Full Array IDD6_2 1200 µa CK = LOW, /CK = HIGH; CKE is LOW; IDD6_IN 20 µa CA bus inputs are STABLE; IDD6_1 260 µa Data bus inputs are STABLE; 1/2 Array IDD6_2 780 µa IDD6_IN 20 µa IDD6_1 200 µa 1/4 Array IDD6_2 540 µa IDD6_IN 20 µa IDD6_1 170 µa 1/8 Array IDD6_2 420 µa IDD6_IN 20 µa IDD6_1 1100 µa Full Array IDD6_2 3400 µa IDD6_IN 200 µa IDD6_1 800 µa 1/2 Array IDD6_2 2400 µa IDD6_IN 200 µa IDD6_1 700 µa 1/4 Array IDD6_2 1800 µa IDD6_IN 200 µa IDD6_1 640 µa 1/8 Array IDD6_2 1500 µa IDD6_IN 200 µa IDD6 85 C is the maximum and IDD6 45 C is typical of the distribution of the arithmetic mean. Self-Refresh Current +85 C Note: 1. 2.2 DC Characteristics 2 (TC = -30 C to +85 C, VDD1 = 1.70V to 1.95V, VDD2, VDDQ = 1.14V to 1.30V) Table 5 Electrical Characteristics and Operating Conditions Symbol min. max. Unit Parameter/Condition Note IL -2 +2 µa Input leakage current: For CA, CKE, /CS, CK, /CK Any input 0V VIN VDD2 2 (All other pins not under test = 0V) IVREF -1 +1 µa VREF supply leakage current: VREFDQ = VDDQ/2 or VREFCA = VDD2/2 1 (All other pins not under test = 0V) Notes: 1. The minimum limit requirement is for testing purposes. The leakage current on VREFCA and VREFDQ pins should be minimal. 2. Although DM is for input only, the DM leakage shall match the DQ and DQS, /DQS output leakage specification. 12

2.3 AC Characteristics (TC = -30 C to +85 C, VDD1 = 1.70V to 1.95V, VDD2, VDDQ = 1.14V to 1.30V) Table 6 AC Characteristics Table *6 Parameter Symbol min. max. min. tck *9 1066 800 Unit Max. Frequency *4 533 400 MHz Clock Timing Average Clock Period tck(avg) min. 1.875 2.5 ns max. 100 ns Average high pulse width tch(avg) min. 0.45 max. 0.55 tck(avg) Average low pulse width tcl(avg) min. 0.45 max. 0.55 tck(avg) Absolute Clock Period tck(abs) min. tck(avg)(min.) + tjit(per)(min.) Absolute clock HIGH pulse width (with jitter) tch(abs), min. 0.43 max. 0.57 tck(avg) Absolute clock LOW pulse width (with jitter) tcl(abs), min. 0.43 max. 0.57 tck(avg) Clock Period Jitter (with jitter) tjit(per), min. -90-100 max. 90 100 Maximum Clock Jitter between two consecutive clock cycles (with jitter) tjit(cc), max. 180 200 Duty cycle Jitter (with jitter) tjit(duty), min. max. min((tch(abs),min - tch(avg),min), (tcl(abs),min - tcl(avg),min)) tck(avg) max((tch(abs),max - tch(avg),max), (tcl(abs),max - tcl(avg),max)) tck(avg) Cumulative error across 2 cycles terr(2per), min. -132-147 max. 132 147 Cumulative error across 3 cycles terr(3per), min. -157-175 max. 157 175 Cumulative error across 4 cycles terr(4per), min. -175-194 max. 175 194 Cumulative error across 5 cycles terr(5per), min. -188-209 max. 188 209 Cumulative error across 6 cycles terr(6per), min. -200-222 max. 200 222 Cumulative error across 7 cycles terr(7per), min. -209-232 max. 209 232 13

