SiGe:C BiCMOS Technologies for RF Automotive Application



Similar documents
TowerJazz High Performance SiGe BiCMOS processes

Advanced VLSI Design CMOS Processing Technology

STMicroelectronics. Deep Sub-Micron Processes 130nm, 65 nm, 40nm, 28nm CMOS, 28nm FDSOI. SOI Processes 130nm, 65nm. SiGe 130nm

High-Frequency Integrated Circuits

AN Single stage 5-6 GHz WLAN LNA with BFU730F. document information

Local Oscillator for FM broadcast band MHz

mm-wave Sensor and Communications Components at 60, 94, and 122 GHz in SiGe BiCMOS Technology

DISCRETE SEMICONDUCTORS DATA SHEET. BFQ34 NPN 4 GHz wideband transistor. Product specification File under Discrete Semiconductors, SC14

AT Up to 6 GHz Low Noise Silicon Bipolar Transistor

Development Status of Next Generation Automotive Radar in EU

Product Description. Ordering Information. GaAs HBT GaAs MESFET InGaP HBT

Low Noise, Matched Dual PNP Transistor MAT03

VCO Phase noise. Characterizing Phase Noise

Chapter 6. CMOS Class-E Power Amplifier

P D Operating Junction Temperature T J 200 C Storage Temperature Range T stg 65 to +150 C

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1

Symbol Parameters Units Frequency Min. Typ. Max. 850 MHz

Features. Applications. Description. Blockdiagram. K-LC1a RADAR TRANSCEIVER. Datasheet

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P

LOW POWER FM TRANSMITTER SYSTEM

NPN wideband silicon RF transistor

Application Note No. 143

Application Note SAW-Components

HA-5104/883. Low Noise, High Performance, Quad Operational Amplifier. Features. Description. Applications. Ordering Information. Pinout.

INTELLIGENT INTERACTIVE SYNTHESIZER SURFACE MOUNT MODEL: MFSH

CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS

TS321 Low Power Single Operational Amplifier

A CW QRP Transceiver for 20 m band. How it works I'll describe individually the three boards and the relative tuning devices.

Data Sheet. HFBR-0600Z Series SERCOS Fiber Optic Transmitters and Receivers

AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)

Build your own solution with UMS

NPN wideband silicon germanium RF transistor

NBB-402. RoHS Compliant & Pb-Free Product. Typical Applications

EVALUATION KIT AVAILABLE Single-Chip Global Positioning System Receiver Front-End BIAS CBIAS GND GND RFIN GND GND IFSEL

P2N2222ARL1G. Amplifier Transistors. NPN Silicon. These are Pb Free Devices* Features.

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication

Optocoupler, Phototransistor Output, with Base Connection

AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level

DISCRETE SEMICONDUCTORS DATA SHEET

Case Study Competition Be an engineer of the future! Innovating cars using the latest instrumentation!

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

BC107/ BC108/ BC109 Low Power Bipolar Transistors

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept

mm-wave System-On-Chip & System-in-Package Design for 122 GHz Radar Sensors

FM TRANSMITTER & RECEIVER HYBRID MODULES. FM-RTFQ SERIES FM-RRFQ SERIES. Transmitter. Receiver. Applications

A 1 to 2 GHz, 50 Watt Push-Pull Power Amplifier Using SiC MESFETs. high RF power. densities and cor- capacitances per watt.

TLI4946. Datasheet TLI4946K, TLI4946-2K, TLI4946-2L. Sense and Control. May 2009

SiGe:C Low Noise High Linearity Amplifier

VARIABLE-frequency oscillators (VFO s) phase locked

MPS2222, MPS2222A. NPN Silicon. Pb Free Packages are Available* Features MAXIMUM RATINGS MARKING DIAGRAMS THERMAL CHARACTERISTICS

FM Radio Transmitter & Receiver Modules

Amplifier Teaching Aid

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

28V, 2A Buck Constant Current Switching Regulator for White LED

Transistor Amplifiers

NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator

Fiber Optics. Integrated Photo Detector Receiver for Plastic Fiber Plastic Connector Housing SFH551/1-1 SFH551/1-1V

