T = 10-' s. p(t)= ( (t-nt), T= 3. n=-oo. Figure P16.2
|
|
|
- Jeffrey Leonard
- 9 years ago
- Views:
Transcription
1 16 Sampling Recommended Problems P16.1 The sequence x[n] = (-1)' is obtained by sampling the continuous-time sinusoidal signal x(t) = cos oot at 1-ms intervals, i.e., cos(oont) = (-1)", Determine three distinct possible values of wo. T = 10-' s P16.2 Consider the system in Figure P16.2. cos wot ux xp(t) p(t)= ( (t-nt), T= 3 Figure P16.2 (a) Sketch X,(w) for -97 : co 5 9x for the following values of wo. (i) o = 7r (ii) wo = 27 (iii) wo = 3w (iv) wo = 57 (b) For which of the preceding values of wo is x,(t) identical? n=-oo P16.3 In the system in Figure P16.3, x(t) is sampled with a periodic impulse train, and a reconstructed signal x,(t) is obtained from the samples by lowpass filtering. xpx(t) x(t) x rx(t) T T T p(t)=( 5(t - nt) n=- F P H(w) Figure P16.3 P16-1
2 Signals and Systems P16-2 The sampling period T is 1 ms, and x(t) is a sinusoidal signal of the form x(t) cos(27rfot + 0). For each of the following choices of fo and 0, determine x,(t). (a) fo = 250 Hz, 0 = 7r/4 (b) fo = 750 Hz, 0 = -r/2 (c) fo = 500 Hz, 0 = r/2 P16.4 Figure P16.4 gives a system in which the sampling signal is an impulse train with alternating sign. The Fourier transform of the input signal is as indicated in the figure. p(t) x(t) 1 X xp (t) H(w) y (t) p(t) --1 2A X(w) WCM W 1--) -37r -7r 7r 37r i A Figure P16.4 (a) For A < 7r/ 2 wm, sketch the Fourier transform of x,(t) and y(t). (b) For A < r/ 2 M, determine a system that will recover x(t) from xp(t). (c) For A < 7r/ 2 wm, determine a system that will recover x(t) from y(t). (d) What is the maximum value of A in relation to om for which x(t) can be recovered from either x,(t) or y(t).
3 Sampling / Problems P16-3 P16.5 Consider the system in Figure P x(t) X t xr (t) ( 6(t -nt) n=f-r P 2T Figure P Figures P and P contain several Fourier transforms of x(t) and x,(t). For each input spectrum X(w) in Figure P16.5-2, identify the correct output spectrum X,(w) from Figure P X(w) -W X(w) -2W 2W X(w) (c) -W w X(W) -2W -W W 2W Figure P16.5-2
4 Signals and Systems P16-4 Xr(Wj) (i) -W W (ii) Xr(W) -W W Ci (iii) Xr(W) -2W 2W Co (iv) Xr(W) -W w Figure P P16.6 Suppose we sample a sinusoidal signal and then process the resultant impulse train, as shown in Figure P cos Wt Q(W) p(t) = n = 6(t -nt) Figure P16.6-1
5 Sampling / Problems P16-5 The result of our processing is a value Q.As w changes, Q may change. Determine which of the plots in Figures P and P are possible candidates for the variation of Q as a function of w. Q(M) 27n T Figure P Q () Figure P Optional Problems P16.7 The sampling theorem as we have derived it states that a signal x(t) must be sampled at a rate greater than its bandwidth (or, equivalently, a rate greater than twice its highest frequency). This implies that if x(t) has a spectrum as indicated in Figure P16.7-1, then x(t) must be sampled at a rate greater than 2W 2. Since the signal has most of its energy concentrated in a narrow band, it seems reasonable to expect that a sampling rate lower than twice the highest frequency could be used. A signal whose energy is concentrated in a frequency band is often referred to as a bandpass signal.there are a variety of techniques for sampling such signals, and these techniques are generally referred to as bandpasssampling.
