# Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

Size: px
Start display at page:

Download "Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus"

Transcription

1 Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations Matrix operations Scalars and vectors Vector calculus Differentiation and integration Coordinate transformation In order to be able to specify the position of a point P we first must specify the coordinate system that will be used. The coordinates of point P will be a function of the coordinate system being used, and coordinate transformations allow us to define the relation between the coordinates of point P in different coordinate systems. Different types of coordinate systems are used for different applications. The most commonly used coordinate systems are: Cartesian coordinate systems. These systems consist out of three perpendicular coordinate axes, called the x, y, and z (or x 1, x 2, and x ) axes. The coordinates of a point P are usually specified by three coordinates (x, y, z) or (x 1, x 2, x ). Note: the coordinate axes in a Cartesian coordinate system are usually independent of time. Spherical coordinate systems. Spherical coordinate systems are most often used when the system under consideration has spherical symmetry. The origin of the coordinate system is chosen to coincide with the point of spherical symmetry. The position of a point P is determined by specifying the distance r from the origin of the coordinate system and the polar and azimuthal angles θ and φ. Note: we still need to define a Cartesian coordinate system to define the origin and the two angles. Note 2: the unit vectors associated with the position vector and the angles will be a function of time if the position described is time dependent. Cylindrical coordinate systems. Cylindrical coordinate systems are most often used when the system under consideration has cylindrical symmetry. The coordinate system is characterized by the axis of cylindrical symmetry, which is usually called the z axis. The position of a point P is determine by specifying the distance r to the z axis, the azimuthal angle φ, and the z coordinate. Note: we still need to define a Cartesian coordinate system to define the origin and the two angles. Note 2: the unit vectors associated with the - 1 -

2 position vector and the azimuthal angle will be a function of time if the position described is time dependent. A coordinate system is not uniquely defined. For example, the coordinates of a point P in a Cartesian coordinate system depend on the choice of coordinate axes. Different choices will result in different coordinates. Coordinate transformations are used to transform the coordinates between coordinate systems. There are a number of different types of coordinate transformations we will encounter in this course: translation, rotation, and the standard Lorentz transformation. In this chapter we will only focus on the rotational transformation. Consider two coordinate systems, related to each other via a transformation around the x axis, as shown in Figure 1. Figure 1. Two different coordinate systems used to represent the position of P. The relation between the coordinates of P in the two coordinate systems can be written as ' = where = cos( ', x j ) is the cosine of the angle between the -axis and the x j -axis (also called the direction cosine). The coordinate transformation is most often written in matrix notation: - 2 -

3 λ 11 λ 12 λ 1 x ' = λ 21 λ 22 λ 2 x λ 1 λ 2 λ Consider the two coordinate systems shown in Figure 1. Since the two coordinate systems are related to each other via a rotation around the x -axis we conclude that: The direction cosine between the x -axis and the x 1 - and x 2 -axes will be zero (angle is 90 ). Thus: λ 1 = λ 2 = 0. The direction cosine between the x -axis and the x -axis will be one (angle is 0 ). Thus λ = 1. The direction cosine between the x 1 - and x 2 -axes and the x -axis will be zero (angle is 90 ). Thus: λ 1 = λ 2 = 0. The direction cosines between the x 1 - and the x 2 -axis is cos(π/2-θ) and the direction cosine between the x 2 - and the x 1 -axis is cos(π/2+θ). Thus: λ 12 = cos(π/2-θ) and λ 21 = cos(π/2+θ). The direction cosines between the x 1 - and the x 1 -axes and between the x 2 - and the x 2 - axes is cos(θ). Thus: λ 11 = λ 22 = cos(θ). The coordinate transformation for this particular transformation is thus given by ( ) sin( θ) 0 cos θ x ' = sin( θ) cos( θ) 0 x Although each rotation matrix has 9 parameters, only are truly independent. This can be seen by realizing that in order to specify a rotation we need to specify the rotation axis (which requires the specification of a polar and azimuthal angle) and the rotation angle. Consider some of the relations we can determine between the parameters of the rotation matrix: The rotation preserves the length of a vector. Rotating a unit vector will produce another unit vector. This requires that λ λ λ 1 2 = 1 λ λ λ 2 2 = 1 λ λ λ 2 = 1 The rotation preserves the angle between two vectors. Since the angle between the coordinate axes is 90, the angle between these axes after transformation must also be 90. This requires that - -

4 λ 11 λ 12 + λ 21 λ 22 + λ 1 λ 2 = 0 λ 11 λ 1 + λ 21 λ 2 + λ 1 λ = 0 λ 12 λ 1 + λ 22 λ 2 + λ 2 λ = 0 These six equations can be combined in the following manner j λ kj = δ ik This equation is called the orthogonal condition, and is only satisfied if the coordinate axes are mutually perpendicular. Matrix operations When we are use the rotation matrix to carry out coordinate transformations we carry out a matrix operation. There are several important facts to remember about matrix operations: The unit matris defined as a matrix for which the diagonal values are 1 and the nondiagonal values are 0. When the unit vector operates on a vector, the result is the same vector. The inverse of a matris defined such that when it operates on the original matrix, the result is the unit matrix. A transposed matris derived from the original matrix by interchanging the rows and columns. When we combine coordinate transformations, we can obtain the resulting transformation by multiplying the rotation matrices. When we multiply rotation matrices we must realize that the order of the multiplication matters. See for example Figure 2. Figure 2. The order of transformation matters

5 A matrinversion is a transformation that results in the reflection through the origin of all axes. We can not find any series of rotations that result in an inversion. Matrix inversions are examples of the so-called improper rotations, and are characterized by a matrix with a determinant equal to -1. Proper rotations are those rotations that are characterized by a matrix with a determinant equal to +1. where Vectors and Scalars Consider the following coordinate transformation ' = λ kj = δ ik Vectors and scalars are defined based on what happens as a result of such coordinate transformations: If a quantity is unaffected by this transformation, it is called a scalar. If a set of three quantities transforms in the same manner as the coordinates of a point P, these quantities are the components of what we call a vector. Note: These definitions define scalars and vectors in a very different way from what you may have been used to. For example, the current definition of a vector makes no reference to the geometrical interpretation the vector. You will encounter parameters in Physics that look like vectors, but do not transform like vectors under certain operations (a pseudo vector is an example). Just having a magnitude and a direction is not sufficient to define a vector! Vector and scalar addition and multiplication have a number of properties in common: Both satisfy the commutative law: the order of addition does not change the final result. Both satisfy the associative law: when we determine the sum of more than two vectors or scalars, the final results will not depend on which pair of vectors or scalars we add first. The product of a scalar with a scalar transforms like a scalar (and is thus a scalar). The product of a vector with a scalar transforms like a vector (and is thus a vector)

6 The following operations are unique to vectors and do not have equivalents for scalars: Scalar product. The scalar product between two vectors A and B is defined as A B = It can be shown that the scalar product as defined above, is equal to the product of the magnitudes of the two vectors and the direction cosine between them: i A i B i A B = A i B i = ABcos(A, B) i In order to show that the scalar product behaves like a scalar, we must thus show that the scalar product between A and B is the same as the scalar product between A and B. The scalar product also satisfies the commutative and the distributive laws: A B = B A A ( B + C) = ( A B) + ( A C) Vector product. The vector product between two vectors A and B is a third vector C, defined as C = A B = ˆx 1 ˆx 2 ˆx A 1 A 2 A B 1 B 2 B In order to show that the vector product behaves like a vector, we must show that the vector product transforms like a vector under a coordinate transformation. The geometrical interpretation of the vector product is shown in Figure. The magnitude of the vector product is the area of the parallelogram defined by the vectors A and B and it is directed in a direction perpendicular to the plane defined by the vectors A and B (right-hand rule defines the direction). There are many properties of the vector product. Some of them are listed here (see the text book for a more complete listing): A B = B A A ( B C) = ( A C) B ( A B)C - 6 -

7 A ( B C) = B ( C A) = C ( A B) Figure. Properties of the vector product between the vectors A and B. Differentiation and Integration Two important operations on both scalars and vectors are differentiation and integration. These operations are used to define important mechanical quantities (such as velocity and acceleration), and a thorough understanding of operations involving differentiation and integration is required in order to succeed in this course. Scalar Differentiation. We can differentiate vectors and scalars with respect to a scalar variable s. o The result of the differentiation of a scalar with respect to another scalar variable will be another scalar. The result of the differentiation will be independent of the coordinate system. o The result of the differentiation of a vector function with respect to a scalar variable will be another vector. The resulting vector will be directed tangential to the curve that represents the function. Scalar Differentiation in different coordinate systems. An important scalar variable used in differentiations is the time t. Based on the position vector, we can obtain the velocity and acceleration vectors by differentiating the position vectors once and twice, respectively, with respect to time. If the Cartesian coordinates are being used, the axes are independent of time, and differentiation the position vector with respect to time is equivalent to differentiating the individual components with respect to time: v = r = i d dt ˆ - 7 -

8 a = v = r = i d 2 dt 2 ˆ The situation is more complicated if we are using spherical or cylindrical coordinates. Consider for example the motion of an object shown in Figure 4. Figure 4. Motion of an object described in terms of spherical coordinates. When the object moves during a time dt from P(1) to P(2), the spherical unit vectors change too, as shown in Figure 4: dˆr = ˆr ( t + dt) ˆr ( t) d ˆθ = ˆθ ( t + dt) ˆθ ( t) Based on the definition of the unit vectors in the spherical coordinate systems we can conclude: dˆr = ( dθ ) ˆθ - 8 -

9 d ˆθ = ( dθ ) ˆr By dividing each side by dt we obtain the following relations: ˆ r = dˆr dt = dθ dt ˆθ = θ ˆθ θ ˆ = d ˆθ dt = θ ˆr Using these relations we can calculate the velocity and acceleration: v = d dt ( rˆr ) = dr dθ ˆr + r ˆθ = rˆr + r θ ˆθ dt dt a = d ( rˆr + r θ ˆθ ) = r r θ 2 dt ( ) ˆr + ( r θ + 2 r θ ) ˆθ Other relations for spherical and cylindrical coordinates can be found in the textbook. Vector Differential Operator. A very important operator in this course will be the gradient operator. It operates on a scalar function and the result of the operation is a vector. Consider a scalar function φ that is a function of the Cartesian coordinates. The value of the scalar function at a point P in two different coordinate systems must be the same: φ '( x 1 ', x 2 ', x ') = φ ( x 1, x 2, x ) The coordinates in the two different coordinate systems are connected to each other via a rotation matrix: ' = When we differentiate the scalar function we find the following relation: φ ' ' = φ x j - 9 -

10 As we can see, the components of the differential of the scalar function transform like a vector, and the components can thus be considered the components of a vector we call the gradient of a scalar function: grad = = ˆx j x j Other important operators are defined in terms of the gradient operator: gradφ = φ = φ ˆx j x j diva = A = A j x j curla = A = i, j,k ε ijk A k x j ˆx 2 φ = 2 φ 2 x j The gradient of a scalar function has the following properties: o The gradient of a scalar function at a point P is directed normal to the lines or surfaces for which the scalar function is constant. o The gradient of a scalar function at a point P is directed in the direction of maximum change in the scalar function. Integration. The opposite of differentiation is integration. Both scalar and vector functions can be integrated, and we can encounter volume, surface, and line integration: o Volume integration of a vector. When we integrate a vector over a volume, the result is another vector with components obtained by volume integration of the components of the original vector. Adv = V V V V A 1 dv A 2 dv A dv

11 o Surface integration of a vector. The surface integral of a vector function is given by the integral of its component perpendicular to the surface. When we integrate a vector over a surface, the result is a scalar. A da = ( A ˆn )da S o Line integration of a vector. The line integration of a vector is given by the integral of the component of the vector along the path (does not need to be a straight line). S A ds = A i d Line Various theorems relate volume, surface, line integrals of vectors. Some of the most important theorems are: o Gauss s theorem for volume integrals: Line A da = ( A)dv S V Note: the surface integral of a vector function is replaced by the volume integral of a scalar function. o Stoke s theorem for line integrals: A ds = ( A) da Line S Stoke s theorem is most useful if it reducing a two-dimensional surface integral to a onedimensional line integral. i

