4 Convolution. Solutions to Recommended Problems
|
|
|
- Rodney Owen
- 9 years ago
- Views:
Transcription
1 4 Convolution Solutions to Recommended Problems S4.1 The given input in Figure S4.1-1 can be expressed as linear combinations of xi[n], x 2 [n], X 3 [n]. x,[ n] 0 2 Figure S4.1-1 (a) x 4[n] = 2x 1 [n] - 2x 2 [n] + x3[n] (b) Using superposition, y 4 [n] = 2yi[n] - 2y 2 [n] + y 3 [n], shown in Figure S Figure S4.1-2 (c) The system is not time-invariant because an input xi[n] + xi[n - 1] does not produce an output yi[n] + yi[n - 1]. The input x,[n] + xi[n - 11 is xi[n] + xi[n - 1] = x2[n] (shown in Figure S4.1-3), which we are told produces y 2 [n]. Since y 2 [n] # yi[n] + yi[n - 1], this system is not time-invariant. x 1 [n] +x 1 [n-1] =x2[n] 0 1 n Figure S4.1-3 S4-1
2 Signals and Systems S4-2 S4.2 The required convolutions are most easily done graphically by reflecting x[n] about the origin and shifting the reflected signal. (a) By reflecting x[n] about the origin, shifting, multiplying, and adding, we see that y[n] = x[n] * h[n] is as shown in Figure S (b) By reflecting x[n] about the origin, shifting, multiplying, and adding, we see that y[n] = x[n] * h[n] is as shown in Figure S y[n] Figure S4.2-2 Notice that y[n] is a shifted and scaled version of h[n]. S4.3 (a) It is easiest to perform this convolution graphically. The result is shown in Figure S4.3-1.
3 Convolution / Solutions S4-3 y(t) = x(t) * h(t) 4- t 4 8 Figure S4.3-1 (b) The convolution can be evaluated by using the convolution formula. The limits can be verified by graphically visualizing the convolution. y(t) = 7x(r)h (t - r)dr = e-'-ou(r - 1)u(t - r + 1)dr t+ 1 e (- dr, t > 0, Let r' = T - 1. Then -0, t < 0, y( ) e- d r -e t > 0, 0 0, t < 0 (c) The convolution can be evaluated graphically or by using the convolution formula. y(t) = x(r)6(t -, - 2) dr = x(t - 2) So y(t) is a shifted version of x(t). y(t) It- I / \, t Figure S4.3-2
4 Signals and Systems S4-4 S4.4 (a) Since y[n] = E=-oox[m]h[n - m], y[n] = 6b[m - no]h[n - m] = h[n - no] m= -oo We note that this is merely a shifted version of h[n]. y [n] = h1[12 I (b) y[n] = E =_c(!)'u[m]u[n m] a e 41 8 n (n 1) no (n1+ 1) Figure S4.4-1 For n > 0: y[n] = 1 + = 2( 1, y[n] = 2 - (i)" Forn < 0: y[n] = 0 Here the identity has been used. N-i _ N T am Mr=O 1 a y[n] Figure S4.4-2 (c) Reversing the role of the system and the input has no effect because on the output y[n] = E x[m]h[n m] = L h[m]x[n m] m=-oo The output and sketch are identical to those in part (b).
5 Convolution / Solutions S4-5 S4.5 (a) (i) Using the formula for convolution, we have y 1 (t) = x(r)h(t - r) dr = r(-)-2u(t - r) dr t = e -( - 2 dr, t > 0, 2e 10 = 2(1 e t > 0, y(t) = 0, t < 0 y 1 (t) t Figure S4.5-1 (ii) Using the formula for convolution, we have y 2 (t) = 2e-(t-r)/2 dr, 3 t>- 0, y 2 (t) =4(1 - e-t/2), = { 2e-(- /2 d-, 3 t : 0, t >_3, 3 S4e (t-r)/2 0 -(t-3)/2 4(e _ e-t/2 0 = 4e- t/ 2 (e'/ 2-1), t 3, y 2 (t) = 0, t 0 y 2 (t) Figure S4.5-2
6 Signals and Systems S4-6 (b) Since x 2 (t) = 2[xl(t) - xl(t - y 2 (t) = 2[yi(t) - y 1 (t - 3)]. 3)] and the system is linear and time-invariant, For 0 s t s 3: y 2 (t) = 2yi(t) = 4(1 - e-'/2) For 3 t y 2 (t) = 2y,(t) - 2yi(t - 3) = 4(1 - e-1/2 4(1 - e- t -3)2) = 4e- t/ 2 e 3 / 2 _ 1 Fort< 0: y 2 (t) = 0 We see that this result is identical to the result obtained in part (a)(ii). Solutions to Optional Problems S4.6 (a) x(t) T Figure S , h(-1 -r) -2 T ' Figure S4.6-2
7 Convolution / Solutions S4-7 h(0-r) Figure S4.6-3 h(1-- ) Figure S4.6-4
8 Signals and Systems S4-8 Using these curves, we Figure S see that since y(t) = x(t) * h(t), y(t) is as shown in y(t) 1 W t Figure S4.6-6 (b) Consider y(t) = x(t) * h(t) = f0 x(t - r)h(r)dr. h(r) Figure S4.6-7 For 0 < t < 1, only one impulse contributes. x(t -r) Figure S4.6-8 For 1 < t < 2, two impulses contribute. x(t ) Figure S4.6-9
