1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, 2007. 1.1 The Neumann Boundary Condition



Similar documents
MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Inner Product Spaces

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

The Heat Equation. Lectures INF2320 p. 1/88

Methods for Finding Bases

Vector and Matrix Norms

Scientic Computing 2013 Computer Classes: Worksheet 11: 1D FEM and boundary conditions

Lecture 25: More Rectangular Domains: Neumann Problems, mixed BC, and semi-infinite strip problems

Pacific Journal of Mathematics

Differential Operators and their Adjoint Operators

Math 4310 Handout - Quotient Vector Spaces

BANACH AND HILBERT SPACE REVIEW

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

Second Order Linear Partial Differential Equations. Part I

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION

Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3.

Section 4.4 Inner Product Spaces

An Introduction to Partial Differential Equations

Parabolic Equations. Chapter 5. Contents Well-Posed Initial-Boundary Value Problem Time Irreversibility of the Heat Equation

UNIVERSITETET I OSLO

Constrained optimization.

The one dimensional heat equation: Neumann and Robin boundary conditions

The two dimensional heat equation

8 Hyperbolic Systems of First-Order Equations

arxiv: v2 [physics.class-ph] 27 Aug 2012

0 <β 1 let u(x) u(y) kuk u := sup u(x) and [u] β := sup

Fixed Point Theorems

Real Roots of Univariate Polynomials with Real Coefficients

Math 120 Final Exam Practice Problems, Form: A

Limits and Continuity

The Mean Value Theorem


Practice with Proofs

Teoretisk Fysik KTH. Advanced QM (SI2380), test questions 1

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents

Math Practice Exam 2 with Some Solutions

1 Lecture: Integration of rational functions by decomposition

Linear and quadratic Taylor polynomials for functions of several variables.

T ( a i x i ) = a i T (x i ).

tegrals as General & Particular Solutions

1. Prove that the empty set is a subset of every set.

1. First-order Ordinary Differential Equations

1. Let P be the space of all polynomials (of one real variable and with real coefficients) with the norm

Linear Algebra Notes for Marsden and Tromba Vector Calculus

NONLOCAL PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS

Chapter 17. Orthogonal Matrices and Symmetries of Space

Similarity and Diagonalization. Similar Matrices

CHAPTER IV - BROWNIAN MOTION

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

16.3 Fredholm Operators

minimal polyonomial Example

Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions

Numerical Analysis Lecture Notes

Class Meeting # 1: Introduction to PDEs

α = u v. In other words, Orthogonal Projection

Introduction to Finite Fields (cont.)

160 CHAPTER 4. VECTOR SPACES

3. INNER PRODUCT SPACES

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails

MATH PROBLEMS, WITH SOLUTIONS

5 Scalings with differential equations

Notes on metric spaces

Metric Spaces. Chapter Metrics

1 Sufficient statistics

2.3 Convex Constrained Optimization Problems

4.5 Linear Dependence and Linear Independence

Lecture 5 Principal Minors and the Hessian

Inner product. Definition of inner product

Chapter 20. Vector Spaces and Bases

Introduction to the Finite Element Method

A characterization of trace zero symmetric nonnegative 5x5 matrices

Method of Green s Functions

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

THE EIGENVALUES OF THE LAPLACIAN ON DOMAINS WITH SMALL SLITS

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

3 Contour integrals and Cauchy s Theorem

TOPIC 4: DERIVATIVES

4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION

DIRICHLET S PROBLEM WITH ENTIRE DATA POSED ON AN ELLIPSOIDAL CYLINDER. 1. Introduction

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Conductance, the Normalized Laplacian, and Cheeger s Inequality

8.1 Examples, definitions, and basic properties

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

Math Assignment 6

L q -solutions to the Cosserat spectrum in bounded and exterior domains

Verifying Numerical Convergence Rates

An Introduction to Partial Differential Equations in the Undergraduate Curriculum

Roughness effect on the Neumann boundary condition

LS.6 Solution Matrices

arxiv:math/ v1 [math.co] 21 Feb 2002

Quotient Rings and Field Extensions

Math 319 Problem Set #3 Solution 21 February 2002

No: Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

Høgskolen i Narvik Sivilingeniørutdanningen

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n

Transcription:

MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lecture 11: Laplacian Eigenvalue Problems for General Domains III. Completeness of a Set of Eigenfunctions and the Justification of the Separation of Variables Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue May 3, 2007 1 Completeness of a Set of Eigenfunctions 1.1 The Neumann Boundary Condition In this lecture, we begin examining a generalized look at the Laplacian Eigenvalue Problem, particularly related to generalized domains. Our goal here is to establish the notion of the completeness of a set of eigenfunctions, which we then use to justify separation of variables, a tool we so far have taken for granted. Basic references for this lecture are [1, Sec. 11.3, 11.5], [2, Chap. 11] and [3, Sec. 3.3]. For more advanced treatments, see [4, Sec. 6.5]. In the earlier lectures, we used: { ν j or λ (N) j for the Neumann-Laplacian eigenvalues, ψ j or ϕ (N) j for the Neumann-Laplacian eigenfunctions. For simplicity, let us use (ν j, ψ j ) for Neumann BC and (λ j, ϕ j ) for Dirichlet BC. 1