+5 V Powered RS-232/RS-422 Transceiver AD7306

Features. Applications. Transmitter. Receiver. General Description MINIATURE MODULE. QM MODULATION OPTIMAL RANGE 1000m

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Module 7 : I/O PADs Lecture 33 : I/O PADs

BJT Circuit Configurations

it4036f 120-ps Wideband Phase Delay Description Features Device Diagram Timing Diagram

NPN Darlington Power Silicon Transistor Qualified per MIL-PRF-19500/472

S-Band Low Noise Amplifier Using the ATF Application Note G004

UTBB-FDSOI 28nm : RF Ultra Low Power technology for IoT

Silicon Schottky Barrier Diode Bondable Chips and Beam Leads

ipimms is an industry primary impedance measurement service supplied and maintained by UK s National Physical Laboratory. [4]

76-77 GHz RF Transmitter Front-end for W-band Radar Applications

PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages

RF IF. The World Leader in High-Performance Signal Processing Solutions. RF Power Amplifiers. May 7, 2003

2N4921G, 2N4922G, 2N4923G. Medium-Power Plastic NPN Silicon Transistors 1.0 AMPERE GENERAL PURPOSE POWER TRANSISTORS VOLTS, 30 WATTS

Signal Types and Terminations

A 2.4GHz Cascode CMOS Low Noise Amplifier

2N4401. General Purpose Transistors. NPN Silicon. Pb Free Packages are Available* Features MAXIMUM RATINGS THERMAL CHARACTERISTICS

LTCC Short Range Radar Sensor for Automotive Applications at 24 GHz

How To Use A Sound Card With A Subsonic Sound Card

Bipolar Transistor Amplifiers

BIPOLAR ANALOG INTEGRATED CIRCUIT

4N25 Phototransistor Optocoupler General Purpose Type

3.3 kv IGBT Modules. Takeharu Koga Yasuhiko Arita Takatoshi Kobayashi. 1. Introduction. 2. Specifications of 3.3 kv IGBT Module

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Precision, Unity-Gain Differential Amplifier AMP03

Push-Pull FET Driver with Integrated Oscillator and Clock Output

SG2525A SG3525A REGULATING PULSE WIDTH MODULATORS

Common Emitter BJT Amplifier Design Current Mirror Design

Chapter 8 Differential and Multistage Amplifiers. EE 3120 Microelectronics II

DATA SHEET. MMBT3904 NPN switching transistor DISCRETE SEMICONDUCTORS. Product data sheet Supersedes data of 2002 Oct Feb 03.

Lecture 060 Push-Pull Output Stages (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

MITSUBISHI RF MOSFET MODULE RA07H4047M

Optocoupler, Phototransistor Output, with Base Connection

Product Datasheet P MHz RF Powerharvester Receiver

DISCRETE SEMICONDUCTORS DATA SHEET BC856; BC857; BC858

CMOS 5GHz WLAN a/n/ac RFeIC WITH PA, LNA, AND SPDT

Bipolar Junction Transistors

FM TRANSMITTER & RECEIVER HYBRID MODULES. FM-RRFQ SERIES. Transmitter. Receiver. Applications

2N3903, 2N3904. General Purpose Transistors. NPN Silicon. Features Pb Free Package May be Available. The G Suffix Denotes a Pb Free Lead Finish

Transcription:

SiGe:C BiCMOS Technologies for RF Automotive Application Gerhard Fischer, Srdjan Glisic, Bernd Heinemann, Dieter Knoll, Wolfgang Winkler IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany

Outline IHP Frankfurt (Oder) Application: automotive radar sensors IHP technologies: Low-cost SiGe:C BiCMOS for 24 GHz front-end receiver High-performance SiGe:C BiCMOS for 77/79 GHz transmitter High temperature stability and reliability

IHP Frankfurt (Oder) Founded 1972 Institut für Halbleiterphysik of the East German Academy of Science 1991 Member of the Blaue Liste (later Leibniz Society) 1999: Innovations for High Performance Microelectronics 900 m² class 1 clean room, staff: ~ 200 co-workers 4 core competencies: Materials research, Si process technology, rf circuit design, wireless communication systems

