Technical Note DDR3 ZQ Calibration
|
|
|
- Peregrine Lamb
- 9 years ago
- Views:
Transcription
1 Introduction Technical Note DDR3 ZQ Calibration Introduction For more robust system operation, the DDR3 SDRAM driver design has been enhanced with reduced capacitance, dynamic on-die termination (ODT), and a new calibration scheme. The capacitance reduction comes from the use of a new merged driver. With the new driver, circuitry that makes up the output driver is shared for use in ODT. Separate structures were used on DDR2 for the output driver and termination impedances. Figure 1: Merged Driver VD VD VD <0:3> VD VD VD VD VD <0:3> VD/2 40Ω RTT TN4102.fm - Rev. A 2/08 EN Micron Technology, Inc. All rights reserved. Products and specifications discussed herein are for evaluation and reference purposes only and are subject to change by Micron without notice. Products are only warranted by Micron to meet Micron s production data sheet specifications. All information discussed herein is provided on an as is basis, without warranties of any kind.
2 Calibration Method Calibration Method The concept of the merged driver uses multiple structures to enable the and networks (see Figure 1 on page 1). Multiple termination values are realized by enabling different combinations of the same structures. For DDR3, the output impedance of the full-strength driver is 34Ω by default and is obtained by enabling all seven of the s. To accomplish the data rates exclusive to DDR3, special attention must be paid to signal integrity. Minimizing any impedance mismatch on the traces connecting the memory controller to the DRAM outputs will help reduce reflections and ringing on the signals. To help reduce these impedance discontinuities, a precision calibration scheme is introduced in DDR3. The ZQ calibration in DDR3 is used both for the output driver and the ODT. The ZQ ball of each DRAM is connected to an external precision (±1%) resistor. This resistor may be shared among devices as long as the controller does not overlap any timing associated with the calibration and as long as the capacitive loading does not exceed specification. Figure 2: Pull-Up Calibration driver VD Enter cal. Exit cal. calibration control block VPULL-UP XRES external resistor VD/2 The calibration control block consists of an analog-to-digital converter (ADC), comparators, a majority filter, an internal reference voltage generator, and an approximation register. The s in the calibration control block are matched to the s used in the output driver and termination options. The uses a polyresistor that is slightly larger than. It employs several P-channel devices to reduce the resistance of the s and to tune the polyresistor to. This resistor is used to archive a more linear and curve for improved signal integrity at the system level. The is similar to the. It uses a large polyresistor with multiple N-channel devices for tuning. When a ZQ calibration command is given, the line is driven LOW, and the pullup is pulled to VD. The voltage (VPULL-UP) line is used to compare the voltage at the XRES point to an internally generated reference voltage (VD/2) by using the comparator inside the calibration control block. The P-channel tuning devices are individually tuned using the VOH signals until the voltage at XRES equals the internally generated reference voltage (VD/2). The VOH codes are stored in the internal approximation register and sent to each of the s of the output drivers and termination. After all the devices have been calibrated to the external resistor, the comparator is again used to compare the voltage on the (VPULL-DOWN) TN4102.fm - Rev. A 2/08 EN Micron Technology, Inc. All rights reserved
3 ZQ Calibration Commands ZQ Calibration Commands line to the reference voltage set at VD/2. This process generates the VOL codes and updates the devices at the appropriate time, completing the calibration process. Two new commands relating to ZQ calibration are introduced in DDR3. The ZQ CALI- BRATION LONG (ZQCL) command is most often used at initial system power-up or when the device is in a reset condition. The ZQCL command resolves the problem of manufacturing process variation and calibrates the DRAM to an initial temperature and voltage setting. A full calibration using the ZQCL command takes 512 clock cycles to complete. During this calibration time, the memory data bus must remain completely idle and quiet. Any time the DRAM is idle after the initial calibration, subsequent ZQCL commands may be issued. For these subsequent commands (commands issued at times other than initialization and reset), the timing window required to complete the calibration is reduced to 256 clock cycles. The ZQ CALIBRATION SHORT (ZQCS) command tracks the continuous voltage and temperature changes associated with normal operation. Periodic short calibrations enable the DRAM to maintain linear output driver and termination impedance over the full voltage and temperature range. A ZQCS command takes 64 clock cycles to complete. Table 1: ZQ Command Truth Table Function ZQ CALIBRATION LONG ZQ CALIBRATION SHORT Abbreviation CKE Previous Cycle Next Cycle CS# CAS# RAS# WE# BA0 BA3 A13 A15 A12 A10 ZQCL H H L H H L X X X H X ZQCS H H L H H L X X X L X A0 A9, A11 ZQ Calibration Timing The first ZQCL issued after RESET must be given a timing period of t ZQINIT (512 clock cycles) to perform the full calibration. A timing period of t