And we number ν j in ascending order: 0 = ν 1 < ν 2 ν 3, also recall that ψ 1 (x) = const. Theorem 1.1. For the Neumann Condition, we define a trial function as any w(x) C 2 () such that w(x) 0. Then similarly to the Dirichlet case, (MP), (MP) n, RRA (see Lecture 9), and the minimax principle are all valid. Note: w C 2 () means that there is no constraint at. In particular, w may not satisfy the Neumann condition (nor the Dirichlet condition). As such, the Neumann condition is also referred to as the free condition and the Dirichlet condition is referred to as the fixed condition. Proof. Define m = min w C 2 () w 0 { w 2 w Let u C 2 () attain this minimum. Set w = u + εv, v C 2 (). The similar procedure leads to (as a result of variational calculus): ( u v + muv) dx = 0, v C 2 () (1) By Green s first identity, (1) ( u + mu)v dx = }. (i) Let s choose v(x) = v 0 (x), where { v 0 (x) = arbitrary C 2 function in, 0 on. u v ds. (2) ν Then the right hand side of (2) equals 0, which implies that u+mu = 0 inside. (ii) Since u + mu = 0 in for any v C 2 () in (2), we have u u (2) = 0 = v ds = = 0 on. ν ν 2

1.2 Completeness (in the L 2 sense) The notion of completeness for eigenfunctions is similar to that of a complete basis, which many of us have seen in an analysis class (or any class that significantly dealt with Fourier series), in which a set of eigenfunctions is complete if any arbitrary function in the space of concern can be exactly represented as a linear combination of the eigenfunctions (here, the exact in terms of the norm of that space). To this end, we begin with the following theorem to illustrate this point. Theorem 1.2. Both the Dirichlet-Laplacian (DL) and the Neumann-Laplacian (NL) eigenfunctions are complete in the L 2 sense, i.e., f L 2 (), f N c 2 nϕ n 0 as N, where cn = f, ϕ n ϕ n, ϕ n. f N d 2 nψ n 0 as N, where dn = f, ψ (3) n ψ n, ψ n. or f, ϕ n = 0, n N f 0, a.e., and f, ψ n = 0, n N f 0, a.e.. Remark: This is important since {ϕ n }, {ψ n } are not useful if they are not complete. In other words, if f L 2 (), such that f c nϕ n > 0, then {ϕ n } spans only a subspace of L 2 (). Proof. The proof depends on the following two facts: (i) The existence of the minima of the Rayleigh quotient, and (ii) λ n, ν n, as n. (will be proved in the lecture of eigenvalue asymptotics ) We ll prove (3) for all f C 2 0() for (DL) and for all f C 2 () for (NL), respectively. For an arbitrary f L 2 (), see examples in [4, Sec. 6.5] and [2, Chap. 11]. Let s start with the (DL) case. Given an arbitrary function f C 2 0(), set r N (x) = f(x) N c n ϕ n (x) C0(). 2 3

By the orthogonality, for j = 1,..., n, N r N, ϕ j = f c n ϕ n, ϕ j = f, ϕ j c j ϕ j, ϕ j = 0. So, r N satisfies the conditions of (MP) N+1. Thus, we have Now we have r N 2 = = λ N+1 = min w C0 2 (), w 0 w,ϕ j =0, j=1,...,n (f N c nϕ n ) 2 dx ( f 2 2 n w 2 w 2 r N 2 r N 2. c n f ϕ n + m By Green s first identity, we have f ϕ n dx = f ϕ n dx + So, (4) will give us and similarly r N 2 = Since λ n > 0, we have r N 2 < Therefore, ) c m c n ϕ n ϕ m n ϕ n ν f ds = λ n f, ϕ n. ϕ n ϕ n = δ mn λ n ϕ n 2. f 2 dx N c 2 nλ n ϕ n 2. f 2 dx = f 2. dx. (4) λ N+1 r N 2 r N 2 = r N 2 f 2 λ N+1. 4

As we will show later λ N+1 as N, we have that r N 2 0 as N. The Neumann case can be derived similarly. 2 Justification of the Separation of Variables via Completeness Prior to all this, we heuristically used the separation of variables technique to solve certain partial differential equations. With the idea of completeness, we can justify its use if we have that {ϕ n } n N and {ψ n } n N are a complete orthogonal basis. 2.1 Separation of the Time Variable To justify the separation of the time variable, we examine the heat equation for a more practical treatment of the justification. One can adjust this argument to validate the separation of the time variable in a more general context, but for our purposes it is not necessary. The heat conduction is modeled by: u t = k u in, u = 0 on, (5) u(x, 0) = f(x) in. A similar model can be formed for the Neumann and Robin conditions. As we know, the separation of variables leads to u(x, t) = A n e λnkt ϕ n (x). But we will prove this by assuming certain differentiability on u and u H 1 0() i.e., u 2 + u 2 <, instead of the separation of variables. For the details, see [4, Chap. 7]. Proof. Let u(x, t) be a solution to (5). For each t, u(, t) L 2 () and satisfies the Dirichlet condition. Since {ϕ n } n N is complete in L 2 (), we can expand u(, t) as 5

u(x, t) = c n (t)ϕ n (x). (6) Note that c n (t) is unknown at this point. Plugging (6) into (5) (term-by-term differentiation of the series is assumed; derivatives taken in this manner fall into the weak derivative sense), we get c n(t)ϕ n (x) = k c n (t) ϕ n (x) = kλ n c n (t)ϕ n (x). Thanks to the completeness of {ϕ n } n N, we can deduce c n(t) = kλ n c n (t). Hence we have c n (t) = A n e kλ nt, A n : arbitrary const. (7) 2.2 Separation of the Spatial Variables For simplicity, we will only justify separation of the spatial variables for the 2D rectangle = I 1 I 2 R 2 with I 1, I 2 R as shown in Figure 1. Figure 1: R 2, with I 1, I 2 R. 6

With = 2 x + 2 2 y = xx+ 2 yy, let xx ϕ 1 n(x) = α n ϕ 1 n(x) and yy ϕ 2 m(y) = β n ϕ 2 n(y) with appropriate boundary conditions for the (D), (N), or (R) cases. Theorem 2.1. The set of products {ϕ 1 n(x)ϕ 2 m(y)} (n,m) N 2 is a complete set of eigenfunctions for in with the given boundary conditions. Proof. We have ( ϕ 1 n(x)ϕ 2 m(y) ) = ( xx ϕ 1 n(x) ) ϕ 2 m(y) + ϕ 1 n(x) ( yy ϕ 2 m(y) ) = (α n + β m ) ϕ 1 n(x)ϕ 2 m(y). Hence, {(α n + β m, ϕ 1 n(x)ϕ 2 m(y))} (n,m) N 2 are eigenpairs, and we clearly see that ϕ 1 nϕ 2 m, ϕ 1 n ϕ2 m = const δ nn δ mm. We know that {ϕ j n} n N is complete in L 2 (I j ), j = 1, 2, so the question is whether this 2D eigenvalue problem has eigenfunctions other than the product form {ϕ 1 nϕ 2 m}. Suppose u is such an eigenfunction (non-product form) so that u satisfies u = λu, u = 0. (i) Suppose λ / {α n + β m } (n,m) N 2. Then u ϕ 1 nϕ 2 m via the Fundamental Theorem of orthogonality of Laplacian eigenfunctions (see Lecture 4). Thus, we have 0 = ( ) u, ϕ 1 nϕ 2 m = u(x, y)ϕ 1 n(x) dx ϕ 2 m(y) dy. I 1 I 2 By the completeness of {ϕ 2 m(y)} m N in L 2 (I 2 ), we must have I 1 u(x, y)ϕ 1 n(x) dx = 0 for y I 2, a.e.. Similarly by the completeness of {ϕ 1 n(x)} n N in L 2 (I 1 ), u(x, y) = 0, a.e.. So such a u is not an eigenfunction, which means that we must have λ {α n + β m } (n,m) N 2 i.e., λ = α n + β m for some (n, m) N 2. It is possible that α n + β m may have multipilicity greater than 1. So let {ϕ 1 nϕ 2 m} (n,m) Λ be the corresponding eigenfunctions where Λ N 2. Then set r(x, y) = u(x, y) (n,m) Λ c nm ϕ 1 n(x)ϕ 2 m(y), with c nm = u, ϕ1 nϕ 2 m ϕ 1 nϕ 2 m 2. 7

Now r(x, y) {ϕ 1 nϕ 2 m} (n,m) Λ by construction. So, r(x, y) 0 (a.e.) via a similar argument as before. Thus, u(x, y) = (n,m) Λ c nm ϕ 1 n(x)ϕ 2 m(y) Therefore, {ϕ 1 nϕ 2 m} (n,m) N 2 is complete in L 2 (). a.e. References [1] W. A. STRAUSS, Partial Differential Equations: An Introduction, Brooks/Cole Publishing Company, 1992. [2] R. YOUNG, An Introduction to Hilbert Space, Cambridge Univ. Press, 1988. [3] G. B. FOLLAND, Fourier Analysis and Its Applications, Brooks/Cole Publishing Company, 1992. [4] L. C. EVANS, Partial Differential Equations, AMS, 1998. 8