Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes



Similar documents
Lecture L29-3D Rigid Body Dynamics

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L26-3D Rigid Body Dynamics: The Inertia Tensor

Let s first see how precession works in quantitative detail. The system is illustrated below: ...

Rotation: Moment of Inertia and Torque

Lecture L25-3D Rigid Body Kinematics

Lecture L5 - Other Coordinate Systems

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

8.012 Physics I: Classical Mechanics Fall 2008

Lecture L6 - Intrinsic Coordinates

Torque Analyses of a Sliding Ladder

Physics 1A Lecture 10C

Center of Gravity. We touched on this briefly in chapter 7! x 2

Columbia University Department of Physics QUALIFYING EXAMINATION

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Solution Derivations for Capa #11

Lecture L17 - Orbit Transfers and Interplanetary Trajectories

11. Rotation Translational Motion: Rotational Motion:

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 9 Rigid Body Motion in 3D

Mechanics 1: Conservation of Energy and Momentum

Unified Lecture # 4 Vectors

APPLIED MATHEMATICS ADVANCED LEVEL

Lab 7: Rotational Motion

Chapter 4. Forces and Newton s Laws of Motion. continued

Dynamics of Rotational Motion

AP Physics C. Oscillations/SHM Review Packet

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

Chapter 11. h = 5m. = mgh mv Iω 2. E f. = E i. v = 4 3 g(h h) = m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

D Alembert s principle and applications

2. Spin Chemistry and the Vector Model

2.2 Magic with complex exponentials

UNIVERSITETET I OSLO

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

SOLID MECHANICS BALANCING TUTORIAL BALANCING OF ROTATING BODIES

TOP VIEW. FBD s TOP VIEW. Examination No. 2 PROBLEM NO. 1. Given:

Isaac Newton s ( ) Laws of Motion

Angular acceleration α

Lab 8: Ballistic Pendulum

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)

Problem Set #13 Solutions

2 Session Two - Complex Numbers and Vectors

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013

Mechanical Principles

Figure 1.1 Vector A and Vector F

Orbits of the Lennard-Jones Potential

Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A.

Chapter 18 Static Equilibrium

Information regarding the Lockheed F-104 Starfighter F-104 LN-3. An article published in the Zipper Magazine #48. December Theo N.M.M.

Precession of spin and Precession of a top

Acceleration due to Gravity

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product)

Physics 201 Homework 8

Lecture L14 - Variable Mass Systems: The Rocket Equation

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

3600 s 1 h. 24 h 1 day. 1 day

Math 241, Exam 1 Information.

MODELLING A SATELLITE CONTROL SYSTEM SIMULATOR

Classical Angular Momentum. The Physics of Rotational Motion.

Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

Chapter 9 Circular Motion Dynamics

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

Physics 41 HW Set 1 Chapter 15

Rigid body dynamics using Euler s equations, Runge-Kutta and quaternions.

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

AP Physics: Rotational Dynamics 2

Chapter 6 Work and Energy

Simple Harmonic Motion

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.

Basic Principles of Inertial Navigation. Seminar on inertial navigation systems Tampere University of Technology

Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Rotational Inertia Demonstrator

Vector has a magnitude and a direction. Scalar has a magnitude

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005

Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes

Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis

FRICTION, WORK, AND THE INCLINED PLANE

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

Physics of the Atmosphere I

Introduction to Seismology Spring 2008

FLUID MECHANICS. TUTORIAL No.7 FLUID FORCES. When you have completed this tutorial you should be able to. Solve forces due to pressure difference.

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

Sample Questions for the AP Physics 1 Exam

3 Work, Power and Energy

Ph\sics 2210 Fall Novcmbcr 21 David Ailion

Mechanics. Determining the gravitational constant with the gravitation torsion balance after Cavendish. LD Physics Leaflets P

Problem Set V Solutions

Force on Moving Charges in a Magnetic Field

Transcription:

J. Peraire, S. Widnall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes 3D Rigid Body Dynamics: Euler Equations in Euler Angles In lecture 29, we introduced the Euler angles as a framework for formulating and solving the equations for conservation of angular momentum. We applied this framework to the free-body motion of a symmetrical body whose angular momentum vector was not aligned with a principal axis. The angular moment was however constant. We now apply Euler angles and Euler s equations to a slightly more general case, a top or gyroscope in the presence of gravity. We consider a top rotating about a fixed point O on a flat plane in the presence of gravity. Unlike our previous example of free-body motion, the angular momentum vector is not aligned with the Z axis, but precesses about the Z axis due to the applied moment. Whether we take the origin at the center of mass G or the fixed point O, the applied moment about the x axis is M x = Mgz G sinθ, where z G is the distance to the center of mass.. Initially, we shall not assume steady motion, but will develop Euler s equations in the Euler angle variables ψ (spin), φ (precession) and θ (nutation). 1

Referring to the figure showing the Euler angles, and referring to our study of free-body motion, we have the following relationships between the angular velocities along the x, y, z axes and the time rate of change of the Euler angles. The angular velocity vectors for θ, φ and ψ are shown in the figure. Note that these three angular velocity vectors are not orthogonal, giving rise to some cross products when the angular velocities ω i are calculated about the three principal axes. ω x = φ sin θsinφ + θ cos ψ (1) ω y = φsinθ cos φ θ sin ψ (2) ω z = φcosθ + ψ (3) 3D Rigid Body Dynamics: Euler s Equations We consider a symmetric body, appropriate for a top, for which the moments of inertia I xx = I yy = I 0 and I zz = I. The angular momentum is then H x = I 0 ω x (4) H y = I 0 ω y (5) H z = Iω z (6) For the general motion of a three-dimensional body, we have Euler s equations in body-fixed axes which rotate with the body so that the moment of inertia is constant in time. In this body-fixed coordinate system, the conservation of angular momentum is Ḣ = d ([I]{ω}) = AppliedMoments (7) dt 2

d Since we have chosen to work in a rotating coordinate system so that dt I = 0, we must pay the price, applying Coriolis theorem to obtain the time derivative of the angular velocity vector in the rotating coordinate system Ḣ = d H + Ω H, (8) dt resulting in the Euler equations expressed in the x, y, z coordinate system moving with the body. In general, we must rotate with the total angular velocity ω of the body, so that the governing equation for the conservation of angular momentum become, with Ω = ω. M x = Ḣ x H y Ω z + H z Ω y (9) M y = Ḣ y H z Ω x + H x Ω z (10) M z = Ḣ z H x Ω y + H y Ω x (11) where Ω is the rotational angular velocity of our axis system. In this case because of the symmetry of the body, we are free to choose to allow the spin velocity to rotate relative to our body-fixed axes system and fasten our axis system to φ and θ. That is, we follow the motion of the top in θ and φ but allow it to spin with angular velocity ψ relative to our coordinate system rotating with angular velocity Ω. So that Ω x = θ (12) Ω y = φsinθ (13) Ω z = φcosθ. (14) For this choice of coordinate system, we have essentially performed a rotation in φ and θ only, leading to the geometry shown. 3

In this coordinate system, since the ψ rotation did not occur, the angular velocity of the body is ω x = θ (15) ω y = φsinθ (16) ω z = φcosθ + ψ. (17) For this choice of coordinate system, we have H x = I 0 θ (18) H y = I 0 φ sin θ (19) H z = I(φ cos θ + ψ ) (20) resulting in Ḣ x = I 0 θ (21) Ḣ y = I 0 ( φsinθ + φθ cos θ (22) Ḣ z = I(φ cos θ φ θ sin θ + ψ ) (23) and Ω H in components is (I I 0 ) cos θ sin θφ 2 + I sin θφ ψ (24) (I 0 I) cos θφ θ Iψ θ (25) 0. (26) Note that the z component is zero. Since the axes chosen are principal axes, the final form of Euler s equations becomes, M x = I 0 (θ φ 2 sin θ cos θ) + Iφ sin θ(φ cos θ + ψ ) (27) M y = I 0 (φ sin θ + 2 φ θ cos θ) Iθ (φ cos θ + ψ ) (28) M z = I(ψ + φ cos θ φ θ sin θ) (29) For a top, M x = Mgz G sinθ, M y = 0 and M z = 0. These equations are unsteady and non-linear. We can gain insight by examining the character of some special solutions and constants of the motion. Steady Precession: Gyroscopic Motion We now consider the steady precession of a top about the Z axis. In terms of the variables we have defined, the top rotates with spin velocity ψ about its principal axis, and precesses with angular velocity φ while 4

maintaining a constant angle θ with the vertical axis Z. We then have φ = constant = φ 0 θ = constant = θ 0 ψ = 0 φ = 0 (30) θ = θ = 0 (31) ψ = 0 (32) For a steady precession of a top, Euler s equations reduce to φsinθ(i(φcosθ + ψ ) I 0 φcosθ) = M x = Mgsinθz G (33) Note that sinθ cancels, resulting in Iφ ψ (I 0 I)φ 2 cosθ = Mgz G (34) In the usual case for tops or gyroscopes, we have ψ >> φ so that φ 2 may be ignored. Therefore, for steady precession, the relationship between the precession angular velocity and the spin angular velocity is φ = Mgz G /(Iψ ) (35) where I = I zz, the moment of inertia of the gyroscope about its spin axis. This result is also true if θ = 0. For this motion, the angular momentum vector is not aligned with the Z axis as for free-body motion, but is in the plane of z, Z, and rotates around the Z axis according to the applied external moment which is constant and in the x direction. In the limit as ψ >> φ the angular momentum vector is essentially along the axis of rotation, z, with a slight component due to φ which can be calculated after ψ has been determined. Some attempt to sketch this is shown in the figure, but even this small correction is an approximation for ψ >> φ. For ψ >> φ, this same result can be obtained by less complex approach, but it is important to realize that this is an approximation. For the spin velocity much greater than the precessional velocity, we may take 5

the angular momentum vector as directed along the spin or z axis, H = Iωk. Then the applied moment will precess the vector with rotation rate Ω H. Since Ω = ΩK = φ K, (where K is a unit vector in the Z direction), this give a result for Ω in agreement with the previous result Ω = Mgz G /(Iω) (36) Since θ dropped out of the previous equation, for θ = 0, we again have Ω = Mgz G /(Iω). The limit ψ >> φ is the gyroscopic limit where the device behaves as a gyroscope rather than as the more general case of a top. The difference is that, for a gyroscope, ω is larger than any other rotation rate in the system, such as the angular velocity of an aircraft or spacecraft. This makes the gyroscope a useful basis for many instruments. We shall return to this issue. Unsteady Precession of a Top: Integrals of Motion For the general case of a top in a gravitational field, we have Euler s Equations. In the most general case, we will have spin ψ, precession φ and nutation θ, all varying with time. M x = I θ φ 2 sin θ cos θ) + I 0 ( φ sin θ( φcosθ + ψ ) = Mgz G sin θ (37) M y = I 0 (φ sin θ + 2 φ θ cos θ) Iθ (φ cos θ + ψ ) = 0 (38) M z = I(ψ + φ cos θ φ θ sin θ) = 0 (39) The consequences of M y = 0 and M z = 0 provide two quantities that must be constant/conserved during the motion. (We will later show that these results can also be obtained by applying Lagrange s equation to this system.) d/dt(i 0 sin 2 θφ + I cos θ( dp ψ + φcosθ)) = φ = 0 (40) d/dt(i(ψ + φ cos θ)) = dt dp ψ = 0 (41) dt It can easily be seen by inspection that differentiating p ψ and setting it equal to 0 yields the equation M z = 0. The equation from dp φ is more complex; to obtain M y requires combinations of dp φ and dp ψ. dt dt dt 6

But the conclusion is that p ψ and p ψ are constants of the motion; we will show later that these can be considered generalized momenta, derived by application of Lagrange s equation. Therefore, the spin angular velocity and the precession angular velocity are instantaneously related to the nutation angle θ through φ = p φ p ψ cos θ I 0 sin 2 θ ψ = p ψ p φ p ψ cos θ I 0 Isin 2 θ (42) (43) We may therefore write the remaining governing equation as p φ θ I + ( 0 p ψ I cosθ)( p ψ I p φ cos θ I 0 ) sin 3 gmz G = 0 (44) θ I 0 This reduces the problem to the motion of a single variable θ; once θ(t) has been determined, the constancy of p φ /I 0 and p ψ /I during the motion, give the relations between the nutation angle θ(t), the spin angle ψ(t), and precession angle φ(t). For this more complex motion, all three angles change with time, and the tip of the top traces out a motion, inscribed on the surface of a sphere for visualization, as shown in the figure. These various motions are referred to as unidirectional precession, looping precession and cuspidal motion. For more discussion of these solutions see J.B Marion and S.T. Thornton, Classical Dynamics, Chapter 11. Spinning Top by Lagrange s Equation The constancy of two momenta obtained by application of Euler s equation can be found perhaps more directly by application of Lagrange s equation. We write the kinetic energy of a spinning top as 2 T = 1/2I 0 (ω x + ω 2 2 y ) + 1/2Iω z (45) We use the full form of the angular velocities in the Euler system moving with the spinning top and obtain ω 2 = ( φ sin θsinφ + θ cos ψ) 2 (46) x ω 2 = ( φsinθ y cos φ θ sin φ) 2 (47) 2 ω z = ( φcosθ + ψ) 2 (48) 7

resulting in 2 2 ω x + ω y = φ 2 sin 2 θ + θ 2 (49) 2 ω z = ( φ cos θ + ψ ) 2. (50) Therefore the kinetic energy is T = 1/2I 0 (φ 2 sin 2 θ + θ 2 ) + 1/2I(φ cos θ + ψ ) 2 (51) For a top, the potential energy is V = Mgz G cos θ (52) so that the Lagrangian is L = 1/2I 0 (φ 2 sin 2 θ + θ 2 ) + 1/2I(φ cos θ + ψ ) 2 Mgz G cos θ. (53) We consider θ, φ and ψ to be our generalized coordinates, q i. And we move forward applying Lagrange s equation, d/dt( L/ q i) V/ q i = 0. However, since V/ q i = 0 for both q i = φ and q i = ψ, we conclude that L = (I0 sin 2 θ + I cos 2 θ)φ + Iψ cos θ = constant = p φ φ (54) L = I(ψ + φ cos θ) = constant = pφ ψ (55) We define these groupings which must be constant in time as generalized momenta, consistent with our earlier exposition of Lagrange s equations. These are of course the same constants identified using Euler s equations in equations (38-39). Lagrange s equations win! The final governing equation is obtained from d L L dt θ θ = 0 (56) resulting in in agreement with equation (44). p φ θ I + ( 0 p ψ I cosθ)( p ψ I p φ cos θ I 0 ) sin 3 gmz G = 0, (57) θ I 0 We also observe that total energy is a constant of the motion. E = 1/2 I 0 (φ 2 sin 2 θ + theta 2 ) + 1/2I 0 φ cos θ + ψ ) 2 + MHz G cos θ (58) For more discussion of these solutions see J.B Marion and S.T. Thornton, Classical Dynamics, Chapter 11. Extreme Tops: Gyroscopes Considerable simplification and practical application results if the angular velocity ω is an order of magnitude larger than angular velocity associated with the motions of a system of interest, such as an aircraft or a 8

spacecraft. In this case, the gyroscope can be used as an instrument to measure some quantity of interest in a vehicle. In order to use a gyroscope as an instrument, we first have to consider how it is mounted and affixed to the vehicle. The classic mount is called a gimbal. It permits free rotation of the gyroscope about its own axis, and depending on how complex the gimbal system is, free rotation about other axis as well. Consider the gyroscope shown in the figure. It is free to spin about its axis with angular velocity ω. It is attached to a gimbal which is free to rotate about the support as sketched. The entire apparatus is mounted on a turntable rotating with angular velocity Ω, where ω >> Ω. If we can measure the orientation of the axis of rotation of the disk relative to the turntable mount, we could possibly use this as an instrument. What does it measure? Consider that the initial angular momentum vector of the disk is in the horizontal plane. The axis of the disk is free to rotate about the horizontal axis through an angle θ. As the turntable rotates with angular velocity Ω, the axis of the disk will rotate in θ its only free direction to keep its rate of change of angular momentum zero, since it can experience no moments/torques. There are two source of changes in angular momentum, the unsteady component if θ changes with time; and the component of the angular momentum of the disk in the horizontal plane that is precessed by the turntable rotation Ω. The unsteady term is I 0 θ, where I 0 is the moment of inertia of the disk about the axis perpendicular to its spin axis; the vector is in the horizontal direction. The horizontal component of the angular momentum of the disk is Iωsinθ, where I is the moment of inertia of the disk about its axis of rotation. The rate of 9

change is also in the horizonal direction, perpendicular to Ω and of magnitude IωΩsinθ. The sum of these two terms, which must be zero, is 7/9 I 0 θ + IωΩsinθ = 0 (59) This is the familiar equation for the oscillation of a pendulum. If there is a small amount of friction in the support, the system will settle at θ = 0 and will indicate the direction of rotation of the turntable axis. This is perhaps not too interesting, since we already know the direction of rotation of the turntable. But if we have this device on a rotating body, such as the earth, it will again indicate the direction of the axis of rotation of the body, in this case the earth. We call this direction North. Thus, this application of the gyroscope could be used as a compass, often called a gyrocompass. ADDITIONAL READING J.L. Meriam and L.G. Kraige, Engineering Mechanics, DYNAMICS, 5th Edition J.B Marion and S.T. Thornton, Classical Dynamics, Chapter 11 W.T. Thompson, Introduction to Space Dynamics, Chapter 5 J. H. Ginsberg, Advanced Engineering Dynamics, Second Edition, Chapter 8 D. Kleppner, R.J. Kolenkow, An introduction to Mechanics,Chapter 7 10

MIT OpenCourseWare http://ocw.mit.edu 16.07 Dynamics Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.