IHP Technology Portfolio Platform 0.25 µm CMOS with 4 or 5 Al metal layers, 1 ff/µm² MIM capacitors (> 1 ff/µm² high-k MIM in development), different resistors SiGe:C hetero bipolar transistors (HBT) Technologies Technology SGB25VD SG25H1 SG25H2 SG25H3 Object Low-Cost BiCMOS w/ LV/MV/HV HBTs High Performance BiCMOS Complementary BiCMOS w/ npn + pnp HBTs Multi Purpose BiCMOS w/ LV/MV/HV HBTs 0.13 µm BiCMOS technology with f T /f max > 200 GHz is in development technologies are offered in multi-wafer project (MPW) shuttle service

Application: Automotive Radar Sensors Short range radar (SRR) Frequency: 24 GHz or 79 GHz Bandwidth: up to 4 GHz Distance: 0 30 m Parking aid Blind spot detection Long range radar (LRR) for Autonomous Cruise Control (ACC) Precrash Backup parking aid ACC for Stop & Go Rear crash collision warning Frequency: 76.5 GHz Bandwidth: 200 MHz Distance: > 5m Collision warning Collision mitigation Blind spot detection Lane change assistent Radar technology allows control of car surroundings enables new applications for passive and active safety total system needs up to 8 SRR and 1 ACC sensors

Application: Radar Front-end Transceiver Example: 77/79 GHz with high-performance BiCMOS Example: 24 GHz with low-cost BiCMOS No technology modification for automotive application!

Example 24 GHz LNA Low-Cost SiGe:C BiCMOS

Low-Cost Technology SGB25VD Platform 0.25 µm CMOS with 4 metal layers (3 µm thick 5 th Al layer optional) 3 SiGe:C hetero bipolar transistors (HBT) Devices (selection) Device ft/fmax/bvceo [GHz/GHz/V] Low-voltage HBT f T /f max = 75/90 GHz, BV CEO = 2.4V, BV CBO = 7.7V Medium-voltage HBT High-voltage HBT NMOS Varactor MIM Capacity Resistors Predefined Inductors f T /f max = 45/90 GHz, BV CEO = 4V, BV CBO = 17V f T /f max = 25/70 GHz, BV CEO = 7V, BV CBO > 20V C = 2.3 7 ff/µm², Q = 25 75 @ 5GHz C = 1 ff/µm², BV > 30 V R S = 310 Ohm (p + -poly) R S = 2000 Ohm (low doped poly) L = 0.94 23.8 nh

Medium-Voltage HBT: X-section Features of SGB25VD bipolar module Only shallow trench isolation (STI) SiO 2 L-Spacer Si/SiGe:C/Si Epi Layer Poly-Si Gate Layer CoSi 3 HBT types by collector implant variation HBT integration after gate stack deposition 1-mask HBT module Poly-Si CMP for emitter external base isolation Emitter area: 0.42x0.84 µm² SIC Coll. Well Deep P Implant (SC) n-well S/D SIC: Selectively implanted collector S/D: Source/drain implant

Medium-Voltage HBT: RF Characteristics f T, f max [ GHz ] 120 110 100 90 80 70 60 50 40 30 20 10 0 V CE = 2.5V 4x(0.42x0.84) µm² 16x(0.42x0.84) µm² 0.1 1 10 IC [ ma ] HBT emitter area variants in design kit: A E = N xy x 0.42 µm x L Emitter N xy = 1 16 L Emitter = 0.84 3.36 µm

Medium-Voltage HBT: RF Noise Fmin (db) 2.5 2.4 2.3 2.2 2.1 @24GHz 10 8 6 4 2 Associated Gain [ db ] V CE = 3V Emitter area = 16x0.42x0.84 µm² Minimum noise figure: @ 2 GHz ~ 0.5 db @ 24 GHz ~ 2.1 db 2.0 0 1 2 Collector Current (ma) 0

