A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails
|
|
|
- Magnus Todd
- 10 years ago
- Views:
Transcription
1 12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint work with Qihe Tang) Department of Statistics and Actuarial Science The University of Iowa Page 1 of 13
2 Outline Sketch of the Proof of Theorem 1 Page 2 of 13
3 1. The following are some basic questions in insurance mathematics: how to model the claim size distribution? subexponential distribution class how to model discounted aggregate claims? constant force of interest how to describe the tail behavior of aggregate claims? value at risk, expected shortfall, etc. Page 3 of 13
4 2. Assume that there is a constant force of interest r > 0. We model discounted aggregate claims as the stochastic process D r (t) = X k e rτ k 1 (τk t), t 0, (1) k=1 in which we make the following standard assumptions: X 1, X 2,..., are i.i.d. nonnegative random variables with distribution F representing claim sizes; 0 < τ 1 < τ 2 < are claim arrival times constituting a renewal counting process N t = #{k = 1, 2,... : τ k t}, t 0, with renewal function λ t = EN t ; the sequences {X 1, X 2,...} and {τ 1, τ 2, } are mutually independent. Page 4 of 13
5 3. Definition: by F S, if A distribution F on [0, ) is said to be subexponential, denoted F 2 (x) 2F (x), x. An important property of subexponentiality: It holds for all n 2 that ( n ) ( ) Pr X k > x Pr max k > x 1 k n, x. k=1 This reveals an interesting phenomenon of subexponentiality that the tail of the maximum dominates that of the sum. It explains the relevance of subexponentiality in modeling heavy-tailed distributions. Page 5 of 13
6 Some Examples in the Class S (F = distribution, f = density) Lognormal: for < µ < and σ > 0, f(x; µ, σ 2 ) = 1 2πσx exp{ (ln x µ) 2 /(2σ 2 )}; Pareto: for α > 0, κ > 0, F (x) = Burr: for α > 0, κ > 0, τ > 0, F (x) = ( ) α κ ; κ + x ( ) α κ κ + x τ ; Page 6 of 13
7 Benktander-type I: for α > 0, β > 0, F (x) = (1 + 2(β/α) ln x) exp{ β(ln x) 2 (α + 1) ln x}; Benktander-type II: for α > 0, 0 < β < 1, F (x) = e α/β x (1 β) exp{ αx β /β}; Weibull: for c > 0, 0 < τ < 1, Loggamma: for α > 0, β > 0, f(x) = F (x) = exp{ cx τ }; αβ Γ(β) (ln x)β 1 x α 1. Page 7 of 13
8 4. Notation: Denote Λ = {t : λ t > 0} = {t : Pr (τ 1 t) > 0}. Theorem 1 If F S, then the relation Pr (D r (t) > x) t 0 F (xe rs )dλ s, x, (2) holds uniformly for all t Λ T = Λ [0, T ] for arbitrarily fixed T Λ. That is to say, Theorem 2 lim sup x t Λ T Pr (D r (t) > x) t 0 F 1 (xers )dλ s = 0. If F S, lim sup x F (vx) /F (x) < 1 for some v > 1, and P r (τ 1 > δ) = 1 for some δ > 0, then relation (2) holds uniformly for all t Λ. Page 8 of 13
9 Notation: If F has a finite expectation µ, then denote by F e (x) = 1 µ x 0 F (s)ds, x 0, the equilibrium distribution function of F. Theorem 3 Restrict {N t, t 0} to be a Poisson process with intensity λ > 0. If F S, F e S, and lim sup x F e (vx) /F e (x) < 1 for some v > 1, then the relation Pr (D r (t) > x) λ holds uniformly for all t (0, ]. t 0 F (xe rs )ds, x, (3) Page 9 of 13
10 5. Remark 1: Denote by τ(x) = inf{t : D r (t) > x} the first time when D r (t) up-crosses the level x > 0. Apply the uniform asymptotic relation (3) to get E ( e uτ(x)) λ 0 e us F (xe rs )ds, u > 0, which gives an explicit asymptotic expression for the Laplace transform of τ(x). Remark 2: Consider the limiting conditional distribution of τ (x) given (τ (x) < ) as x. For every fixed t > 0, by (3), Pr (τ (x) t τ (x) < ) = Pr (D r (t) > x) Pr (D r ( ) > x) If F R α with α > 0, then Pr (τ (x) t τ (x) < ) 1 e αrt, t 0 F (xers )ds 0 F (xe rs )ds. meaning that the limiting conditional distribution of τ (x) given (τ (x) < ) is exponential. Page 10 of 13
11 6. Sketch of the Proof of Theorem 1 Remember we want to prove (2). It is clearly that, for t Λ T, ( N ) ( n ) Pr (D r (t) > x) = + Pr X k e rτ k > x, N t = n n=1 n=n+1 k=1 =I 1 (x, t, N) + I 2 (x, t, N). Consider I 2 (x, t, N) first. We have ( t n+1 ) I 2 (x, t, N) Pr X k > xe rs Pr (N t s = n) dλ s n=n 0 k=1 C ε (1 + ε) E(1 + ε) N T 1 (NT N) t 0 F (xe rs )dλ s. Given ε small enough, E(1 + ε) N T 1 (NT N) 0 as N. Therefore, for all x > 0, lim sup I 2 (x, t, N) N t t Λ T 0 F = 0. (4) (xers ) dλ s Page 11 of 13