ZQOPER (256 clock cycles) must be allowed for any subsequent ZQCL commands. The ZQCL command may be used any time there is more impedance error than can be corrected with a ZQCS command. Again, during the t ZQINIT and t ZQOPER time windows, the DRAM channel must remain completely quiet. ZQCS commands may be issued any time the DRAM is not performing activities. A shorter timing window of 64 clocks ( t ZQCS) must be satisfied before normal operation may resume. All banks must be precharged and t RP met before any calibration commands may be issued by the controller (see Figure 3 on page 4). ZQCL or ZQCS commands may be issued inside of t XSDLL time when exiting self refresh. An explicit calibration command must be issued upon self refresh exit for the I/O calibration to take place. After self refresh exit, t XS must be satisfied before either ZQCL or ZQCS is issued. TN4102.fm - Rev. A 2/08 EN Micron Technology, Inc. All rights reserved
4 Calculating the Calibration Interval Figure 3: ZQ Calibration Timing CK# CK T0 T1 Ta0 Ta1 Ta2 Ta3 Tb0 Tb1 Tc0 Tc1 Tc2 Command ZQCL NOP NOP NOP ZQCS NOP NOP NOP Address A10 CKE (1) (1) ODT (2) (2) bus (3) High-Z Activities (3) High-Z Activities t ZQINIT or t ZQOPER t ZQCS Time Break Don t Care Notes: 1. CKE must be continuously registered HIGH during the calibration procedure. 2. ODT must be disabled via the ODT signal or the MRS command during the calibration procedure. 3. All devices connected to the bus should be High-Z during the calibration procedure. Calculating the Calibration Interval The frequency of ZQ calibration commands will be dependent on system temperature and voltage drift rates. To maintain the linear output driver and termination impedances, the controller will need to issue ZQCS commands at specific intervals to account for slight system environment changes. One method for determining these timing intervals is to use the temperature (Tdriftrate) and the voltage (Vdriftrate) drift rates that the DRAM is subjected to in the application. Along with the system-specific drift rates, the design should assume maximum ODT voltage and temperature sensitivities taken from the DDR3 specification, as shown in Table 2. Table 2: ODT Voltage and Temperature Sensitivity Change Min Max Units drttdt %/ C drttdv %/mv The DRAM is capable of correcting impedance error within a 64 clock period (ZQCS command period). This number, along with the system drift rates, can be used in the formula below to calculate the calibration interval ( Tsens Tdriftrate) + ( Vsens Vdriftrate) Note: Tsens and Vsens are the maximum temperature and voltage sensitivities taken from Table 2. Values are for illustration purposes only. Refer to the component data sheet for current specifications. TN4102.fm - Rev. A 2/08 EN Micron Technology, Inc. All rights reserved
5 Conclusion Example Calculation From the system environment: Tdriftrate = 1.2 C/s Vdriftrate = 10 mv/s From the specifications in Table 2 on page 4: Tsens = 1.5%/ C Vsens =.15%/mV Time between ZQCS commands = = % 1.2 C C 1s +.15% 10mV mv 1s % s + 1.5% s = =.152s = 152ms 3.3% 1s To maintain RON and ODT accuracy, the maximum amount of time between ZQCS commands would be 152ms for the system in the example. To determine the number of clocks, divide by t CK. Conclusion The DDR3 ZQ calibration scheme provides an improvement in controlled impedance values and significantly tighter tolerances when compared with DDR2. The long calibration at initialization enables the DRAM to minimize any process variation present in the driver. Short calibrations during normal operation reduce impedance variation due to voltage and temperature drift. This accuracy helps to minimize impedance discontinuities between PCB trace and driver and improves overall signal integrity S. Federal Way, P.O. Box 6, Boise, ID , Tel: [email protected] Customer Comment Line: Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners. TN4102.fm - Rev. A 2/08 EN Micron Technology, Inc. All rights reserved.
Technical Note. Initialization Sequence for DDR SDRAM. Introduction. Initializing DDR SDRAM
TN-46-8: Initialization Sequence for DDR SDRAM Introduction Technical Note Initialization Sequence for DDR SDRAM Introduction The double data rate DDR synchronous dynamic random access memory SDRAM device
1.55V DDR2 SDRAM FBDIMM
1.55V DDR2 SDRAM FBDIMM MT18RTF25672FDZ 2GB 2GB (x72, DR) 240-Pin DDR2 SDRAM FBDIMM Features Features 240-pin, fully buffered DIMM (FBDIMM) Very low-power DDR2 operation Component configuration: 256 Meg
Technical Note DDR2 Offers New Features and Functionality
Technical Note DDR2 Offers New Features and Functionality TN-47-2 DDR2 Offers New Features/Functionality Introduction Introduction DDR2 SDRAM introduces features and functions that go beyond the DDR SDRAM
DDR3 SDRAM UDIMM MT8JTF12864A 1GB MT8JTF25664A 2GB
DDR3 SDRAM UDIMM MT8JTF12864A 1GB MT8JTF25664A 2GB 1GB, 2GB (x64, SR) 240-Pin DDR3 SDRAM UDIMM Features For component data sheets, refer to Micron s Web site: www.micron.com Features DDR3 functionality
DDR2 SDRAM SODIMM MT16HTF12864H 1GB MT16HTF25664H 2GB
Features DDR2 SDRAM SODIMM MT16HTF12864H 1GB MT16HTF25664H 2GB For component data sheets, refer to Micron s Web site: www.micron.com Features 200-pin, small outline dual in-line memory module (SODIMM)
DDR2 SDRAM SODIMM MT8HTF3264HD 256MB MT8HTF6464HD 512MB MT8HTF12864HD 1GB For component data sheets, refer to Micron s Web site: www.micron.