6 Signals and Systems P16-6 X(Co) -W2 1Cj 1 2 Figure P To examine the possibility of sampling a bandpass signal at a rate less than the total bandwidth, consider the system shown in Figure P Assuming that wi > (W 2 - wi), find the maximum value of T and the values of the constants A, W", and Wb such that x,(t) = x(t). p(t) = 1 6(t -.n =--o nt) XrM p(t) - Wb -Ca a jb Figure P P16.8 In Problem P16.7 we considered one procedure for bandpass sampling and reconstruction. Another procedure when x(t) is real consists of using complex modulation followed by sampling. The sampling system is shown in Figure P
7 Sampling / Problems P16-7 x (t) ix x(t) HI X2( r in x, (t) elwot Figure P P (t) With x(t) real and with X(w) nonzero only for wi < wi < W 2, the modulating frequency wo is chosen as wo = 2(w 1 + W 2 ), and the lowpass filter H 1 (w) has cutoff frequency 1(c2-2 (a) For X(w) as shown in Figure P , sketch X,(w). (b) Determine the maximum sampling period T such that x(t) is recoverable from xp(t). (c) Determine a system to recover x(t) from x,(t). X(W) I Figure P W2 -Wi 1 W2 P16.9 Given the system in Figure P and the Fourier transforms in Figure P16.9-2, determine A and find the maximum value of T in terms of W such that y(t) = x(t) if s(t) is the impulse train s(t) = (t - nt) n = -o s(t) x (t) yat) n (t) Figure P16.9-1
8 Signals and Systems P16-8 X(W) N(w) -W W -2W -W W 2W Figure P P16.10 Consider the system in Figure P x(t) 10X 1 X1 xr(t) p(t)= E F (t-nt) -W R4 ~W="-r T Figure P Given the Fourier transform of x,(t) in Figure P , sketch the Fourier transform of two different signals x(t) that could have generated x,(t). Xr(G) 1 -W _5W _W W 5W w Figure P P16.11 Consider the system in Figure P16.11.
9 Sampling / Problems P16-9 H(w) x(t) Xr(t) p(t) nl-oo (t-nt) Figure P16.11 (a) If X(w) = 0 for Io > W, find the maximum value of T, We, and A such that x,(t) = x(t). (b) Let X 1 (w) = 0 for I > 2W and X 2 (w) = 0 for Iw > W. Repeat part (a) for the following. (i) (ii) (iii) (iv) x(t) = x 1 (t) * x 2 (t) x(t) = x 1 (t) + x 2 (t) x(t) = x 1 (t)x 2 (t) x(t) = x 1 (lot)
10 MIT OpenCourseWare Resource: Signals and Systems Professor Alan V. Oppenheim The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource. For information about citing these materials or our Terms of Use, visit:
3 Signals and Systems: Part II
3 Signals and Systems: Part II Recommended Problems P3.1 Sketch each of the following signals. (a) x[n] = b[n] + 3[n - 3] (b) x[n] = u[n] - u[n - 5] (c) x[n] = 6[n] + 1n + (i)2 [n - 2] + (i)ag[n - 3] (d)
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals FINAL EXAM WITH SOLUTIONS (YOURS!) You are allowed one 2-sided sheet of
2 Signals and Systems: Part I
2 Signals and Systems: Part I In this lecture, we consider a number of basic signals that will be important building blocks later in the course. Specifically, we discuss both continuoustime and discrete-time
9 Fourier Transform Properties
9 Fourier Transform Properties The Fourier transform is a major cornerstone in the analysis and representation of signals and linear, time-invariant systems, and its elegance and importance cannot be overemphasized.
1.1 Discrete-Time Fourier Transform
1.1 Discrete-Time Fourier Transform The discrete-time Fourier transform has essentially the same properties as the continuous-time Fourier transform, and these properties play parallel roles in continuous
Probability and Random Variables. Generation of random variables (r.v.)
Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly
10 Discrete-Time Fourier Series
10 Discrete-Time Fourier Series In this and the next lecture we parallel for discrete time the discussion of the last three lectures for continuous time. Specifically, we consider the representation of
Sampling and Interpolation. Yao Wang Polytechnic University, Brooklyn, NY11201
Sampling and Interpolation Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Basics of sampling and quantization A/D and D/A converters Sampling Nyquist sampling theorem
Lecture 8 ELE 301: Signals and Systems
Lecture 8 ELE 3: Signals and Systems Prof. Paul Cuff Princeton University Fall 2-2 Cuff (Lecture 7) ELE 3: Signals and Systems Fall 2-2 / 37 Properties of the Fourier Transform Properties of the Fourier
CHAPTER 6 Frequency Response, Bode Plots, and Resonance
ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal
Lecture 1-6: Noise and Filters
Lecture 1-6: Noise and Filters Overview 1. Periodic and Aperiodic Signals Review: by periodic signals, we mean signals that have a waveform shape that repeats. The time taken for the waveform to repeat
Power Spectral Density
C H A P E R 0 Power Spectral Density INRODUCION Understanding how the strength of a signal is distributed in the frequency domain, relative to the strengths of other ambient signals, is central to the
chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective
Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything
Analysis/resynthesis with the short time Fourier transform
Analysis/resynthesis with the short time Fourier transform summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Röbel Institute of communication science TU-Berlin IRCAM Analysis/Synthesis
24 Butterworth Filters
24 Butterworth Filters To illustrate some of the ideas developed in Lecture 23, we introduce in this lecture a simple and particularly useful class of filters referred to as Butterworthfilters. Filters
6 Systems Represented by Differential and Difference Equations
6 Systems Represented by ifferential and ifference Equations An important class of linear, time-invariant systems consists of systems represented by linear constant-coefficient differential equations in
Frequency Response of FIR Filters
Frequency Response of FIR Filters Chapter 6 This chapter continues the study of FIR filters from Chapter 5, but the emphasis is frequency response, which relates to how the filter responds to an input
Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.
Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal
TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS
TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of
SGN-1158 Introduction to Signal Processing Test. Solutions
SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:
EE 179 April 21, 2014 Digital and Analog Communication Systems Handout #16 Homework #2 Solutions
EE 79 April, 04 Digital and Analog Communication Systems Handout #6 Homework # Solutions. Operations on signals (Lathi& Ding.3-3). For the signal g(t) shown below, sketch: a. g(t 4); b. g(t/.5); c. g(t
Chapter 8 - Power Density Spectrum
EE385 Class Notes 8/8/03 John Stensby Chapter 8 - Power Density Spectrum Let X(t) be a WSS random process. X(t) has an average power, given in watts, of E[X(t) ], a constant. his total average power is
Experiment 3: Double Sideband Modulation (DSB)
Experiment 3: Double Sideband Modulation (DSB) This experiment examines the characteristics of the double-sideband (DSB) linear modulation process. The demodulation is performed coherently and its strict
How To Understand The Nyquist Sampling Theorem
Nyquist Sampling Theorem By: Arnold Evia Table of Contents What is the Nyquist Sampling Theorem? Bandwidth Sampling Impulse Response Train Fourier Transform of Impulse Response Train Sampling in the Fourier
4 Convolution. Solutions to Recommended Problems
4 Convolution Solutions to Recommended Problems S4.1 The given input in Figure S4.1-1 can be expressed as linear combinations of xi[n], x 2 [n], X 3 [n]. x,[ n] 0 2 Figure S4.1-1 (a) x 4[n] = 2x 1 [n]
Time series analysis Matlab tutorial. Joachim Gross
Time series analysis Matlab tutorial Joachim Gross Outline Terminology Sampling theorem Plotting Baseline correction Detrending Smoothing Filtering Decimation Remarks Focus on practical aspects, exercises,
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National
LAB 12: ACTIVE FILTERS
A. INTRODUCTION LAB 12: ACTIVE FILTERS After last week s encounter with op- amps we will use them to build active filters. B. ABOUT FILTERS An electric filter is a frequency-selecting circuit designed
min ǫ = E{e 2 [n]}. (11.2)
C H A P T E R 11 Wiener Filtering INTRODUCTION In this chapter we will consider the use of LTI systems in order to perform minimum mean-square-error (MMSE) estimation of a WSS random process of interest,
Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept
Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept ONR NEURO-SILICON WORKSHOP, AUG 1-2, 2006 Take Home Messages Introduce integrate-and-fire
Analog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data.
Analog Filters Filters can be used to attenuate unwanted signals such as interference or noise or to isolate desired signals from unwanted. They use the frequency response of a measuring system to alter
MATRIX TECHNICAL NOTES
200 WOOD AVENUE, MIDDLESEX, NJ 08846 PHONE (732) 469-9510 FAX (732) 469-0418 MATRIX TECHNICAL NOTES MTN-107 TEST SETUP FOR THE MEASUREMENT OF X-MOD, CTB, AND CSO USING A MEAN SQUARE CIRCUIT AS A DETECTOR
Lock-in amplifiers. A short tutorial by R. Scholten
Lock-in amplifiers A short tutorial by R. cholten Measuring something Common task: measure light intensity, e.g. absorption spectrum Need very low intensity to reduce broadening Noise becomes a problem
Digital Signal Processing IIR Filter Design via Impulse Invariance
Digital Signal Processing IIR Filter Design via Impulse Invariance D. Richard Brown III D. Richard Brown III 1 / 11 Basic Procedure We assume here that we ve already decided to use an IIR filter. The basic
FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW
FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW Wei Lin Department of Biomedical Engineering Stony Brook University Instructor s Portion Summary This experiment requires the student to
Frequency Response of Filters
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To
Angle Modulation, II. Lecture topics FM bandwidth and Carson s rule. Spectral analysis of FM. Narrowband FM Modulation. Wideband FM Modulation
Angle Modulation, II EE 179, Lecture 12, Handout #19 Lecture topics FM bandwidth and Carson s rule Spectral analysis of FM Narrowband FM Modulation Wideband FM Modulation EE 179, April 25, 2014 Lecture
SIGNAL PROCESSING & SIMULATION NEWSLETTER
1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals MIDTERM EXAM You are allowed one 2-sided sheet of notes. No books, no other
7. Beats. sin( + λ) + sin( λ) = 2 cos(λ) sin( )
34 7. Beats 7.1. What beats are. Musicians tune their instruments using beats. Beats occur when two very nearby pitches are sounded simultaneously. We ll make a mathematical study of this effect, using
14.451 Lecture Notes 10
14.451 Lecture Notes 1 Guido Lorenzoni Fall 29 1 Continuous time: nite horizon Time goes from to T. Instantaneous payo : f (t; x (t) ; y (t)) ; (the time dependence includes discounting), where x (t) 2
The Calculation of G rms
The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving
Review of Fourier series formulas. Representation of nonperiodic functions. ECE 3640 Lecture 5 Fourier Transforms and their properties
ECE 3640 Lecture 5 Fourier Transforms and their properties Objective: To learn about Fourier transforms, which are a representation of nonperiodic functions in terms of trigonometric functions. Also, to
2.161 Signal Processing: Continuous and Discrete Fall 2008
MT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 00 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS
A Sound Analysis and Synthesis System for Generating an Instrumental Piri Song
, pp.347-354 http://dx.doi.org/10.14257/ijmue.2014.9.8.32 A Sound Analysis and Synthesis System for Generating an Instrumental Piri Song Myeongsu Kang and Jong-Myon Kim School of Electrical Engineering,
Introduction to IQ-demodulation of RF-data
Introduction to IQ-demodulation of RF-data by Johan Kirkhorn, IFBT, NTNU September 15, 1999 Table of Contents 1 INTRODUCTION...3 1.1 Abstract...3 1.2 Definitions/Abbreviations/Nomenclature...3 1.3 Referenced
I. Pointwise convergence
MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.
Frequency response: Resonance, Bandwidth, Q factor
Frequency response: esonance, Bandwidth, Q factor esonance. Let s continue the exploration of the frequency response of circuits by investigating the series circuit shown on Figure. C + V - Figure The
Basic Acoustics and Acoustic Filters
Basic CHAPTER Acoustics and Acoustic Filters 1 3 Basic Acoustics and Acoustic Filters 1.1 The sensation of sound Several types of events in the world produce the sensation of sound. Examples include doors
The Fourier Analysis Tool in Microsoft Excel
The Fourier Analysis Tool in Microsoft Excel Douglas A. Kerr Issue March 4, 2009 ABSTRACT AD ITRODUCTIO The spreadsheet application Microsoft Excel includes a tool that will calculate the discrete Fourier
Design of Efficient Digital Interpolation Filters for Integer Upsampling. Daniel B. Turek
Design of Efficient Digital Interpolation Filters for Integer Upsampling by Daniel B. Turek Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements
Course overview Processamento de sinais 2009/10 LEA
Course overview Processamento de sinais 2009/10 LEA João Pedro Gomes [email protected] Instituto Superior Técnico Processamento de sinais MEAer (IST) Course overview 1 / 19 Course overview Motivation:
ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1
WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's
Lecture 5 Least-squares
EE263 Autumn 2007-08 Stephen Boyd Lecture 5 Least-squares least-squares (approximate) solution of overdetermined equations projection and orthogonality principle least-squares estimation BLUE property
Solutions to Linear First Order ODE s
First Order Linear Equations In the previous session we learned that a first order linear inhomogeneous ODE for the unknown function x = x(t), has the standard form x + p(t)x = q(t) () (To be precise we
LS.6 Solution Matrices
LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions
The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.
Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally
PYKC Jan-7-10. Lecture 1 Slide 1
Aims and Objectives E 2.5 Signals & Linear Systems Peter Cheung Department of Electrical & Electronic Engineering Imperial College London! By the end of the course, you would have understood: Basic signal
TCOM 370 NOTES 99-6 VOICE DIGITIZATION AND VOICE/DATA INTEGRATION
TCOM 370 NOTES 99-6 VOICE DIGITIZATION AND VOICE/DATA INTEGRATION (Please read appropriate parts of Section 2.5.2 in book) 1. VOICE DIGITIZATION IN THE PSTN The frequencies contained in telephone-quality
Implementation of Digital Signal Processing: Some Background on GFSK Modulation
Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering [email protected] Version 4 (February 7, 2013)
Short-time FFT, Multi-taper analysis & Filtering in SPM12
Short-time FFT, Multi-taper analysis & Filtering in SPM12 Computational Psychiatry Seminar, FS 2015 Daniel Renz, Translational Neuromodeling Unit, ETHZ & UZH 20.03.2015 Overview Refresher Short-time Fourier
sufilter was applied to the original data and the entire NB attribute volume was output to segy format and imported to SMT for further analysis.
Channel and fracture indicators from narrow-band decomposition at Dickman field, Kansas Johnny Seales*, Tim Brown and Christopher Liner Department of Earth and Atmospheric Sciences, University of Houston,
2 The wireless channel
CHAPTER The wireless channel A good understanding of the wireless channel, its key physical parameters and the modeling issues, lays the foundation for the rest of the book. This is the goal of this chapter.
Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)
Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques
AN-837 APPLICATION NOTE
APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance
Non-Data Aided Carrier Offset Compensation for SDR Implementation
Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center
1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
14: FM Radio Receiver
(1) (2) (3) DSP and Digital Filters (2015-7310) FM Radio: 14 1 / 12 (1) (2) (3) FM spectrum: 87.5 to 108 MHz Each channel: ±100 khz Baseband signal: Mono (L + R): ±15kHz Pilot tone: 19 khz Stereo (L R):
DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b
DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,
Motorola Digital Signal Processors
Motorola Digital Signal Processors Principles of Sigma-Delta Modulation for Analog-to- Digital Converters by Sangil Park, Ph. D. Strategic Applications Digital Signal Processor Operation MOTOROLA APR8
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya ([email protected]) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper
The continuous and discrete Fourier transforms
FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1
Impedance 50 (75 connectors via adapters)
VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:
Digital Transmission of Analog Data: PCM and Delta Modulation
Digital Transmission of Analog Data: PCM and Delta Modulation Required reading: Garcia 3.3.2 and 3.3.3 CSE 323, Fall 200 Instructor: N. Vlajic Digital Transmission of Analog Data 2 Digitization process
Lecture 1-10: Spectrograms
Lecture 1-10: Spectrograms Overview 1. Spectra of dynamic signals: like many real world signals, speech changes in quality with time. But so far the only spectral analysis we have performed has assumed
ELE745 Assignment and Lab Manual
ELE745 Assignment and Lab Manual August 22, 2010 CONTENTS 1. Assignment 1........................................ 1 1.1 Assignment 1 Problems................................ 1 1.2 Assignment 1 Solutions................................
Lock - in Amplifier and Applications
Lock - in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lock-in amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o
Example/ an analog signal f ( t) ) is sample by f s = 5000 Hz draw the sampling signal spectrum. Calculate min. sampling frequency.