24GHz Receiver Front End: LNA Noise Figure [ db ] 14 12 10 8 6 F min F 50Ω 4 2 0 5 10 15 20 25 30 Frequency [ GHz ] 22 20 18 16 14 12 10 8 6 4 Associated Gain [ db ] V CC = 5V I CC = 6.3 ma @ 24 GHz: F min ~ F 50Ω ~ 4.5 db G a = 16 db

Example 77/79 GHz VCO High-Performance SiGe:C BiCMOS

High-Performance Technology SG25H1 Platform 0.25 µm CMOS with 4 metal layers (3 µm thick 5 th Al layer optional) 2 SiGe:C hetero bipolar transistors (HBT) Devices (selection) Device HBT npn200 HBT npn201 ft/fmax/bvceo [GHz/GHz/V] f T /f max = 190/190 GHz, BV CEO = 1.9V, BV CBO = 4.5V f T /f max = 180/220 GHz, BV CEO = 1.9V, BV CBO = 4.5V

High-Performance HBT: X-section Features of SG25H1 bipolar module CoSi emitter contact Only shallow trench isolation (STI) HBT integration after gate module Uniform active area 30nm boron doped Si 0.8 Ge 0.2 C 0.002 n doped poly crystalline Si emitter CoSi base contact poly crystalline SiGe:C extrinsic base CoSi collector contact Combination of selective and differential Si/SiGe:C/Si epitaxy Drawn emitter area: 0.21x0.84 µm² (npn200) 0.18x0.84 µm² (npn201) SiO 2 Trench STI S/D n + SiO 2 SIC n + n doped Si collector 2 µm bipolar window p - Si substrate SiO 2 SIC: Selectively implanted collector S/D: Source/drain implant

High-Performance HBT: DC Gummel Characteristic I B, I C [A] 10 0 250 10-1 V CB = 0V 10-2 10-3 200 10-4 10-5 150 10-6 10-7 100 10-8 10-9 HBT 10-10 npn200 50 10-11 npn201 10-12 0.4 0.5 0.6 0.7 0.8 0.9 0 1.0 V BE [V] Beta

High Performance HBT: DC Output Characteristic 5.0 4.0 npn200 I C / Emitter [ ma ] 3.0 2.0 1.0 maximum f T 0.0 I E = 0 (-0.5mA) -4mA -1.0-1 0 1 2 3 V CB [ V ] Breakdown voltage with soft breakdown criterion: IC = 100 na BVCBo = 4.5V IC = 10 ua BVCBo = 5.5V

High Performance HBT: Transit Frequency f T f T [ GHz ] 220 200 180 160 140 120 100 80 60 40 20 0 Extrapolation @ 30 GHz V CE = 1.5V 1 10 I C [ ma ] HBT npn200 npn201 f max [ GHz ] 220 200 180 160 140 120 100 220 80 200 180 60 160 40 140 20 120 0 100 80 60 40 20 0 Extrapolation @ 30 GHz V CE = 1.5V HBT npn200 npn201 1 10 220 200 180 160 140 120 100 80 60 40 20 0 I C [ ma ]

High Performance HBT: Gate Delay Time τ RO Gate Delay Time (ps) 7 6 5 4 3 npn201 A E = 0.18x0.84µm 2 npn200 A E = 0.21x0.84µm 2 T= 300K ΔV= 300mV V EE = -2.5V Standard Extr. Base Elevated Extr. Base Optimization τ RO Elevated extrinsic base (Rücker et al., IEDM 2003) Collector pedestal 3.2 ps (Heinemann et al., IEDM 2004) 1 10 2 0 Current per Gate (ma) 2000 2001 2002 2003 2004 Gate Delay Time [ ps ] 14 12 10 8 6 4 Year Hitachi IBM Infineon IHP

Application: Radar Project KOKON 2004 formation of BMBF funded project KOKON Goals: Investigation of systems for automotive radar sensors at 76 81 GHz Definition of SiGe technology for - long range radar (LRR) system at 76 77 GHz - ultra-wide band short range radar (UWB-SRR) at 77 81 GHz Development of circuits for cost-efficient LRR and SRR sensors Prototyping a full electronic cocoon ( KOKON ) around the car IHP is subcontractor of Infineon and Atmel in BMBF project KOKON Homepage: www.kokon-project.com

Application: Radar Core Circuit Core circuit for radar signal generation: Voltage controlled oscillator (VCO) + power amplifier (PA) Realization in KOKON: SiGe:C bipolar process (Infineon) with BC varactors SiGe:C BiCMOS process (IHP) with NMOS accumulation varactors Goal: Analysis of impact of technological platform on circuit performance 0.8 mm 0.5 mm IHP 77 GHz VCO + PA + metal 5 transmission line inductors differential design 1-stage output buffer 2-stage output buffer (tbd)

Application: Radar Specifications VCO + PA Parameter Center frequency Tuning sensitivity Tuning range Output power Phase noise Amplitude noise Target 77 GHz ~ 2 GHz/V 10 GHz +16 dbm (40 mw) 2-stage output buffer < -75 dbc/hz @ 100kHz Offset < -160 dbc/hz @ 10 khz Offset Other boundary conditions: Environmental temperature Supply voltage - 40 C... +125 C + 5.5V, VCC

Application: Radar Properties VCO Oscillator Frequency [ GHz ] 78 77 76 75 74 73 72 71 70 69 2 4 6 8 Standard deviation over wafer (10 chips): +/- 0.14 GHZ tuning range ~ 8 GHz Standard deviation over wafer (10 chips): +/- 0.67 dbm 2 4 6 8 1 0-1 -2-3 -4 Output Power [ dbm ] Technology: SG25H1 (w/ npn200) Output power (singleended measurement): -1.2 +/- 0.4 dbm Control Voltage [ V ]

Application: Radar Properties VCO + 1-stage Buffer Oscillator Frequency [ GHz ] 82 81 80 79 78 77 76 75 74 73 tuning range ~ 7 GHz with npn201 with npn200 2 3 4 5 Control Voltage [ V ] 16 15 14 13 12 Output Power [ dbm ] Technology: SG25H1 (w/ npn201 and npn200) f max difference: 20 GHz Output Power difference: ~ 0.8 dbm Full output power 1-stage buffer ~ 14 dbm 2-stage buffer ~ 18 dbm (expected)

Application: Radar Properties VCO + 1-stage Buffer 17 250 Technology: SG25H1 (w/ npn201) P out [ db ] 16 15 14 200 150 I CC [ ma ] HBT: 8x0.18x0.84 µm 2 Maximum size in design kit P out > 16 dbm @ V CC = 6.5V 13 100 5 6 7 Supply Voltage V CC [ V ] Power dissipation @ V CC = 5.5 V P diss = 900 mw

High Temperature Stability and Reliability

Application: KOKON Sensitivity Analysis Oscillator Frequency f osc [ GHz ] 81 80 79 78 base resistance collector base capacity forward transit time ~ 1/f T oxide thickness (inductor) BC capacity 77 (CBC) Forward transit time (TF) 76-60% -40% -20% 0% 20% 40% 60% Relative Change Changing inductivity or SPICE parameters in simulation leads to following sensitivities: Parameter Oxide thickness (Inductor) Base resistance (RB) MHz / %shift -135-45 -38-35.5

Application: KOKON Sensitivity Analysis Parameter Simulation MHz / %shift Measurement %shift / 100K Shift of f osc [MHz/100K] Oxide thickness - 135 + 0.1% -13.5 (Inductor) Base resistance -45 + 5% - 225 (RB) BC capacity (CBC) -38 + 4% - 150 Forward transit time (TF) -35.5 + 25% - 890 Sum ~ - 1300 Estimation gives a reduction of oscillator frequency of at least 1.3 GHz/100K

Temperature Stability VCO Oscillator Frequency [ GHz ] 80 79 78 77 76 75 74 73 tuning range temperature shift 72-40 -20 0 20 40 60 80 100 120 140 Temperature [ C ] Chip A Chip B Chip C Technology: SG25H1 (npn200) Temperature shift Δf = f Osz,RT f Osz,125 C ~ 1.8 GHz