### Lecture L3 - Vectors, Matrices and Coordinate Transformations

S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

### Figure 1.1 Vector A and Vector F

CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

### Unified Lecture # 4 Vectors

Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

### A vector is a directed line segment used to represent a vector quantity.

Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

### Vector surface area Differentials in an OCS

Calculus and Coordinate systems EE 311 - Lecture 17 1. Calculus and coordinate systems 2. Cartesian system 3. Cylindrical system 4. Spherical system In electromagnetics, we will often need to perform integrals

### Review of Vector Analysis in Cartesian Coordinates

R. evicky, CBE 6333 Review of Vector Analysis in Cartesian Coordinates Scalar: A quantity that has magnitude, but no direction. Examples are mass, temperature, pressure, time, distance, and real numbers.

### 13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

### Vector has a magnitude and a direction. Scalar has a magnitude

Vector has a magnitude and a direction Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude a brick on a table Vector has a magnitude and a direction Scalar has a magnitude

### v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.

3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

### v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product)

0.1 Cross Product The dot product of two vectors is a scalar, a number in R. Next we will define the cross product of two vectors in 3-space. This time the outcome will be a vector in 3-space. Definition

### Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi

Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the

### Electromagnetism - Lecture 2. Electric Fields

Electromagnetism - Lecture 2 Electric Fields Review of Vector Calculus Differential form of Gauss s Law Poisson s and Laplace s Equations Solutions of Poisson s Equation Methods of Calculating Electric

### Vector Math Computer Graphics Scott D. Anderson

Vector Math Computer Graphics Scott D. Anderson 1 Dot Product The notation v w means the dot product or scalar product or inner product of two vectors, v and w. In abstract mathematics, we can talk about

### Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

### Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

### The Matrix Elements of a 3 3 Orthogonal Matrix Revisited

Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, Three-Dimensional Proper and Improper Rotation Matrices, I provided a derivation

### A Primer on Index Notation

A Primer on John Crimaldi August 28, 2006 1. Index versus Index notation (a.k.a. Cartesian notation) is a powerful tool for manipulating multidimensional equations. However, there are times when the more

### Vector Algebra II: Scalar and Vector Products

Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define

### 5.3 The Cross Product in R 3

53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

### Chapter 6 Circular Motion

Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example

### [1] Diagonal factorization

8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:

### Gradient, Divergence and Curl in Curvilinear Coordinates

Gradient, Divergence and Curl in Curvilinear Coordinates Although cartesian orthogonal coordinates are very intuitive and easy to use, it is often found more convenient to work with other coordinate systems.

### Rotation Matrices and Homogeneous Transformations

Rotation Matrices and Homogeneous Transformations A coordinate frame in an n-dimensional space is defined by n mutually orthogonal unit vectors. In particular, for a two-dimensional (2D) space, i.e., n

### 9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of

### State of Stress at Point

State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

### 2 Session Two - Complex Numbers and Vectors

PH2011 Physics 2A Maths Revision - Session 2: Complex Numbers and Vectors 1 2 Session Two - Complex Numbers and Vectors 2.1 What is a Complex Number? The material on complex numbers should be familiar

### Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Geometrical definition Properties Expression in components. Definition in components Properties Geometrical expression.

### Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

### 9 Multiplication of Vectors: The Scalar or Dot Product

Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

### Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

### Elasticity Theory Basics

G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold

### GCE Mathematics (6360) Further Pure unit 4 (MFP4) Textbook

Version 36 klm GCE Mathematics (636) Further Pure unit 4 (MFP4) Textbook The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 364473 and a

### 1 Introduction to Matrices

1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

### Review A: Vector Analysis

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Review A: Vector Analysis A... A-0 A.1 Vectors A-2 A.1.1 Introduction A-2 A.1.2 Properties of a Vector A-2 A.1.3 Application of Vectors

### 1 Lecture 3: Operators in Quantum Mechanics

1 Lecture 3: Operators in Quantum Mechanics 1.1 Basic notions of operator algebra. In the previous lectures we have met operators: ˆx and ˆp = i h they are called fundamental operators. Many operators

### Math 241, Exam 1 Information.

Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

### Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot

### Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts

CHAPTER 13 ector Algebra Ü13.1. Basic Concepts A vector in the plane or in space is an arrow: it is determined by its length, denoted and its direction. Two arrows represent the same vector if they have

### Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

### 5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1

5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in

### Vector Spaces; the Space R n

Vector Spaces; the Space R n Vector Spaces A vector space (over the real numbers) is a set V of mathematical entities, called vectors, U, V, W, etc, in which an addition operation + is defined and in which

### Lecture L6 - Intrinsic Coordinates

S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed

### Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances

Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances It is possible to construct a matrix X of Cartesian coordinates of points in Euclidean space when we know the Euclidean

### Lecture L5 - Other Coordinate Systems

S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates

### 28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.4 Cross Product 1.4.1 Definitions The cross product is the second multiplication operation between vectors we will study. The goal behind the definition

### Review B: Coordinate Systems

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of hysics 8.02 Review B: Coordinate Systems B.1 Cartesian Coordinates... B-2 B.1.1 Infinitesimal Line Element... B-4 B.1.2 Infinitesimal Area Element...

### Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

### Scalars, Vectors and Tensors

Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector

### A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

### F Matrix Calculus F 1

F Matrix Calculus F 1 Appendix F: MATRIX CALCULUS TABLE OF CONTENTS Page F1 Introduction F 3 F2 The Derivatives of Vector Functions F 3 F21 Derivative of Vector with Respect to Vector F 3 F22 Derivative

### Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

### The Vector or Cross Product

The Vector or ross Product 1 ppendix The Vector or ross Product We saw in ppendix that the dot product of two vectors is a scalar quantity that is a maximum when the two vectors are parallel and is zero

### Addition and Subtraction of Vectors

ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b

### MAT 1341: REVIEW II SANGHOON BAEK

MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and

### Essential Mathematics for Computer Graphics fast

John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made

### Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving

### Vectors Math 122 Calculus III D Joyce, Fall 2012

Vectors Math 122 Calculus III D Joyce, Fall 2012 Vectors in the plane R 2. A vector v can be interpreted as an arro in the plane R 2 ith a certain length and a certain direction. The same vector can be

### TWO-DIMENSIONAL TRANSFORMATION

CHAPTER 2 TWO-DIMENSIONAL TRANSFORMATION 2.1 Introduction As stated earlier, Computer Aided Design consists of three components, namely, Design (Geometric Modeling), Analysis (FEA, etc), and Visualization

### Vectors and Index Notation

Vectors and Index Notation Stephen R. Addison January 12, 2004 1 Basic Vector Review 1.1 Unit Vectors We will denote a unit vector with a superscript caret, thus â denotes a unit vector. â â = 1 If x is

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form

Section 1.3 Matrix Products A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form (scalar #1)(quantity #1) + (scalar #2)(quantity #2) +...

### Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

### 1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

### 5. Orthogonal matrices

L Vandenberghe EE133A (Spring 2016) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

### 13.4 THE CROSS PRODUCT

710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product

### Section 9.1 Vectors in Two Dimensions

Section 9.1 Vectors in Two Dimensions Geometric Description of Vectors A vector in the plane is a line segment with an assigned direction. We sketch a vector as shown in the first Figure below with an

### arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014

Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic

### Vectors 2. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996.

Vectors 2 The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996. Launch Mathematica. Type

### VECTOR ALGEBRA. 10.1.1 A quantity that has magnitude as well as direction is called a vector. is given by a and is represented by a.

VECTOR ALGEBRA Chapter 10 101 Overview 1011 A quantity that has magnitude as well as direction is called a vector 101 The unit vector in the direction of a a is given y a and is represented y a 101 Position

### Vector and Tensor Algebra (including Column and Matrix Notation)

Vector and Tensor Algebra (including Column and Matrix Notation) 2 Vectors and tensors In mechanics and other fields of physics, quantities are represented by vectors and tensors. Essential manipulations

### Linear Algebra: Vectors

A Linear Algebra: Vectors A Appendix A: LINEAR ALGEBRA: VECTORS TABLE OF CONTENTS Page A Motivation A 3 A2 Vectors A 3 A2 Notational Conventions A 4 A22 Visualization A 5 A23 Special Vectors A 5 A3 Vector

### Chapter 6. Orthogonality

6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

### Solutions to Homework 10

Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

### Section V.3: Dot Product

Section V.3: Dot Product Introduction So far we have looked at operations on a single vector. There are a number of ways to combine two vectors. Vector addition and subtraction will not be covered here,

### 9 MATRICES AND TRANSFORMATIONS

9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the

### Vectors VECTOR PRODUCT. Graham S McDonald. A Tutorial Module for learning about the vector product of two vectors. Table of contents Begin Tutorial

Vectors VECTOR PRODUCT Graham S McDonald A Tutorial Module for learning about the vector product of two vectors Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk 1. Theory 2. Exercises

### 3. KINEMATICS IN TWO DIMENSIONS; VECTORS.

3. KINEMATICS IN TWO DIMENSIONS; VECTORS. Key words: Motion in Two Dimensions, Scalars, Vectors, Addition of Vectors by Graphical Methods, Tail to Tip Method, Parallelogram Method, Negative Vector, Vector

### One advantage of this algebraic approach is that we can write down

. Vectors and the dot product A vector v in R 3 is an arrow. It has a direction and a length (aka the magnitude), but the position is not important. Given a coordinate axis, where the x-axis points out

### Lecture 7. Matthew T. Mason. Mechanics of Manipulation. Lecture 7. Representing Rotation. Kinematic representation: goals, overview

Matthew T. Mason Mechanics of Manipulation Today s outline Readings, etc. We are starting chapter 3 of the text Lots of stuff online on representing rotations Murray, Li, and Sastry for matrix exponential

### A Survival Guide to Vector Calculus

A Survival Guide to Vector Calculus Aylmer Johnson When I first tried to learn about Vector Calculus, I found it a nightmare. Eventually things became clearer and I discovered that, once I had really understood

### Mathematics Notes for Class 12 chapter 10. Vector Algebra

1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is non-negative

### Complex Numbers. w = f(z) z. Examples

omple Numbers Geometrical Transformations in the omple Plane For functions of a real variable such as f( sin, g( 2 +2 etc ou are used to illustrating these geometricall, usuall on a cartesian graph. If

### 1 Symmetries of regular polyhedra

1230, notes 5 1 Symmetries of regular polyhedra Symmetry groups Recall: Group axioms: Suppose that (G, ) is a group and a, b, c are elements of G. Then (i) a b G (ii) (a b) c = a (b c) (iii) There is an

### Vectors and Scalars. AP Physics B

Vectors and Scalars P Physics Scalar SCLR is NY quantity in physics that has MGNITUDE, but NOT a direction associated with it. Magnitude numerical value with units. Scalar Example Speed Distance ge Magnitude

### Solutions for Review Problems

olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

### Brief Review of Tensors

Appendix A Brief Review of Tensors A1 Introductory Remarks In the study of particle mechanics and the mechanics of solid rigid bodies vector notation provides a convenient means for describing many physical

### Isaac Newton s (1642-1727) Laws of Motion

Big Picture 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/7/2007 Lecture 1 Newton s Laws, Cartesian and Polar Coordinates, Dynamics of a Single Particle Big Picture First

### Let s first see how precession works in quantitative detail. The system is illustrated below: ...

lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,

### Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve

Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

### 2D Geometric Transformations

2D Geometric Transformations (Chapter 5 in FVD) 2D Geometric Transformations Question: How do we represent a geometric object in the plane? Answer: For now, assume that objects consist of points and lines.

### APPENDIX D. VECTOR ANALYSIS 1. The following conventions are used in this appendix and throughout the book:

APPENDIX D. VECTOR ANALYSIS 1 Appendix D Vector Analysis The following conventions are used in this appendix and throughout the book: f, g, φ, ψ are scalar functions of x,t; A, B, C, D are vector functions

### Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate

### In order to describe motion you need to describe the following properties.

Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.

### Lecture 3: Coordinate Systems and Transformations

Lecture 3: Coordinate Systems and Transformations Topics: 1. Coordinate systems and frames 2. Change of frames 3. Affine transformations 4. Rotation, translation, scaling, and shear 5. Rotation about an

### Gauss Formulation of the gravitational forces

Chapter 1 Gauss Formulation of the gravitational forces 1.1 ome theoretical background We have seen in class the Newton s formulation of the gravitational law. Often it is interesting to describe a conservative