1 2 3 4 Example/ an analog signal f ( t) = 1+ cos(4000πt ) is sample by f s = 5000 Hz draw the sampling signal spectrum. Calculate min. sampling frequency. Sol/ H(f) -7KHz -5KHz -3KHz -2KHz 0 2KHz 3KHz
SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou
SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou (Revision date: February 7, 7) SA. A periodic signal can be represented by the equation x(t) k A k sin(ω k t +
Lecture 18: The Time-Bandwidth Product
WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 18: The Time-Bandwih Product Prof.Prof.V.M.Gadre, EE, IIT Bombay 1 Introduction In this lecture, our aim is to define the time Bandwih Product,
5 Signal Design for Bandlimited Channels
225 5 Signal Design for Bandlimited Channels So far, we have not imposed any bandwidth constraints on the transmitted passband signal, or equivalently, on the transmitted baseband signal s b (t) I[k]g
Appendix D Digital Modulation and GMSK
D1 Appendix D Digital Modulation and GMSK A brief introduction to digital modulation schemes is given, showing the logical development of GMSK from simpler schemes. GMSK is of interest since it is used
Spectrum Level and Band Level
Spectrum Level and Band Level ntensity, ntensity Level, and ntensity Spectrum Level As a review, earlier we talked about the intensity of a sound wave. We related the intensity of a sound wave to the acoustic
Contents 1 Introduction 1 2 Background 2 2.1 WWVB Time Code : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2.2 Friedman Interpolato
Low-cost Real-time Decoding of Broadcast Time and Frequency Standard Amey Deosthali and Srikanth Gummadi Department of Electrical and Computer Engineering The University of Texas, Austin, TX 78712-1084
Vi, fi input. Vphi output VCO. Vosc, fosc. voltage-controlled oscillator
Experiment #4 CMOS 446 Phase-Locked Loop c 1997 Dragan Maksimovic Department of Electrical and Computer Engineering University of Colorado, Boulder The purpose of this lab assignment is to introduce operating
CONVOLUTION Digital Signal Processing
CONVOLUTION Digital Signal Processing Introduction As digital signal processing continues to emerge as a major discipline in the field of electrical engineering an even greater demand has evolved to understand
NETWORK STRUCTURES FOR IIR SYSTEMS. Solution 12.1
NETWORK STRUCTURES FOR IIR SYSTEMS Solution 12.1 (a) Direct Form I (text figure 6.10) corresponds to first implementing the right-hand side of the difference equation (i.e. the eros) followed by the left-hand
Understanding CIC Compensation Filters
Understanding CIC Compensation Filters April 2007, ver. 1.0 Application Note 455 Introduction f The cascaded integrator-comb (CIC) filter is a class of hardware-efficient linear phase finite impulse response
Improving A D Converter Performance Using Dither
Improving A D Converter Performance Using Dither 1 0 INTRODUCTION Many analog-to-digital converter applications require low distortion for a very wide dynamic range of signals Unfortunately the distortion
Teaching DSP through the Practical Case Study of an FSK Modem
Disclaimer: This document was part of the First European DSP Education and Research Conference. It may have been written by someone whose native language is not English. TI assumes no liability for the
SUMMARY. Additional Digital/Software filters are included in Chart and filter the data after it has been sampled and recorded by the PowerLab.
This technique note was compiled by ADInstruments Pty Ltd. It includes figures and tables from S.S. Young (2001): Computerized data acquisition and analysis for the life sciences. For further information
Introduction to Receivers
Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range
LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier
LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.
FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS. Matthew T. Hunter, Ph.D.
FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS Matthew T. Hunter, Ph.D. AGENDA Introduction Spectrum Analyzer Architecture Dynamic Range Instantaneous Bandwidth The Importance of Image Rejection and Anti-Aliasing
A DESIGN OF DSPIC BASED SIGNAL MONITORING AND PROCESSING SYSTEM
ISTANBUL UNIVERSITY JOURNAL OF ELECTRICAL & ELECTRONICS ENGINEERING YEAR VOLUME NUMBER : 2009 : 9 : 1 (921-927) A DESIGN OF DSPIC BASED SIGNAL MONITORING AND PROCESSING SYSTEM Salih ARSLAN 1 Koray KÖSE