Oscillator Operation Transistor Reliability I C / Emitter [ ma ] 5.0 4.0 3.0 2.0 1.0 npn200 maximum f T area of oscillator operations 0.0 I E = 0 (-0.5mA) -4mA -1.0-1 0 1 2 3 4 V CB [ V ] Technology: SG25H1 (npn200) Stress tests in work T = 125 C, t > 100h 1) high-current : VCB = 0V, IE = 4xIE @ max. f T 2) mixed-mode : VCB = 1.5V, IE = 2x IE @ max. f T 3) high-voltage : VCB = 3V, IE = 0.25x IE @ max. f T

High Current Stress I Base Current, Collector Current [ A ] 10 0 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 t = 0 t = 67h 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 V BE [ V ] 250 200 150 100 Technology: IHP SG25H1 (npn200) Beta Stress conditions T = 125 C, I E = - 20mA, V CB = 0V 50 Stress current density: 37mA/µm² Stress time: 67h Beta degradation 0 @ V BE = 0.7V: 9% @ V BE = 0.8V: 5% @ V BE = 0.9V: 4%

High Current Stress II 200 t = 0 t = 67h 200 Technology: IHP SG25H1 (npn200) 150 150 f T [ GHz ] 100 100 f max [ GHz ] 50 50 Stress conditions T = 125 C, I 0 0 E = - 20mA, V CB = 0V 0.7 0.8 0.9 1.0 1.1 Stress current density: 37 ma/µm² V BE [ V ] Stress time: 67h No RF performance degradation

Mixed-Mode Stress I Base Current, Collector Current [ A ] 10 0 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 t = 0 t = 160h 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 V BE [ V ] 250 200 150 100 Beta Technology: IHP SG25H1 (npn200) Stress conditions 50 T = 125 C, I E = - 10mA, V CB = 1.5V 0 Stress time: 160h Very low Beta degradation!

Mixed-Mode-Stress II 200 150 t = 0 t = 160h 200 150 Technology: IHP SG25H1 (npn200) f T [ GHz ] 100 100 f max [ GHz ] 50 50 0 0 0.7 0.8 0.9 1.0 1.1 V BE [ V ] Stress conditions T = 125 C, I E = - 10mA, V CB = 1.5V Stress time: 160h No RF performance degradation!

High-Voltage Stress I Current [ A ] 10 0 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 T = 125 C, t = 97h T = 27 C, t = 12h 1.0 0.8 0.6 0.4 0.2 0.0 0.4 0.5 0.6 0.7 0.8 V BE [ V ] Beta / Beta (Maximum) Stress conditions J E = - 5.2mA/µm², V CB = 3V Degradation by trap creation in EB spacer region: e - e - h + V C > 3V

High Voltage Stress II Relative Beta Degradation @ V BE = 0.7V 10% 1% 1 10 100 1000 10000 AE = 0.21x0.84 µm² AE = 0.21x1.26 µm² AE = 0.21x1.68 µm² AE = 0.21x3.36 µm² 25% 20% 15% 0.1% 1 10 100 1000 10000 10% Stress Time [ s ] Beta Degradation (t=12h) Stress conditions T = 27 C, J E = - 5.2 ma/µm², V CB = 3V Stress time: 12h 10 11 12 Emitter Perimeter/Area [µm -1 ]

High Voltage Stress III 200 150 t = 0 t = 63h t = 97h 200 150 Technology: IHP SG25H1 (npn200) f T [ GHz ] 100 100 f max [ GHz ] 50 50 0 0 0.7 0.8 0.9 1.0 1.1 V BE [ V ] Stress conditions T = 125 C, I E = - 1.3mA, V CB = 3V Stress time: 97h No RF performance degradation

Resume IHP has portfolio of rf SiGe:C BiCMOS technologies Low-cost technology High-performance technology 0.13 µm technology in development Automotive radar application examples 24 GHz LNA 77/79 GHz VCO Investigation of high temperature sensitivity and reliability necessity for automotive application