12 Next consider I 1 (x, t, N). It holds uniformly for all t Λ T that ( ) n n I 1 (x, t, N) Pr ( X k e rτ k > x, N t = n ) For I 12 (x, t, N), = n=1 k=1 t 0 n=n+1 k=1 F (xe rs ) dλ s I 12 (x, t, N). t I 12 (x, t, N) F (xe rs ) dλ s 0 It follows that, for all x > 0, n=n (n + 1) Pr (N T n). lim sup I 12 (x, t, N) N t t Λ T 0 F = 0. (5) (xers ) dλ s By (4) and (5), we conclude that the asymptotic relation (2) holds uniformly for all t Λ T. Page 12 of 13
13 7. Theorem 2 would look much nicer if we could get rid of the technical assumption on the distribution of the inter-arrival time τ 1. Recall (3). It strongly suggests that for F S, the relation Pr(D r ( ) > x) λ 0 F (xe rs )ds holds as x. As far as I know, this is still an open problem. Whether or not F S implies F e S is still unknown. Page 13 of 13 The End
UNIFORM ASYMPTOTICS FOR DISCOUNTED AGGREGATE CLAIMS IN DEPENDENT RISK MODELS
Applied Probability Trust 2 October 2013 UNIFORM ASYMPTOTICS FOR DISCOUNTED AGGREGATE CLAIMS IN DEPENDENT RISK MODELS YANG YANG, Nanjing Audit University, and Southeast University KAIYONG WANG, Southeast
INSURANCE RISK THEORY (Problems)
INSURANCE RISK THEORY (Problems) 1 Counting random variables 1. (Lack of memory property) Let X be a geometric distributed random variable with parameter p (, 1), (X Ge (p)). Show that for all n, m =,
Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks
1 Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks Yang Yang School of Mathematics and Statistics, Nanjing Audit University School of Economics
Maximum Likelihood Estimation
Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for
Estimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine Aït-Sahalia
Estimating the Degree of Activity of jumps in High Frequency Financial Data joint with Yacine Aït-Sahalia Aim and setting An underlying process X = (X t ) t 0, observed at equally spaced discrete times
FULL LIST OF REFEREED JOURNAL PUBLICATIONS Qihe Tang
FULL LIST OF REFEREED JOURNAL PUBLICATIONS Qihe Tang 87. Li, J.; Tang, Q. Interplay of insurance and financial risks in a discrete-time model with strongly regular variation. Bernoulli 21 (2015), no. 3,
1 Sufficient statistics
1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =
Finance 400 A. Penati - G. Pennacchi. Option Pricing
Finance 400 A. Penati - G. Pennacchi Option Pricing Earlier we derived general pricing relationships for contingent claims in terms of an equilibrium stochastic discount factor or in terms of elementary
The Exponential Distribution
21 The Exponential Distribution From Discrete-Time to Continuous-Time: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding
CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.
Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,
Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab
Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?
CATASTROPHIC RISK MANAGEMENT IN NON-LIFE INSURANCE
CATASTROPHIC RISK MANAGEMENT IN NON-LIFE INSURANCE EKONOMIKA A MANAGEMENT Valéria Skřivánková, Alena Tartaľová 1. Introduction At the end of the second millennium, a view of catastrophic events during
1 Prior Probability and Posterior Probability
Math 541: Statistical Theory II Bayesian Approach to Parameter Estimation Lecturer: Songfeng Zheng 1 Prior Probability and Posterior Probability Consider now a problem of statistical inference in which
MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...
MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................
Properties of Future Lifetime Distributions and Estimation
Properties of Future Lifetime Distributions and Estimation Harmanpreet Singh Kapoor and Kanchan Jain Abstract Distributional properties of continuous future lifetime of an individual aged x have been studied.
Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page
Errata for ASM Exam C/4 Study Manual (Sixteenth Edition) Sorted by Page 1 Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page Practice exam 1:9, 1:22, 1:29, 9:5, and 10:8
MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables
MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,
Nonparametric adaptive age replacement with a one-cycle criterion
Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: [email protected]
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x
Principle of Data Reduction
Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then
Notes on metric spaces
Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.
M/M/1 and M/M/m Queueing Systems
M/M/ and M/M/m Queueing Systems M. Veeraraghavan; March 20, 2004. Preliminaries. Kendall s notation: G/G/n/k queue G: General - can be any distribution. First letter: Arrival process; M: memoryless - exponential
Supplement to Call Centers with Delay Information: Models and Insights
Supplement to Call Centers with Delay Information: Models and Insights Oualid Jouini 1 Zeynep Akşin 2 Yves Dallery 1 1 Laboratoire Genie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92290
Private Equity Fund Valuation and Systematic Risk
An Equilibrium Approach and Empirical Evidence Axel Buchner 1, Christoph Kaserer 2, Niklas Wagner 3 Santa Clara University, March 3th 29 1 Munich University of Technology 2 Munich University of Technology
Corrected Diffusion Approximations for the Maximum of Heavy-Tailed Random Walk
Corrected Diffusion Approximations for the Maximum of Heavy-Tailed Random Walk Jose Blanchet and Peter Glynn December, 2003. Let (X n : n 1) be a sequence of independent and identically distributed random
THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok
THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE Alexer Barvinok Papers are available at http://www.math.lsa.umich.edu/ barvinok/papers.html This is a joint work with J.A. Hartigan
2WB05 Simulation Lecture 8: Generating random variables
2WB05 Simulation Lecture 8: Generating random variables Marko Boon http://www.win.tue.nl/courses/2wb05 January 7, 2013 Outline 2/36 1. How do we generate random variables? 2. Fitting distributions Generating
A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA
REVSTAT Statistical Journal Volume 4, Number 2, June 2006, 131 142 A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA Authors: Daiane Aparecida Zuanetti Departamento de Estatística, Universidade Federal de São
9.2 Summation Notation
9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a
Lecture 13: Martingales
Lecture 13: Martingales 1. Definition of a Martingale 1.1 Filtrations 1.2 Definition of a martingale and its basic properties 1.3 Sums of independent random variables and related models 1.4 Products of
Aggregate Loss Models
Aggregate Loss Models Chapter 9 Stat 477 - Loss Models Chapter 9 (Stat 477) Aggregate Loss Models Brian Hartman - BYU 1 / 22 Objectives Objectives Individual risk model Collective risk model Computing
n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...
6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence
Chapter 2: Binomial Methods and the Black-Scholes Formula
Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the
Joint Exam 1/P Sample Exam 1
Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question
1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let
Copyright c 2009 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochastic process X = {X n : n 0}, a random time τ is a discrete random variable on the same probability space as
Planning And Scheduling Maintenance Resources In A Complex System
Planning And Scheduling Maintenance Resources In A Complex System Martin Newby School of Engineering and Mathematical Sciences City University of London London m.j.newbycity.ac.uk Colin Barker QuaRCQ Group
STOCK LOANS. XUN YU ZHOU Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong 1.
Mathematical Finance, Vol. 17, No. 2 April 2007), 307 317 STOCK LOANS JIANMING XIA Center for Financial Engineering and Risk Management, Academy of Mathematics and Systems Science, Chinese Academy of Sciences
A Simple Model of Price Dispersion *
Federal Reserve Bank of Dallas Globalization and Monetary Policy Institute Working Paper No. 112 http://www.dallasfed.org/assets/documents/institute/wpapers/2012/0112.pdf A Simple Model of Price Dispersion
Hedging bounded claims with bounded outcomes
Hedging bounded claims with bounded outcomes Freddy Delbaen ETH Zürich, Department of Mathematics, CH-892 Zurich, Switzerland Abstract. We consider a financial market with two or more separate components
Pricing and Risk Management of Variable Annuity Guaranteed Benefits by Analytical Methods Longevity 10, September 3, 2014
Pricing and Risk Management of Variable Annuity Guaranteed Benefits by Analytical Methods Longevity 1, September 3, 214 Runhuan Feng, University of Illinois at Urbana-Champaign Joint work with Hans W.