DDR2 SDRAM SODIMM MT8HTF3264HD 256MB MT8HTF6464HD 512MB MT8HTF12864HD 1GB For component data sheets, refer to Micron s Web site: www.micron.com 256MB, 512MB, 1GB (x64, DR): 200-Pin DDR2 SODIMM Features
DDR2 SDRAM SODIMM MT8HTF6464HDZ 512MB MT8HTF12864HDZ 1GB. Features. 512MB, 1GB (x64, DR) 200-Pin DDR2 SODIMM. Features
DDR SDRAM SODIMM MT8HTF6464HDZ 5MB MT8HTF864HDZ GB 5MB, GB (x64, DR) 00-Pin DDR SODIMM Features Features 00-pin, small-outline dual in-line memory module (SODIMM) Fast data transfer rates: PC-300, PC-400,
DDR2 SDRAM UDIMM MT18HTF6472AY 512MB MT18HTF12872AY 1GB MT18HTF25672AY 2GB MT18HTF51272AY 4GB. Features
DDR SDRAM UDIMM MT8HTF647AY 5MB MT8HTF87AY GB MT8HTF567AY GB MT8HTF57AY 4GB 5MB, GB, GB, 4GB (x7, DR) 40-Pin DDR SDRAM UDIMM Features Features 40-pin, unbuffered dual in-line memory module Fast data transfer
DDR2 SDRAM SODIMM MT16HTF12864HZ 1GB MT16HTF25664HZ 2GB MT16HTF51264HZ 4GB. Features. 1GB, 2GB, 4GB (x64, DR) 200-Pin DDR2 SDRAM SODIMM.
DDR SDRAM SODIMM MT6HTF864HZ GB MT6HTF5664HZ GB MT6HTF564HZ 4GB GB, GB, 4GB (x64, DR) 00-Pin DDR SDRAM SODIMM Features Features 00-pin, small-outline dual in-line memory module (SODIMM) Fast data transfer
DDR2 SDRAM UDIMM MT16HTF6464AY 512MB MT16HTF12864AY 1GB MT16HTF25664AY 2GB MT16HTF51264AY 4GB. Features
DDR SDRAM UDMM MT6HTF6464AY 5MB MT6HTF864AY GB MT6HTF5664AY GB MT6HTF564AY 4GB 5MB, GB, GB, 4GB (x64, DR) 40-Pin DDR UDMM Features Features 40-pin, unbuffered dual in-line memory module Fast data transfer
DDR2 SDRAM SODIMM MT4HTF6464HZ 512MB. Features. 512MB (x64, SR) 200-Pin DDR2 SODIMM. Features. Figure 1: 200-Pin SODIMM (MO-224 R/C C)
DDR2 SDRAM SODIMM MT4HTF6464HZ 512MB 512MB (x64, SR) 200-Pin DDR2 SODIMM Features Features 200-pin, small-outline dual in-line memory module (SODIMM) Fast data transfer rates: PC2-3200, PC2-4200, PC2-5300,
DDR SDRAM UDIMM MT16VDDT6464A 512MB MT16VDDT12864A 1GB MT16VDDT25664A 2GB
DDR SDRAM UDIMM MT16VDDT6464A 512MB MT16VDDT12864A 1GB MT16VDDT25664A 2GB For component data sheets, refer to Micron s Web site: www.micron.com 512MB, 1GB, 2GB (x64, DR) 184-Pin DDR SDRAM UDIMM Features
DDR2 SDRAM SODIMM MT8HTF12864HZ 1GB MT8HTF25664HZ 2GB. Features. 1GB, 2GB (x64, SR) 200-Pin DDR2 SDRAM SODIMM. Features
DDR2 SDRAM SODIMM MT8HTF12864HZ 1GB MT8HTF25664HZ 2GB 1GB, 2GB (x64, SR) 200-Pin DDR2 SDRAM SODIMM Features Features 200-pin, small-outline dual in-line memory module (SODIMM) Fast data transfer rates:
DDR SDRAM SODIMM. MT9VDDT1672H 128MB 1 MT9VDDT3272H 256MB MT9VDDT6472H 512MB For component data sheets, refer to Micron s Web site: www.micron.
Features DDR SDRAM SODIMM MT9VDDT1672H 128MB 1 MT9VDDT3272H 256MB MT9VDDT6472H 512MB For component data sheets, refer to Micron s Web site: www.micron.com Features 200-pin, small-outline dual in-line memory
Note: Data Rate (MT/s) CL = 3 CL = 4 CL = 5 CL = 6. t RCD (ns) t RP (ns) t RC (ns) t RFC (ns)
TwinDie DDR2 SDRAM MT47H512M4 32 Meg x 4 x 8 Banks x 2 Ranks MT47H256M8 16 Meg x 8 x 8 Banks x 2 Ranks 2Gb: x4, x8 TwinDie DDR2 SDRAM Features Features Uses two 1Gb Micron die Two ranks (includes dual
3.11.5.5 DDR2 Specific SDRAM Functions
JEDEC Standard No. 2-C Page..5.5..5.5 DDR2 Specific SDRAM Functions DDR2 SDRAM EMRS2 and EMRS For DDR2 SDRAMs, both bits BA and BA must be decoded for Mode/Extended Mode Register Set commands. Users must
DDR SDRAM SODIMM. MT8VDDT3264H 256MB 1 MT8VDDT6464H 512MB For component data sheets, refer to Micron s Web site: www.micron.com
SODIMM MT8VDDT3264H 256MB 1 MT8VDDT6464H 512MB For component data sheets, refer to Micron s Web site: www.micron.com 256MB, 512MB (x64, SR) 200-Pin SODIMM Features Features 200-pin, small-outline dual
Table 1 SDR to DDR Quick Reference
TECHNICAL NOTE TN-6-05 GENERAL DDR SDRAM FUNCTIONALITY INTRODUCTION The migration from single rate synchronous DRAM (SDR) to double rate synchronous DRAM (DDR) memory is upon us. Although there are many
DDR SDRAM SODIMM MT16VDDF6464H 512MB MT16VDDF12864H 1GB
SODIMM MT16VDDF6464H 512MB MT16VDDF12864H 1GB 512MB, 1GB (x64, DR) 200-Pin DDR SODIMM Features For component data sheets, refer to Micron s Web site: www.micron.com Features 200-pin, small-outline dual
ADQYF1A08. DDR2-1066G(CL6) 240-Pin O.C. U-DIMM 1GB (128M x 64-bits)
General Description ADQYF1A08 DDR2-1066G(CL6) 240-Pin O.C. U-DIMM 1GB (128M x 64-bits) The ADATA s ADQYF1A08 is a 128Mx64 bits 1GB DDR2-1066(CL6) SDRAM over clocking memory module, The SPD is programmed
DDR3 SDRAM SODIMM MT8JSF12864HZ 1GB MT8JSF25664HZ 2GB. Features. 1GB, 2GB (x64, SR) 204-Pin Halogen-Free DDR3 SDRAM SO- DIMM.
DDR3 SDRAM SO MT8JSF12864HZ 1GB MT8JSF25664HZ 2GB 1GB, 2GB (x64, SR) 204-Pin Halogen-Free DDR3 SDRAM SO- Features Features DDR3 functionality and operations supported as defined in the component data sheet
DDR3 SDRAM SODIMM MT16JSF25664HZ 2GB MT16JSF51264HZ 4GB. Features. 2GB, 4GB (x64, DR) 204-Pin Halogen-Free DDR3 SODIMM. Features
DDR3 SDRAM SODIMM MT6JSF5664HZ GB MT6JSF564HZ 4GB GB, 4GB (x64, DR) 04-Pin Halogen-Free DDR3 SODIMM Features Features DDR3 functionality and operations supported as defined in the component data sheet
DDR2 SDRAM FBDIMM MT36HTF25672F 2GB MT36HTF51272F 4GB. Features. 2GB, 4GB (x72, DR) 240-Pin DDR2 SDRAM FBDIMM. Features
SDRAM FBDIMM MT36HTF25672F 2GB MT36HTF51272F 4GB 2GB, 4GB (x72, DR) 240-Pin SDRAM FBDIMM Features Features 240-pin, fully buffered DIMM (FBDIMM) Fast data transfer rates: PC2-4200, PC2-5300, or PC2-6400
DDR3 SDRAM UDIMM MT16JTF25664AZ 2GB MT16JTF51264AZ 4GB MT16JTF1G64AZ 8GB. Features. 2GB, 4GB, 8GB (x64, DR) 240-Pin DDR3 UDIMM.
DDR3 SDRAM UDIMM MT6JTF5664AZ GB MT6JTF564AZ 4GB MT6JTFG64AZ 8GB GB, 4GB, 8GB (x64, DR) 40-Pin DDR3 UDIMM Features Features DDR3 functionality and operations supported as per component data sheet 40-pin,
GR2DR4B-EXXX/YYY/LP 1GB & 2GB DDR2 REGISTERED DIMMs (LOW PROFILE)
GENERAL DESCRIPTION The Gigaram is a 128M/256M bit x 72 DDDR2 SDRAM high density JEDEC standard ECC Registered memory module. The Gigaram consists of eighteen CMOS 128MX4 DDR2 for 1GB and thirty-six CMOS
DDR2 SDRAM FBDIMM MT9HTF6472F 512MB MT9HTF12872F 1GB. Features. 512MB, 1GB (x72, SR) 240-Pin DDR2 SDRAM FBDIMM. Features
SDRAM FBDIMM MT9HTF6472F 512MB MT9HTF12872F 1GB 512MB, 1GB (x72, SR) 240-Pin SDRAM FBDIMM Features Features 240-pin, fully buffered DIMM (FBDIMM) Fast data transfer rates: PC2-4200, PC2-5300, or PC2-6400
DDR2 SDRAM FBDIMM MT18HTF12872FD 1GB MT18HTF25672FD 2GB. Features. 1GB, 2GB (x72, DR) 240-Pin DDR2 SDRAM FBDIMM. Features
SDRAM FBDIMM MT18HTF12872FD 1GB MT18HTF25672FD 2GB 1GB, 2GB (x72, DR) 240-Pin SDRAM FBDIMM Features Features 240-pin, fully buffered dual in-line memory module (FBDIMM) Fast data transfer rates: PC2-4200,
Memory Module Specifications KVR667D2D4F5/4G. 4GB 512M x 72-Bit PC2-5300 CL5 ECC 240-Pin FBDIMM DESCRIPTION SPECIFICATIONS
Memory Module Specifications KVR667DD4F5/4G 4GB 5M x 7-Bit PC-5300 CL5 ECC 40- FBDIMM DESCRIPTION This document describes s 4GB (5M x 7-bit) PC-5300 CL5 SDRAM (Synchronous DRAM) fully buffered ECC dual
DDR SDRAM RDIMM MT36VDDF12872 1GB MT36VDDF25672 2GB
DDR SDRAM RDIMM MT36VDDF12872 1GB MT36VDDF25672 2GB For component data sheets, refer to Micron s Web site: www.micron.com 1GB, 2GB (x72, ECC, DR) 184-Pin DDR SDRAM RDIMM Features Features 184-pin, registered
DDR SDRAM Small-Outline DIMM MT16VDDF6464H 512MB MT16VDDF12864H 1GB
Features DDR SDRAM Small-Outline DIMM MT16VDDF6464H 512MB MT16VDDF12864H 1GB For the latest component data sheet, refer to the Micron's Web site: www.micron.com/products/modules Features 200-pin, small-outline,
Application Note for General PCB Design Guidelines for Mobile DRAM
SEC-Mobile-UtRAM Application Note for General PCB Design Guidelines for Mobile DRAM Version 1.0, May 2009 Samsung Electronics Copyright c 2009 Samsung Electronics Co., LTD. Copyright 2009 Samsung Electronics
Mobile SDRAM. MT48H16M16LF 4 Meg x 16 x 4 banks MT48H8M32LF 2 Meg x 32 x 4 banks
Features Mobile SDRAM MT48H6M6LF 4 Meg x 6 x 4 banks MT48H8M32LF 2 Meg x 32 x 4 banks Features Fully synchronous; all signals registered on positive edge of system clock V DD /V D =.7.95V Internal, pipelined
Table 1: Address Table
DDR SDRAM DIMM D32PB12C 512MB D32PB1GJ 1GB For the latest data sheet, please visit the Super Talent Electronics web site: www.supertalentmemory.com Features 184-pin, dual in-line memory module (DIMM) Fast
DDR3 SDRAM SODIMM MT8JSF25664HDZ 2GB. Features. 2GB (x64, DR) 204-Pin DDR3 SODIMM. Features. Figure 1: 204-Pin SODIMM (MO-268 R/C A)
DDR3 SDRAM SODIMM MT8JSF5664HDZ GB GB (x64, DR) 04-Pin DDR3 SODIMM Features Features DDR3 functionality and operations supported as defined in the component data sheet 04-pin, small-outline dual in-line
Dual DIMM DDR2 and DDR3 SDRAM Interface Design Guidelines
Dual DIMM DDR2 and DDR3 SDRAM Interface Design Guidelines May 2009 AN-444-1.1 This application note describes guidelines for implementing dual unbuffered DIMM DDR2 and DDR3 SDRAM interfaces. This application
Technical Note. DDR3 Point-to-Point Design Support. Introduction. TN-41-13: DDR3 Point-to-Point Design Support. Introduction
Technical Note DDR3 Point-to-Point Design Support TN-41-13: DDR3 Point-to-Point Design Support Introduction Introduction Point-to-point design layouts have unique memory requirements, and selecting the
DDR2 SDRAM Unbuffered DIMM MT9HTF3272A 256MB MT9HTF6472A 512MB MT9HTF12872A 1GB
256MB, 52MB, GB (x72, SR, ECC) 24-Pin DDR2 SDRAM UDIMM Features DDR2 SDRAM Unbuffered DIMM MT9HTF3272A 256MB MT9HTF6472A 52MB MT9HTF2872A GB For the latest data sheet, please refer to the Micron Web site:
DDR2 SDRAM SODIMM MT4HTF1664H 128MB MT4HTF3264H 256MB MT4HTF6464H 512MB
Features DDR2 SDRAM SODIMM MT4HTF1664H 128MB MT4HTF3264H 256MB MT4HTF6464H 512MB For component specifications, refer to Micron s Web site: www.micron.com/products/ddr2sdram Features 200-pin, small outline,
ADC-20/ADC-24 Terminal Board. User Guide DO117-5
ADC-20/ADC-24 Terminal Board User Guide DO117-5 Issues: 1) 8.11.05 Created by JB. 2) 13.12.05 p10: added 0V connection to thermocouple schematic. 3) 22.3.06 p11: removed C1. 4) 20.8.07 New logo. 5) 29.9.08
ICS650-44 SPREAD SPECTRUM CLOCK SYNTHESIZER. Description. Features. Block Diagram DATASHEET
DATASHEET ICS650-44 Description The ICS650-44 is a spread spectrum clock synthesizer intended for video projector and digital TV applications. It generates three copies of an EMI optimized 50 MHz clock
Memory Module Specifications KVR667D2D8F5/2GI. 2GB 256M x 72-Bit PC2-5300 CL5 ECC 240-Pin FBDIMM DESCRIPTION SPECIFICATIONS
Memory Module Specifications KVR667DD8F5/GI GB 56M x 7-Bit PC-5300 CL5 ECC 40- FBDIMM DESCRIPTION This document describes s GB (56M x 7-bit) PC-5300 CL5 (Synchronous DRAM) fully buffered ECC dual rank,
Technical Note FBDIMM Channel Utilization (Bandwidth and Power)
Introduction Technical Note Channel Utilization (Bandwidth and Power) Introduction Memory architectures are shifting from stub bus technology to high-speed linking. The traditional stub bus works well
D1 D2 D3 D4 D5 D6 D7. Benefits: Stable system operation No trace length matching Low PCB cost
TN-ED-: GDDR5 SGRAM Introduction Introduction Technical Note GDDR5 SGRAM Introduction Introduction This technical note describes the features and benefits of GDDR5 SGRAM. GDDR5 is the ideal DRAM device
V58C2512(804/404/164)SB HIGH PERFORMANCE 512 Mbit DDR SDRAM 4 BANKS X 16Mbit X 8 (804) 4 BANKS X 32Mbit X 4 (404) 4 BANKS X 8Mbit X 16 (164)
V58C2512804/404/164SB HIGH PERFORMAE 512 Mbit DDR SDRAM 4 BANKS X 16Mbit X 8 804 4 BANKS X 32Mbit X 4 404 4 BANKS X 8Mbit X 16 164 5 6 75 DDR400 DDR333 DDR266 Clock Cycle Time t CK2.5 6ns 6ns 7.5ns Clock
White Paper Utilizing Leveling Techniques in DDR3 SDRAM Memory Interfaces
White Paper Introduction The DDR3 SDRAM memory architectures support higher bandwidths with bus rates of 600 Mbps to 1.6 Gbps (300 to 800 MHz), 1.5V operation for lower power, and higher densities of 2
Features. DDR3 SODIMM Product Specification. Rev. 1.7 Feb. 2016
Features DDR3 functionality and operations supported as defined in the component data sheet 204pin, small-outline dual in-line memory module (SODIMM) Fast data transfer rates: DDR3-1066(PC3-8500) DDR3-1333(PC3-10600)
DDR3(L) 4GB / 8GB UDIMM
DRAM (512Mb x 8) DDR3(L) 4GB/8GB UDIMM DDR3(L) 4GB / 8GB UDIMM Features Nanya Technology Corp. DDR3(L) 4Gb B-Die JEDEC DDR3(L) Compliant 1-8n Prefetch Architecture - Differential Clock(CK/ ) and Data Strobe(/
Features. DDR3 Unbuffered DIMM Spec Sheet
Features DDR3 functionality and operations supported as defined in the component data sheet 240-pin, unbuffered dual in-line memory module (UDIMM) Fast data transfer rates: PC3-8500, PC3-10600, PC3-12800
SPREAD SPECTRUM CLOCK GENERATOR. Features
DATASHEET ICS7152 Description The ICS7152-01, -02, -11, and -12 are clock generators for EMI (Electro Magnetic Interference) reduction (see below for frequency ranges and multiplier ratios). Spectral peaks
AN111: Using 8-Bit MCUs in 5 Volt Systems
This document describes how to incorporate Silicon Lab s 8-bit EFM8 and C8051 families of devices into existing 5 V systems. When using a 3 V device in a 5 V system, the user must consider: A 3 V power
256K (32K x 8) Static RAM
256K (32K x 8) Static RAM Features High speed: 55 ns and 70 ns Voltage range: 4.5V 5.5V operation Low active power (70 ns, LL version) 275 mw (max.) Low standby power (70 ns, LL version) 28 µw (max.) Easy
Tuning DDR4 for Power and Performance. Mike Micheletti Product Manager Teledyne LeCroy
Tuning DDR4 for Power and Performance Mike Micheletti Product Manager Teledyne LeCroy Agenda Introduction DDR4 Technology Expanded role of MRS Power Features Examined Reliability Features Examined Performance
ICS514 LOCO PLL CLOCK GENERATOR. Description. Features. Block Diagram DATASHEET
DATASHEET ICS514 Description The ICS514 LOCO TM is the most cost effective way to generate a high-quality, high-frequency clock output from a 14.31818 MHz crystal or clock input. The name LOCO stands for
HANDLING SUSPEND MODE ON A USB MOUSE
APPLICATION NOTE HANDLING SUSPEND MODE ON A USB MOUSE by Microcontroller Division Application Team INTRODUCTION All USB devices must support Suspend mode. Suspend mode enables the devices to enter low-power
Tuning DDR4 for Power and Performance. Mike Micheletti Product Manager Teledyne LeCroy
Tuning DDR4 for Power and Performance Mike Micheletti Product Manager Teledyne LeCroy Agenda Introduction DDR4 Technology Expanded role of MRS Power Features Examined Reliability Features Examined Performance
Technical Note Booting from Embedded MMC
Introduction Technical Note Booting from Embedded MMC Introduction MultiMediaCard (MMC) technology provides low-cost data storage media for many mobile applications. MMC benefits include: Royalty-free
Push-Pull FET Driver with Integrated Oscillator and Clock Output
19-3662; Rev 1; 5/7 Push-Pull FET Driver with Integrated Oscillator General Description The is a +4.5V to +15V push-pull, current-fed topology driver subsystem with an integrated oscillator for use in
NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter
NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential
Thermistor Calculator. Features. General Description. Input/Output Connections. When to use a Thermistor Calculator 1.10
PSoC Creator Component Data Sheet Thermistor Calculator 1.10 Features Adaptable for majority of negative temperature coefficient (NTC) thermistors Look-Up-Table (LUT) or equation implementation methods
Parity 3. Data Rate (MT/s) CL = 6 CL = 5 CL = 4 CL = 3-80E PC2-6400 800 533 12.5 12.5 55
Features DDR2 SDRAM Registered DIMM (RDIMM) MT18HTF6472 512MB MT18HTF12872(P) 1GB MT18HTF25672(P) 2GB For component data sheets, refer to Micron's Web site: www.micron.com Features 240-pin, registered
LOW-VOLTAGE DUAL 1-OF-4 MULTIPLEXER/ DEMULTIPLEXER
LOW-VOLTAGE DUAL 1-OF-4 MULTIPLEXER/ DEMULTIPLEXER IDT74CBTLV3253 FEATURES: Functionally equivalent to QS3253 5Ω bi-directional switch connection between two ports Isolation under power-off conditions
AVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8-bit and 32-bit Microcontrollers APPLICATION NOTE
Atmel 8-bit and 32-bit Microcontrollers AVR127: Understanding ADC Parameters APPLICATION NOTE Introduction This application note explains the basic concepts of analog-to-digital converter (ADC) and the
1-Mbit (128K x 8) Static RAM
1-Mbit (128K x 8) Static RAM Features Pin- and function-compatible with CY7C109B/CY7C1009B High speed t AA = 10 ns Low active power I CC = 80 ma @ 10 ns Low CMOS standby power I SB2 = 3 ma 2.0V Data Retention
POWER-VOLTAGE MONITORING IC WITH WATCHDOG TIMER
FUJITSU SEMICONDUCTOR DATA SHEET DS04-27402-2E ASSP POWER-VOLTAGE MONITORING IC WITH WATCHDOG TIMER MB3793-42/30 DESCRIPTION The MB3793 is an integrated circuit to monitor power voltage; it incorporates
AP2428.01. A/D Converter. Analog Aspects. C500 and C166 Microcontroller Families. Microcontrollers. Application Note, V 1.