Table 6 AC Characteristics Table *6 (cont d) Parameter Cumulative error across 8 cycles Cumulative error across 9 cycles Symbol terr(8per), terr(9per), min. max. min. tck *9 1066 800 Unit min. -217-241 max. 217 241 min. -224-249 max. 224 249 Cumulative error across 10 cycles terr(10per), min. -231-257 max. 231 257 Cumulative error across 11 cycles terr(11per), min. -237-263 max. 237 263 Cumulative error across 12 cycles terr(12per), min. -242-269 max. 242 269 Cumulative error across n = 13, 14... 49, 50 cycles terr(nper), min. max. terr(nper),,min. = (1 + 0.68ln(n)) tjit(per),,min. terr(nper),,max. = (1 + 0.68ln(n)) tjit(per),,max. Read Parameters DQS output access time from CK, /CK tdqsck min. 2500 max. 5500 DQSCK Delta Short *15 tdqsckds max. 330 450 DQSCK Delta Medium *16 tdqsckdm max. 680 900 DQSCK Delta Long *17 tdqsckdl max. 920 1200 DQS DQ skew tdqsq max. 200 240 Data hold skew factor tqhs max. 230 280 DQS Output High Pulse Width tqsh min. tch(abs) - 0.05 tck(avg) DQS Output Low Pulse Width tqsl min. tcl(abs) - 0.05 tck(avg) Data Half Period tqhp min. min(tqsh, tqsl) tck(avg) DQ / DQS output hold time from DQS tqh min. tqhp - tqhs Read preamble *12,*13 trpre min. 0.9 tck(avg) Read postamble *12,*14 trpst min. tcl(abs) - 0.05 tck(avg) DQS low-z from clock *12 tlz(dqs) min. tdqsck(min.) - 300 DQ low-z from clock *12 tlz(dq) min. tdqsck(min.) - (1.4 tqhs(max.)) DQS high-z from clock *12 thz(dqs) max. tdqsck(max.) - 100 DQ high-z from clock *12 thz(dq) max. tdqsck(max.) + (1.4 tdqsq(max.)) 14

Table 6 AC Characteristics Table *6 (cont d) Parameter Symbol min. max. min. tck *9 1066 800 Unit Write Parameters *11 DQ and DM input hold time (VREF based) tdh min. 210 270 DQ and DM input setup time (VREF based) tds min. 210 270 DQ and DM input pulse width tdipw min. 0.35 tck(avg) Write command to 1st DQS latching transition tdqss min. 0.75 tck(avg) max. 1.25 DQS input high-level width tdqsh min. 0.4 tck(avg) DQS input low-level width tdqsl min. 0.4 tck(avg) DQS falling edge to CK setup time tdss min. 0.2 tck(avg) DQS falling edge hold time from CK tdsh min. 0.2 tck(avg) Write postamble twpst min. 0.4 tck(avg) Write preamble twpre min. 0.35 tck(avg) CKE Input Parameters CKE min. pulse width (high and low pulse width) tcke min. 3 3 tck(avg) CKE input setup time tiscke *2 min. 0.25 tck(avg) CKE input hold time tihcke *3 min. 0.25 tck(avg) Command Address Input Parameters *11 Address and control input setup time tis *1 min. 220 290 Address and control input hold time tih *1 min. 220 290 Address and control input pulse width tipw min. 0.40 tck(avg) Boot Parameters (10 MHz 55 MHz) *5,*7,*8 Clock Cycle Time tckb max. 100 ns min. 18 CKE Input Setup Time tisckeb min. 2.5 ns CKE Input Hold Time tihckeb min. 2.5 ns Address & Control Input Setup Time tisb min. 1150 Address & Control Input Hold Time tihb min. 1150 DQS Output Data Access Time from CK, /CK tdqsckb min. 2.0 ns max. 10.0 Data Strobe Edge to Ouput Data Edge tdqsqb - 1.2 tdqsqb max. 1.2 ns Data Hold Skew Factor tqhsb max. 1.2 ns Mode Register Parameters Mode Register Write command period tmrw min. 5 5 tck(avg) Mode Register Read command period tmrr min. 2 2 tck(avg) 15