Hydrodynamic Limits of Randomized Load Balancing Networks
Hydrodynamic Limits of Randomized Load Balancing Networks Kavita Ramanan and Mohammadreza Aghajani Brown University Stochastic Networks and Stochastic Geometry a conference in honour of François Baccelli
Notes on the Negative Binomial Distribution
Notes on the Negative Binomial Distribution John D. Cook October 28, 2009 Abstract These notes give several properties of the negative binomial distribution. 1. Parameterizations 2. The connection between
Master s Theory Exam Spring 2006
Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem
Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)
Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I February
Note on some explicit formulae for twin prime counting function
Notes on Number Theory and Discrete Mathematics Vol. 9, 03, No., 43 48 Note on some explicit formulae for twin prime counting function Mladen Vassilev-Missana 5 V. Hugo Str., 4 Sofia, Bulgaria e-mail:
Numerical methods for American options
Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment
VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA
VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA Csilla Csendes University of Miskolc, Hungary Department of Applied Mathematics ICAM 2010 Probability density functions A random variable X has density
Stationary random graphs on Z with prescribed iid degrees and finite mean connections
Stationary random graphs on Z with prescribed iid degrees and finite mean connections Maria Deijfen Johan Jonasson February 2006 Abstract Let F be a probability distribution with support on the non-negative
Chapter 4: Statistical Hypothesis Testing
Chapter 4: Statistical Hypothesis Testing Christophe Hurlin November 20, 2015 Christophe Hurlin () Advanced Econometrics - Master ESA November 20, 2015 1 / 225 Section 1 Introduction Christophe Hurlin
CONTINUOUS COUNTERPARTS OF POISSON AND BINOMIAL DISTRIBUTIONS AND THEIR PROPERTIES
Annales Univ. Sci. Budapest., Sect. Comp. 39 213 137 147 CONTINUOUS COUNTERPARTS OF POISSON AND BINOMIAL DISTRIBUTIONS AND THEIR PROPERTIES Andrii Ilienko Kiev, Ukraine Dedicated to the 7 th anniversary
VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS
VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS MICHAEL DRMOTA, OMER GIMENEZ, AND MARC NOY Abstract. We show that the number of vertices of a given degree k in several kinds of series-parallel labelled
Monte Carlo-based statistical methods (MASM11/FMS091)
Monte Carlo-based statistical methods (MASM11/FMS091) Jimmy Olsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I February 5, 2013 J. Olsson Monte Carlo-based
Lecture 6: Discrete & Continuous Probability and Random Variables
Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 6 Permutation Groups Let S be a nonempty set and M(S be the collection of all mappings from S into S. In this section,
Gambling Systems and Multiplication-Invariant Measures
Gambling Systems and Multiplication-Invariant Measures by Jeffrey S. Rosenthal* and Peter O. Schwartz** (May 28, 997.. Introduction. This short paper describes a surprising connection between two previously
Probability Theory. Florian Herzog. A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T..
Probability Theory A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T.. Florian Herzog 2013 Probability space Probability space A probability space W is a unique triple W = {Ω, F,
Pacific Journal of Mathematics
Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000
Benchmark Rates for XL Reinsurance Revisited: Model Comparison for the Swiss MTPL Market
Benchmark Rates for XL Reinsurance Revisited: Model Comparison for the Swiss MTPL Market W. Hürlimann 1 Abstract. We consider the dynamic stable benchmark rate model introduced in Verlaak et al. (005),
6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation
6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation Daron Acemoglu and Asu Ozdaglar MIT November 2, 2009 1 Introduction Outline The problem of cooperation Finitely-repeated prisoner s dilemma
Week 1: Introduction to Online Learning
Week 1: Introduction to Online Learning 1 Introduction This is written based on Prediction, Learning, and Games (ISBN: 2184189 / -21-8418-9 Cesa-Bianchi, Nicolo; Lugosi, Gabor 1.1 A Gentle Start Consider
Survival Distributions, Hazard Functions, Cumulative Hazards
Week 1 Survival Distributions, Hazard Functions, Cumulative Hazards 1.1 Definitions: The goals of this unit are to introduce notation, discuss ways of probabilistically describing the distribution of a
POISSON PROCESS AND INSURANCE : AN INTRODUCTION 1
POISSON PROCESS AND INSURANCE : AN INTRODUCTION S.RAMASUBRAMANIAN Statistics and Mathematics Unit Indian Statistical Institute 8th Mile, Mysore Road Bangalore - 560059. Abstract: Basic aspects of the classical
Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES. 1. Introduction
F A S C I C U L I M A T H E M A T I C I Nr 51 2013 Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES Abstract. In this article the notion of acceleration convergence of double sequences
The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].
Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real
A Coefficient of Variation for Skewed and Heavy-Tailed Insurance Losses. Michael R. Powers[ 1 ] Temple University and Tsinghua University
A Coefficient of Variation for Skewed and Heavy-Tailed Insurance Losses Michael R. Powers[ ] Temple University and Tsinghua University Thomas Y. Powers Yale University [June 2009] Abstract We propose a
Some remarks on two-asset options pricing and stochastic dependence of asset prices
Some remarks on two-asset options pricing and stochastic dependence of asset prices G. Rapuch & T. Roncalli Groupe de Recherche Opérationnelle, Crédit Lyonnais, France July 16, 001 Abstract In this short
ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE
ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE YUAN TIAN This synopsis is designed merely for keep a record of the materials covered in lectures. Please refer to your own lecture notes for all proofs.
BANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
( ) ( ) [2],[3],[4],[5],[6],[7]
( ) ( ) Lebesgue Takagi, - []., [2],[3],[4],[5],[6],[7].,. [] M. Hata and M. Yamaguti, The Takagi function and its generalization, Japan J. Appl. Math., (984), 83 99. [2] T. Sekiguchi and Y. Shiota, A
Exam C, Fall 2006 PRELIMINARY ANSWER KEY
Exam C, Fall 2006 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 E 19 B 2 D 20 D 3 B 21 A 4 C 22 A 5 A 23 E 6 D 24 E 7 B 25 D 8 C 26 A 9 E 27 C 10 D 28 C 11 E 29 C 12 B 30 B 13 C 31 C 14
LECTURE 15: AMERICAN OPTIONS
LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These
15 Kuhn -Tucker conditions
5 Kuhn -Tucker conditions Consider a version of the consumer problem in which quasilinear utility x 2 + 4 x 2 is maximised subject to x +x 2 =. Mechanically applying the Lagrange multiplier/common slopes
MAINTAINED SYSTEMS. Harry G. Kwatny. Department of Mechanical Engineering & Mechanics Drexel University ENGINEERING RELIABILITY INTRODUCTION
MAINTAINED SYSTEMS Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University OUTLINE MAINTE MAINTE MAINTAINED UNITS Maintenance can be employed in two different manners: Preventive
Statistics 100A Homework 8 Solutions
Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the one-half
Notes from Week 1: Algorithms for sequential prediction
CS 683 Learning, Games, and Electronic Markets Spring 2007 Notes from Week 1: Algorithms for sequential prediction Instructor: Robert Kleinberg 22-26 Jan 2007 1 Introduction In this course we will be looking
A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS
A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS Eusebio GÓMEZ, Miguel A. GÓMEZ-VILLEGAS and J. Miguel MARÍN Abstract In this paper it is taken up a revision and characterization of the class of
Section 5.1 Continuous Random Variables: Introduction
Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,
LogNormal stock-price models in Exams MFE/3 and C/4
Making sense of... LogNormal stock-price models in Exams MFE/3 and C/4 James W. Daniel Austin Actuarial Seminars http://www.actuarialseminars.com June 26, 2008 c Copyright 2007 by James W. Daniel; reproduction
Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents
Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents William H. Sandholm January 6, 22 O.. Imitative protocols, mean dynamics, and equilibrium selection In this section, we consider
SPARE PARTS INVENTORY SYSTEMS UNDER AN INCREASING FAILURE RATE DEMAND INTERVAL DISTRIBUTION
SPARE PARS INVENORY SYSEMS UNDER AN INCREASING FAILURE RAE DEMAND INERVAL DISRIBUION Safa Saidane 1, M. Zied Babai 2, M. Salah Aguir 3, Ouajdi Korbaa 4 1 National School of Computer Sciences (unisia),
Practice problems for Homework 11 - Point Estimation
Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:
No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics
No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results
An Introduction to Basic Statistics and Probability
An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random
Notes on Continuous Random Variables
Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes
Health insurance pricing in Spain: Consequences and alternatives
Health insurance pricing in Spain: Consequences and alternatives Anna Castañer, M. Mercè Claramunt and Carmen Ribas Dept. Matemàtica Econòmica, Financera i Actuarial Universitat de Barcelona Abstract For
A HYBRID GENETIC ALGORITHM FOR THE MAXIMUM LIKELIHOOD ESTIMATION OF MODELS WITH MULTIPLE EQUILIBRIA: A FIRST REPORT
New Mathematics and Natural Computation Vol. 1, No. 2 (2005) 295 303 c World Scientific Publishing Company A HYBRID GENETIC ALGORITHM FOR THE MAXIMUM LIKELIHOOD ESTIMATION OF MODELS WITH MULTIPLE EQUILIBRIA:
