10 Discrete-Time Fourier Series



Similar documents
1.1 Discrete-Time Fourier Transform

9 Fourier Transform Properties

2 Signals and Systems: Part I

6 Systems Represented by Differential and Difference Equations

3 Signals and Systems: Part II

PYKC Jan Lecture 1 Slide 1

SGN-1158 Introduction to Signal Processing Test. Solutions

T = 10-' s. p(t)= ( (t-nt), T= 3. n=-oo. Figure P16.2

24 Butterworth Filters

UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE Fall 2009 Linear Systems Fundamentals

LS.6 Solution Matrices

7. Beats. sin( + λ) + sin( λ) = 2 cos(λ) sin( )

Frequency Response of FIR Filters

UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE Fall 2010 Linear Systems Fundamentals

(Refer Slide Time: 01:11-01:27)

Discrete-Time Signals and Systems

Analog and Digital Signals, Time and Frequency Representation of Signals

SIGNAL PROCESSING & SIMULATION NEWSLETTER

Partial Fractions: Undetermined Coefficients

Analysis/resynthesis with the short time Fourier transform

Class Note for Signals and Systems. Stanley Chan University of California, San Diego

LECTURE 4. Last time: Lecture outline

Signal Detection C H A P T E R SIGNAL DETECTION AS HYPOTHESIS TESTING

x = + x 2 + x

The continuous and discrete Fourier transforms

NETWORK STRUCTURES FOR IIR SYSTEMS. Solution 12.1

5. Orthogonal matrices

Methods for Finding Bases

Lab 1. The Fourier Transform

4 Convolution. Solutions to Recommended Problems

Core Maths C1. Revision Notes

Lecture 7 ELE 301: Signals and Systems

Arithmetic and Algebra of Matrices

Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis

Notes on Determinant

13 MATH FACTS a = The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

Introduction to Frequency Domain Processing 1

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

Lecture 8 ELE 301: Signals and Systems

Solving Systems of Linear Equations

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction

Chapter 8 - Power Density Spectrum

Frequency Domain and Fourier Transforms

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.

NRZ Bandwidth - HF Cutoff vs. SNR

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

Systems of Linear Equations

min ǫ = E{e 2 [n]}. (11.2)

Solving Systems of Linear Equations

TMA4213/4215 Matematikk 4M/N Vår 2013

Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure 2. R. Figure 1.

Lectures 5-6: Taylor Series

1 Lecture: Integration of rational functions by decomposition

The Method of Partial Fractions Math 121 Calculus II Spring 2015

Trigonometric functions and sound

The Algorithms of Speech Recognition, Programming and Simulating in MATLAB

Probability and Random Variables. Generation of random variables (r.v.)

Introduction to Complex Numbers in Physics/Engineering

Introduction to Complex Fourier Series

8 Continuous-Time Fourier Transform

f x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y

MAT 1341: REVIEW II SANGHOON BAEK

Convolution. The Delta Function and Impulse Response

Signals and Systems. Richard Baraniuk NONRETURNABLE NO REFUNDS, EXCHANGES, OR CREDIT ON ANY COURSE PACKETS

Introduction to IQ-demodulation of RF-data

Auto-Tuning Using Fourier Coefficients

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay

TTT4120 Digital Signal Processing Suggested Solution to Exam Fall 2008

Taylor and Maclaurin Series

The Calculation of G rms

Sampling and Interpolation. Yao Wang Polytechnic University, Brooklyn, NY11201

Chapter 12 Modal Decomposition of State-Space Models 12.1 Introduction The solutions obtained in previous chapters, whether in time domain or transfor

1 Determinants and the Solvability of Linear Systems

chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective

Equivalent Circuits and Transfer Functions

How To Understand The Nyquist Sampling Theorem

Computing Fourier Series and Power Spectrum with MATLAB

San José State University Department of Electrical Engineering EE 112, Linear Systems, Spring 2010

MATH2210 Notebook 1 Fall Semester 2016/ MATH2210 Notebook Solving Systems of Linear Equations... 3

L9: Cepstral analysis

CONVOLUTION Digital Signal Processing

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Solving Linear Systems, Continued and The Inverse of a Matrix

Linearly Independent Sets and Linearly Dependent Sets

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Wavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let)

ENCOURAGING THE INTEGRATION OF COMPLEX NUMBERS IN UNDERGRADUATE ORDINARY DIFFERENTIAL EQUATIONS

Figure 1.1 Vector A and Vector F

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

Pulsed Fourier Transform NMR The rotating frame of reference. The NMR Experiment. The Rotating Frame of Reference.

Solving Systems of Linear Equations Using Matrices

α = u v. In other words, Orthogonal Projection

Transcription:

10 Discrete-Time Fourier Series In this and the next lecture we parallel for discrete time the discussion of the last three lectures for continuous time. Specifically, we consider the representation of discrete-time signals through a decomposition as a linear combination of complex exponentials. For periodic signals this representation becomes the discrete-time Fourier series, and for aperiodic signals it becomes the discrete-time Fourier transform. The motivation for representing discrete-time signals as a linear combination of complex exponentials is identical in both continuous time and discrete time. Complex exponentials are eigenfunctions of linear, time-invariant systems, and consequently the effect of an LTI system on each of these basic signals is simply a (complex) amplitude change. Thus with signals decomposed in this way, an LTI system is completely characterized by a spectrum of scale factors which it applies at each frequency. In representing discrete-time periodic signals through the Fourier series, we again use harmonically related complex exponentials with fundamental frequencies that are integer multiples of the fundamental frequency of the periodic sequence to be represented. However, as we discussed in Lecture 2, an important distinction between continuous-time and discrete-time complex exponentials is that in the discrete-time case, they are unique only as the frequency variable spans a range of 27r. Beyond that, we simply see the same complex exponentials repeated over and over. Consequently, when we consider representing a periodic sequence with period N as a linear combination of complex exponentials of the form efkon with o = 27r/N, there are only N distinct complex exponentials of this type available to use, i.e., efoon is periodic in k with period N. (Of course, it is also periodic in n with period N.) In many ways, this simplifies the analysis since for discrete time the representation involves only N Fourier series coefficients, and thus determining the coefficients from the sequence corresponds to solving N equations in N unknowns. The resulting analysis equation is a summation very similar in form to the synthesis equation and suggests a strong duality between the analysis and synthesis equations for the discrete-time Fourier transform. Because the basic 10-1

Signals and Systems 10-2 complex exponentials repeat periodically in frequency, two alternative interpretations arise for the behavior of the Fourier series coefficients. One interpretation is that there are only N coefficients. The second is that the sequence representing the Fourier series coefficients can run on indefinitely but repeats periodically. Both interpretations, of course, are equivalent because in either case there are only N unique Fourier series coefficients. Partly to retain a duality between a periodic sequence and the sequence representing its Fourier series coefficients, it is typically preferable to think of the Fourier series coefficients as a periodic sequence with period N, that is, the same period as the time sequence x(n). This periodicity is illustrated in this lecture through several examples. Partly in anticipation of the fact that we will want to follow an approach similar to that used in the continuous-time case for a Fourier decomposition of aperiodic signals, it is useful to represent the Fourier series coefficients as samples of an envelope. This envelope is determined by the behavior of the sequence over one period but is not dependent on the specific value of the period. As the period of the sequence increases, with the nonzero content in the period remaining the same, the Fourier series coefficients are samples of the same envelope function with increasingly finer spacing along the frequency axis (specifically, a spacing of 2ir/N where N is the period). Consequently, as the period approaches infinity, this envelope function corresponds to a Fourier representation of the aperiodic signal corresponding to one period. This is, then, the Fourier transform of the aperiodic signal. The discrete-time Fourier transform developed as we have just described corresponds to a decomposition of an aperiodic signal as a linear combination of a continuum of complex exponentials. The synthesis equation is then the limiting form of the Fourier series sum, specifically an integral. The analysis equation is the same one we used previously in obtaining the envelope of the Fourier series coefficients. Here we see that while there was a duality in the expressions between the discrete-time Fourier series analysis and synthesis equations, the duality is lost in the discrete-time Fourier transform since the synthesis equation is now an integral and the analysis equation a summation. This represents one difference between the discrete-time Fourier transform and the continuous-time Fourier transform. Another important difference is that the discrete-time Fourier transform is always a periodic function of frequency. Consequently, it is completely defined by its behavior over a frequency range of 27r in contrast to the continuous-time Fourier transform, which extends over an infinite frequency range. Suggested Reading Section 5.0, Introduction, pages 291-293 Section 5.1, The Response of Discrete-Time LTI Systems to Complex Exponentials, pages 293-294 Section 5.2, Representation of Periodic Signals: The Discrete-Time Fourier Series, pages 294-306 Section 5.3, Representation of Aperiodic Signals: The Discrete-Time Fourier Transform, pages 306-314 Section 5.4, Periodic Signals and the Discrete-Time Fourier Transform, pages 314-321

Discrete-Time Fourier Series 10-3 MARKERBOARD 10.11 Note that dt should be added at the end of the last equation in column 1. MARKERBOARD 10.2

Signals and Systems 10-4 Example 5.2: x[n] = 1 + sin 0 n + 3 cos 2 0 n + cos (2E2 0 n + ) 10.1 Example of the Fourier series coefficients for a discrete-time periodic signal. Re ak iak 3 "1-- 0/ N 0 N k N 0 N k <%ak *-IIi I:, a1 ir/2 - -0-TI --I - N k 10.2 Comparison of the Fourier series coefficients for a discrete-time periodic square wave and a continuous-time periodic square wave.

Discrete-Time Fourier Series 10-5 Na. 10.3 Illustration of the discrete-time Fourier series coefficients as samples of an envelope. Transparencies 10.3-10.5 demonstrate that as the period increases, the envelope remains the same and the samples representing the Fourier series coefficients become more closely spaced. Here, N = 10. Nao Envelope: sin[(2n 1 + 1) 92/2] sin (W/2) -F.1N - 20 10.4 N = 20. 0 27r 20

Signals and Systems 10-6 10.5 N = 40. Nao Envelope: sin[(2n 1 + 1) 92/2] sin (92/2) 2i Afr~r. N - 40 10.6 A review of the approach to developing a Fourier representation for aperiodic signals. 1. x(t) APERIODIC - construct periodic signal X(t) for which one period is x(t) - x(t) has a Fourier series - as period of x(t) increases, x(t) -- x(t) and Fourier series of x(t) Fourier Transform of x(t)

Discrete-Time Fourier Series 10-7 1. x[n] APERIODIC - construct periodic signal x[n]for which one period is x[n] - x[n]has a Fourier series 10.7 A summary of the approach to be used to obtain a Fourier representation of discrete-time aperiodic signals. - as period of x[n] increases, i I[n] -.-x[n] and Fourier series of x[n] -- Fourier Transform of x[n] FOURIER REPRESENTATION OF APERIODIC SIGNALS inj nttittt.?tttattttttl??t????ttr... *jaattt?? -N -N 1 0 N 1 N n 10.8 Representation of an aperiodic signal as the limiting form of a periodic signal with the period increasing. x[n] = x[n] In I < 2 As N -+oo x[n] o x[n] - let N -+ oo to represent x[n] - use Fourier series to represent x[n]

Signals and Systems 10-8 Example 5.3: 10.9 Transparencies 10.9-10.11 illustrate how the Fourier series coefficients for a periodic signal approach the continuous envelope function as the period increases. Here, N = 10. [Example 5.3 from the text.] / / 6 0 9-1 Nao -NI?.. - N 0 -N -N, 0 N, Nai Envelope: sin[ (2N 1 + 1) /2] sin (W/2) UN - W n N = 10 0 2r 10 Example 5.3: 10.10 N = 20. [Example 5.3 from the text.] -N -N, I* A'.ft - - 1N -.-- n / / Nao -'T NNai Envelope: sin( [(2N 1 + 1) R/2] sin (fl/2) N - 20 I 0 2w 20

Discrete-Time Fourier Series 10-9 -N -11 N1 N11?... -N 1 0 N 1 N 10.11 N = 40. [Example 5.3 from the text.] / / Na 1 Envelope: sin [(2NI + 1) 2/2) sin (U/2) N - 40 As N in] = I k=<n> X(kg2o) = N ak = oo Fourier Transform: 1XWkn) e jke2gn go n= N/2 n / x[n] e-jk on n=-n/2 10.12 Limiting form of the Fourier series as the period approaches infinity. [The upper limit in the summation in the second equation should be n = (N/2) - 1.] x[n] = 2'r 2ir X(92) ein" d92 +oo X(92) = x[n] e-in" n =- oc

Signals and Systems 10-10 DISCRETE-TIME FOURIER TRANSFORM 10.13 The analysis and synthesis equations for the discrete-time Fourier transform. [As corrected here, x[n], not x(t), has Fourier transform X(D).] x [n] - X(E2) en" d 2 7 X (2) = + o n=-oo x[n] synthesis analysis x[n] < XG X(2) = e X(2) + j Im I X(&)4 = X(S2)1 ei"(2) 10.14 The discrete-time Fourier transform for a rectangular pulse. x [n] I oi -2 0 2 n X (W) -27r 27r 1-2

Discrete-Time Fourier Series 10-11 x[n]= an u[n] O < a < 1 10.15 The discrete-time Fourier transform for an exponential sequence. X( W) +00 n=-00 an u[n]e-inn n= 0 1 1 -a 2 an e-j2n x[n] X(2) anu[n] 1a e-iw 0<a<1 1 X() I -2r -7 0 27r 92 10.16 Illustration of the magnitude and phase of the discrete-time Fourier transform for an exponential sequence. [Note that a is real.], X(W) tan~ (a/v'y 2)

Signals and Systems 10-12 2. R(t) PERIODIC, x(t) REPRESENTS ONE PERIOD - Fourier series coefficients of 2(t) 10.17 A review of some relationships for the Fourier transform associated with periodic signals. = (1/T) times samples of Fourier. transform of x(t) 3. 2*(t) PERIODIC -Fourier transform of x(t) defined as impulse train: X(W) = +oo k=i-oo0 27rak 6 (o - ko) 2. '[n] PERIODIC, x[n] REPRESENTS ONE PERIOD - Fourier series coefficients of 2[n] 10.18 A summary of some relationships for the Fourier transform associated with periodic sequences. = (1/ N ) times samples of Fourier transform of x [n] 3. X[n] PERIODIC -Fourier transform of x[n]defined as impulse train: X(n) = 27rak 5 (2 - k2 0 )

Discrete-Time Fourier Series 10-13 -N Fourier series coefficients equal 1 - times samples of Fourier transform of one period 10.19 The relationship??tyatttt? x~nj between the Fourier series coefficients of a flt??,??tttt periodic signal and the Fourier transform of one period. -N, 0 N 1 N n x [n] 6 one period of x[n] x [n] x [n] o ak 0X (9) k N 2irk N 10.20 Illustration of the relationship in Transparency 10.19.

n Signals and Systems 10-14 10.21 A summary of some relationships for the Fourier transform associated with periodic sequences. [Transparency 10.18 repeated] 2. *[n] PERIODIC, x[n] REPRESENTS ONE PERIOD - Fourier series coefficients of *[n] = (1/ N ) times samples of Fourier transform of x [n] 3. #x[n] PERIODIC -Fourier transform of xin]defined as impulse train: X (9) = 27rak 5(2 - k2 0 ) 10.22 Illustration of the Fourier series coefficients and the Fourier transform for a periodic square wave...1111i N 11111 1 0 N 1 ~T1111" -11111 0 1 0 20

MIT OpenCourseWare http://ocw.mit.edu Resource: Signals and Systems Professor Alan V. Oppenheim The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource. For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.