Table 6 AC Characteristics Table *6 (cont d) Parameter DDR2 Mobile RAM Core Parameters *9 Symbol min. max. min. tck *9 1066 800 Unit Read Latency RL min. 3 8 6 tck(avg) Write Latency WL min. 1 4 3 tck(avg) ACTIVE to ACTIVE command period trc min. tras + trpab (with all-bank Precharge) tras + trppb (with per-bank Precharge) ns CKE min. pulse width during Self-Refresh (low pulse width during Self-Refresh) tckesr min. 3 15 ns Self-refresh exit to next valid command delay txsr min. 2 trfcab + 10 ns Exit power down to next valid command delay txp min. 2 7.5 ns CAS to CAS delay tccd min. 2 2 tck(avg) Internal Read to Precharge command delay trtp min. 2 7.5 ns RAS to CAS Delay trcd min. 3 18 ns Row Precharge Time (single bank) trppb min. 3 18 ns Row Precharge Time (all banks) trpab min. 3 21 ns Row Active Time tras min. 3 42 ns max. 70 µs Write Recovery Time twr min. 3 15 ns Internal Write to Read Command Delay twtr min. 2 7.5 ns Active bank A to Active bank B trrd min. 2 10 ns Four Bank Activate Window tfaw min. 8 50 ns Minimum Deep Power Down Time tdpd min. 500 µs DDR2 Mobile RAM Refresh Requirement Parameters Refresh Window trefw max. 32 ms Required number of REFRESH commands R min. 8192 Average time between REFRESH commands (for reference only) trefi max. 3.9 µs trefipb max. 0.4875 µs Refresh Cycle time trfcab min. 130 ns Per Bank Refresh Cycle time trfcpb min. 60 ns Burst Refresh Window = 4 8 trfcab trefbw min. 4.16 µs ZQ Calibration Parameters *9 Initialization Calibration Time tzqinit min. 1 µs Long Calibration Time tzqcl min. 6 360 ns Short Calibration Time tzqcs min. 6 90 ns Calibration Reset Time tzqreset min. 3 50 ns 16

Notes: 1. Input set-up/hold time for signal(ca0 CA9, /CS). 2. CKE input setup time is measured from CKE reaching high/low voltage level to CK, /CK crossing. 3. CKE input hold time is measured from CK, /CK crossing to CKE reaching high/low voltage level. 4. Frequency values are for reference only. Clock cycle time (tck) shall be used to determine device capabilities. 5. To guarantee device operation before the DDR2 Mobile RAM Device is configured a number of AC boot timing parameters are defined in the Table 6 on page 13. Boot parameter symbols have the letter b appended, e.g. tck during boot is tckb. 6. Frequency values are for reference only. Clock cycle time (tck or tckb) shall be used to determine device capabilities. 7. The DDR2 Mobile RAM will set some Mode register default values upon receiving a RESET (MRW) command as specified in Mode Register Definition in the individual DDR2 Mobile RAM data sheet. 8. The output skew parameters are measured with Ron default settings into the reference load. 9. These parameters should be satisfied with both specification, analog (ns) value and min. tck. 10. All AC timings assume an input slew rate of 1V/ns. 11. Read, Write, and Input Setup and Hold values are referenced to VREF. 12. For low-to-high and high-to-low transitions the timing reference will be at the point when the signal crosses VTT. thz and tlz transitions occur in the same access time (with respect to clock) as valid data transitions. These parameters are not referenced to a specific voltage level but to the time when the device output is no longer driving (for trpst, thz(dqs) and thz(dq) ), or begins driving (for trpre, tlz(dqs), tlz(dq) ). Figure 1 shows a method to calculate the point when device is no longer driving thz(dqs) and thz(dq), or begins driving tlz(dqs), tlz(dq) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent. VTT + 2x Y mv VTT + Y mv VTT actual waveform VTT - Y mv VTT - 2x Y mv T1 T2 begin driving point = 2 x T1 - T2 Y tlz(dqs), tlz(dq) 2x Y VOH thz(dqs), thz(dq) VOL T1 T2 stop driving point = 2 x T1 - T2 VOH - X mv VOH - 2x X mv VOL + 2x X mv VOL + X mv Figure 1 tlz and thz Method for Calculating Transition and Endpoints The parameters tlz(dqs), tlz(dq), thz(dqs), and thz(dq) are defined as single-ended. The timing parameters trpre and trpst are determined from the differential signal DQS-/DQS. 2x X X VTT 13. Measured from the start driving of DQS /DQS to the start driving the first rising strobe edge. 14. Measured from the from start driving the last falling strobe edge to the stop driving DQS /DQS. 15. tdqsckds is the absolute value of the difference between any two tdqsck measurements (within a byte lane) within a contiguous sequence of bursts within a 160ns rolling window. tdqsckds is not tested and is guaranteed by design. Temperature drift in the system is < 10 C/s. Values do not include clock jitter. 16. tdqsckdm is the absolute value of the difference between any two tdqsck measurements (within a byte lane) within a 1.6µs rolling window. tdqsckdm is not tested and is guaranteed by design. Temperature drift in the system is < 10 C/s. Values do not include clock jitter. 17. tdqsckdl is the absolute value of the difference between any two tdqsck measurements (within a byte lane) within a 32ms rolling window. tdqsckdl is not tested and is guaranteed by design. Temperature drift in the system is < 10 C/s. Values do not include clock jitter. 17