Application Note, V 1.0, May 2001 AP2428.01 A/D Converter C500 and C166 Microcontroller Families Analog Aspects Microcontrollers Never stop thinking. A/D Converter Revision History: 2001-05 V1.0 Previous
TS555. Low-power single CMOS timer. Description. Features. The TS555 is a single CMOS timer with very low consumption:
Low-power single CMOS timer Description Datasheet - production data The TS555 is a single CMOS timer with very low consumption: Features SO8 (plastic micropackage) Pin connections (top view) (I cc(typ)
PECL and LVDS Low Phase Noise VCXO (for 65-130MHz Fund Xtal) XIN XOUT N/C N/C CTRL VCON (0,0) OESEL (Pad #25) 1 (default)
Reserved BUF BUF 62 mil OESEL^ Reserved Reserved PL520-30 FEATURES 65MHz to 130MHz Fundamental Mode Crystals. Output range (no PLL): 65MHz 130MHz (3.3V). 65MHz 105MHz (2.5V). Low Injection Power for crystal
Symbol Parameters Units Frequency Min. Typ. Max. 850 MHz 14.8 16.3 17.8
Product Description Sirenza Microdevices SGC-689Z is a high performance SiGe HBT MMIC amplifier utilizing a Darlington configuration with a patented active-bias network. The active bias network provides
DDR3L SDRAM. MT41K512M4 64 Meg x 4 x 8 banks MT41K256M8 32 Meg x 8 x 8 banks MT41K128M16 16 Meg x 16 x 8 banks. Description
DDR3L SDRAM MT41K512M4 64 Meg x 4 x 8 banks MT41K256M8 32 Meg x 8 x 8 banks MT41K128M16 16 Meg x 16 x 8 banks 2Gb: x4, x8, x16 DDR3L SDRAM Description Description The 1.35V DDR3L SDRAM device is a low-voltage
TRIPLE PLL FIELD PROG. SPREAD SPECTRUM CLOCK SYNTHESIZER. Features
DATASHEET ICS280 Description The ICS280 field programmable spread spectrum clock synthesizer generates up to four high-quality, high-frequency clock outputs including multiple reference clocks from a low-frequency
UC3842/UC3843/UC3844/UC3845
SMPS Controller www.fairchildsemi.com Features Low Start up Current Maximum Duty Clamp UVLO With Hysteresis Operating Frequency up to 500KHz Description The UC3842/UC3843/UC3844/UC3845 are fixed frequencycurrent-mode
DDR2 SDRAM Registered MiniDIMM MT9HTF3272(P)K 256MB MT9HTF6472(P)K 512MB MT9HTF12872(P)K 1GB
Features DDR2 SDRAM Registered MiniDIMM MT9HTF3272(P)K 256MB MT9HTF6472(P)K 512MB MT9HTF172(P)K 1GB For component specifications, refer to Micron s Web site: www.micron.com/products/dram/ddr2 Features
Technical Note Memory Management in NAND Flash Arrays
Technical Note Memory Management in NAND Flash Arrays TN-29-28: Memory Management in NAND Flash Arrays Overview Overview NAND Flash devices have established a strong foothold in solid-state mass storage,
Spread Spectrum Clock Generator
Spread Spectrum Clock Generator DESCRIPTION is a clock generator for EMI (Electro Magnetic Interference) reduction. The peak of unnecessary (EMI) can be attenuated by making the oscillation frequency slightly
DDR3 memory technology
DDR3 memory technology Technology brief, 3 rd edition Introduction... 2 DDR3 architecture... 2 Types of DDR3 DIMMs... 2 Unbuffered and Registered DIMMs... 2 Load Reduced DIMMs... 3 LRDIMMs and rank multiplication...
AVR125: ADC of tinyavr in Single Ended Mode. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR125: ADC of tinyavr in Single Ended Mode Features Up to 10bit resolution Up to 15kSPS Auto triggered and single conversion mode Optional left adjustment for ADC result readout Driver source code included
AN_6521_035 APRIL 2009
71M6521 Energy Meter IC A Maxim Integrated Products Brand APPLICATION NOTE AN_6521_035 APRIL 2009 This document describes how to use software to compensate the real time clock (RTC) in Teridian meter chips.
High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/461-3113 FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection
a FEATURES High Common-Mode Rejection DC: 00 db typ 60 Hz: 00 db typ 20 khz: 70 db typ 40 khz: 62 db typ Low Distortion: 0.00% typ Fast Slew Rate: 9.5 V/ s typ Wide Bandwidth: 3 MHz typ Low Cost Complements
28 Volt Input - 40 Watt
Features Powers 28 volt dc-dc converters during power dropout Input voltage 12 to 40 volts Operating temperature -55 to +125 C Reduces hold-up capacitance by 80% Inhibit function Synchronization function
Hardware and Layout Design Considerations for DDR4 SDRAM Memory Interfaces
Freescale Semiconductor Document Number: AN5097 Application Note Rev. 0, 04/2015 Hardware and Layout Design Considerations for DDR4 SDRAM Memory Interfaces 1 About this document This document provides
USER GUIDE. ATWINC1500B Hardware Design Guidelines - IEEE 802.11 b/g/n IoT Module. Atmel SmartConnect. Introduction
USER GUIDE ATWINC1500B Hardware Design Guidelines - IEEE 802.11 b/g/n IoT Module Atmel SmartConnect Introduction This document details the hardware design guidelines for a customer to design the Atmel
ICS379. Quad PLL with VCXO Quick Turn Clock. Description. Features. Block Diagram
Quad PLL with VCXO Quick Turn Clock Description The ICS379 QTClock TM generates up to 9 high quality, high frequency clock outputs including a reference from a low frequency pullable crystal. It is designed
24-Bit Analog-to-Digital Converter (ADC) for Weigh Scales FEATURES S8550 VFB. Analog Supply Regulator. Input MUX. 24-bit Σ ADC. PGA Gain = 32, 64, 128
24-Bit Analog-to-Digital Converter (ADC) for Weigh Scales DESCRIPTION Based on Avia Semiconductor s patented technology, HX711 is a precision 24-bit analogto-digital converter (ADC) designed for weigh
CS4525 Power Calculator
1. OVERVIEW CS4525 Power Calculator The CS4525 Power Calculator provides many important application-specific performance numbers for the CS4525 based on user-supplied design parameters. The Power Calculator
RealSSD Embedded USB Mass Storage Drive MTFDCAE001SAF, MTFDCAE002SAF, MTFDCAE004SAF, MTFDCAE008SAF
RealSSD Embedded USB Mass Storage Drive MTFDCAE001SAF, MTFDCAE002SAF, MTFDCAE004SAF, MTFDCAE008SAF Embedded USB Mass Storage Drive Features Features Micron NAND Flash Interface: Universal Serial Bus (USB)
Features. Modulation Frequency (khz) VDD. PLL Clock Synthesizer with Spread Spectrum Circuitry GND
DATASHEET IDT5P50901/2/3/4 Description The IDT5P50901/2/3/4 is a family of 1.8V low power, spread spectrum clock generators capable of reducing EMI radiation from an input clock. Spread spectrum technique
CS0_n 1K A[9:0] 2K A[10:0] addressing/cs_n
Mobile LPDDR3 SDRAM EDF8132A1MC, EDFA232A1MA 178-Ball, Single-Channel Mobile LPDDR3 SDRAM Features Features Ultra-low-voltage core and I/O power supplies Frequency range 800 MHz (data rate: 1600 Mb/s/pin)
Application Note TMA Series
1W, SIP, Single & Dual Output DC/DC Converters Features SIP Package with Industry Standard Pinout Package Dimension: 19.5 x 10.2 x 6.1 mm (0.77 x 0.4 x 0.24 ) 5V&12V Models 19.5 x 10.2 x 7.1 mm (0.77 x
User s Manual HOW TO USE DDR SDRAM
User s Manual HOW TO USE DDR SDRAM Document No. E0234E30 (Ver.3.0) Date Published April 2002 (K) Japan URL: http://www.elpida.com Elpida Memory, Inc. 2002 INTRODUCTION This manual is intended for users
Application Note 142 August 2013. New Linear Regulators Solve Old Problems AN142-1
August 2013 New Linear Regulators Solve Old Problems Bob Dobkin, Vice President, Engineering and CTO, Linear Technology Corp. Regulators regulate but are capable of doing much more. The architecture of
2/4, 4/5/6 CLOCK GENERATION CHIP
2/4, 4/5/6 CLOCK GENERATION CHIP FEATURES 3.3V and 5V power supply option 50ps output-to-output skew 50% duty cycle outputs Synchronous enable/disable Master Reset for synchronization Internal 75KΩ input
Using Op Amps As Comparators
TUTORIAL Using Op Amps As Comparators Even though op amps and comparators may seem interchangeable at first glance there are some important differences. Comparators are designed to work open-loop, they
JEDEC STANDARD DDR2 SDRAM SPECIFICATION JESD79-2B. (Revision of JESD79-2A) JEDEC SOLID STATE TECHNOLOGY ASSOCIATION. January 2005
JEDEC STANDARD DDR2 SDRAM SPECIFICATION JESD79-2B (Revision of JESD79-2A) January 2005 JEDEC SOLID STATE TECHNOLOGY ASSOCIATION NOTICE JEDEC standards and publications contain material that has been prepared,
Low Phase Noise XO (for HF Fund. and 3 rd O.T.) XIN XOUT N/C N/C OE CTRL N/C (0,0) Pad #9 OUTSEL
Reserved BUF BUF 62 mil Reserved Reserved FEATURES 100MHz to 200MHz Fund. or 3 rd OT Crystal. Output range: 100 200MHz (no multiplication). Available outputs: PECL, or LVDS. OESEL/OECTRL for both PECL
Using Current Transformers with the 78M661x
A Maxim Integrated Products Brand Using Current Transformers with the 78M661x APPLICATION NOTE AN_661x_021 April 2010 Introduction This application note describes using current transformers (CT) with the