2.3.1 HSUL_12 Driver Output Timing Reference Load These Timing Reference Loads are not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics. VREF DDR2 Mobile RAM Output 0.5 x VDDQ RTT = 50 Ω Cload = 5pF VTT = 0.5 x VDDQ Figure 2 HSUL_12 Driver Output Reference Load for Timing and Slew Rate Note: 1. All output timing parameter values (like tdqsck, tdqsq, tqhs, thz, trpre etc) are reported with respect to this reference load. This reference load is also used to report slew rate. 18

NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR MOS DEVICES Exposing the MOS devices to a strong electric field can cause destruction of the gate oxide and ultimately degrade the MOS devices operation. Ste must be taken to stop generation of static electricity as much as possible, and quickly dissipate it, when once it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. MOS devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. MOS devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor MOS devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES No connection for CMOS devices input pins can be a cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. The unused pins must be handled in accordance with the related specifications. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Power-on does not necessarily define initial status of MOS devices. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the MOS devices with reset function have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. MOS devices are not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for MOS devices having reset function. CME0107 19

Mobile RAM is a trademark of Elpida Memory, Inc. The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Elpida Memory, Inc. Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights (including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or third parties by or arising from the use of the products or information listed in this document. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of Elpida Memory, Inc. or others. Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of the customer's equipment shall be done under the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. [Product applications] Be aware that this product is for use in typical electronic equipment for general-purpose applications. Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability. However, this product is not intended for use in the product in aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment, medical equipment for life support, or other such application in which especially high quality and reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk of bodily injury. Customers are instructed to contact Elpida Memory's sales office before using this product for such applications. [Product usage] Design your application so that the product is used within the ranges and conditions guaranteed by Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no responsibility for failure or damage when the product is used beyond the guaranteed ranges and conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other consequential damage due to the operation of the Elpida Memory, Inc. product. [Usage environment] Usage in environments with special characteristics as listed below was not considered in the design. Accordingly, our company assumes no responsibility for loss of a customer or a third party when used in environments with the special characteristics listed below. Example: 1) Usage in liquids, including water, oils, chemicals and organic solvents. 2) Usage in exposure to direct sunlight or the outdoors, or in dusty places. 3) Usage involving exposure to significant amounts of corrosive gas, including sea air, CL 2, H 2 S, NH 3, SO 2, and NOx. 4) Usage in environments with static electricity, or strong electromagnetic waves or radiation. 5) Usage in places where dew forms. 6) Usage in environments with mechanical vibration, impact, or stress. 7) Usage near heating elements, igniters, or flammable items. If you export the products or technology described in this document that are controlled by the Foreign Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by U.S. export control regulations, or another country's export control laws or regulations, you must follow the necessary procedures in accordance with such laws or regulations. If these products/technology are sold, leased, or transferred to a third party, or a third party is granted license to use these products, that third party must be made aware that they are responsible for compliance with the relevant laws and regulations. M01E1007 20