9 Convolution / Solutions S4-9 For 2 < t < 3, two impulses contribute. x(t- r) Figure S For 3 < t < 4, one impulse contributes. x(t t) Figure S For t < 0 or t > 4, there is no contribution, so y(t) is as shown in Figure S y(t) 3-2 I- U' Figure S S4.7 y[n] = x[n] * h[n] = 1 x[n - m]h[m] no =- anmm, - n > 0, M=0
10 Signals and Systems S4-10 y[n] = a" = a" L (la) a n+1 _ n+1 a - # y[n] = 0, n < 0 n > 0, S4.8 (a) x(t) = E_= - kt) is a series of impulses spaced T apart. x(t) -2T -T 0 T 2T t Figure S4.8-1 (b) Using the result x(t) *(t - to) = x(to), we have y(t) t Figure S4.8-2 So y(t) = x(t) *h(t) is as shown in Figure S y(t) j Figure S4.8-3
11 Convolution / Solutions S4-11 S4.9 (a) False. Counterexample: Let g[n] = b[n]. Then x[n] * {h[n]g[n]} = x[n] h[0], {x[n]* h[n]}g[n] = b[n] [x[n] *h[n]] n=0 and x[n] may in general differ from b[n]. (b) True. y(2t) = fx(2t - r)h(r)dr Let r' = T/ 2. Then y(2t) = f x(2t - 2r')h(2r')2dr' = 2x(2t)* h(2t) (c) True. y(t) = x(t) * h(t) y(- t) = x(-t) * h(-t) -f x(-t + r)h(-r)dr = f [-x(t - r)][ -h(r)] dt =f x(t - r)h(r)dr since x(-) and h(-) are odd fu ictions - y(t) Hence y( t) = y(-t), and y(t) is even. (d) False. Let Then x(t) = b(t - 1) h(t) = b(t + 1) y(t) = b(t), Ev{ y (t)} = 6(t) x(t) *Ev{h(t)} =b(t - 1) *i[b(t + 1) + b(t - 1)] = i[b(t) + b(t - 2)], Ev{x(t)} * h(t) =1[6t - 1) + b(t + 1)] * b(t + 1) = 1[b(t) + b(t + 2)] But since 1[6(t - 2) + b(t + 2)] # 0, Ev{y(t)} # x(t) *Ev{h(t)} + Ev{x(t)} *h(t) S4.10 (a) 9(t) = J ro TO2 1 (r)2 2 (t - r) dr, O D(t + T 0 ) = J 2 1 (T)- 2 (t + To - r) d-r = TO 1 (r) 2 (t - r)dr = (t)
12 Signals and Systems S4-12 (b) 9a(t) = T a+to 2 1 (i)2 2 (t - -) dr, a 9a(t) = = kto + b, where 0 (k+1)t 0 +b kt0+b TO+b 2 1 (r)a 2 (t - i) b - dr, Pa(t) = fb 2 1 (i)± 2 (t - r) di, i' = i - b FTo T7 0+b = T1()- 2 t - r) dr + 1&)2(t b TO T)TO To, - r) di Tb ()A - r) d1 2- ) di = ) = 21 t(-r )12( t T ) dr =q t ) (c) For 0 s t - I 9(t) = di + Ti±e-'di ft I e- 0e + e/2+t1/2+1 =(-e-' t + (-e-t 0 11/2+t) (t) = 1 - e~' + e-(*±1/2) - e-1 = 1 - e-1 + (e 1/ 2-1)e- For s t < 1: = ft t(t) e-' di = e- ( 1/2) - e - 1/2 )e (d) Performing the periodic convolution graphically, we obtain the solution as shown in Figure S X 1 [n] *x 2 [n] (one period) Figure S4.10-1
13 Convolution / Solutions S4-13 (e) S4.11 (a) Since y(t) = x(t) *h (t) and x(t) = g(t) *y(t), then g(t) *h(t) = 6(t). But g(t )*h (t) = grob t - kt hbotr - lt d, wk=0 1=0 Let n = 1 + k. Then = n - k and = T gkhlo(t - (1+ k)t) k=o 1=0 g(t)* h (t) = Ygkhn t - n n=0 \k=0 Therefore, n F, n = 0, k=0 n O go = 1/h 0, gi = -- hi/ho, 1 (-hl h2) 2 o ho ho (b) We are given that h 0 = 1, hi = I, hi = 0. So g1 = = 1, -i) g2=+(1)2, g2 = -()
14 Signals and Systems S4-14 Therefore, (c) (i) (ii) g(t) = ( (-) k=o (tkt) Each impulse is delayed by T and scaled by a, so h(t) = k=o (t -kt ) If 0 < a < 1, a bounded input produces a bounded output because y(t) = x (t)* h (t), y(t) < Zak k=0 < a k=o Let M = maxlx(t). Then f -w -w 6(r kt)x(t - r) di _(T - kt)ix(t - T)I dr 1 I y(t) < M ak= M, al < 1 k=o If a > 1, a bounded input will no longer produce a bounded output. For example, consider x(t) = u(t). Then 00 yt) = Ta f 6(,r - kt) dr k=o -w Since f 6(r - kd di = u (t-kt ), t (iii) y(t) = ( k=o aku(t-kt) Consider, for example, t equal to (or slightly greater than) NT: N y(nt) = Z ak k=o If a > 1, this grows without bound as N (or t) increases. Now we want the inverse system. Recognize that we have actually solved this in part (b) of this problem. gi = 1, g2 = -a gi = 0, i # 0, 1 So the system appears as in Figure S4.11. y(t) _0_ x(t) Delay T Figure S4.11
15 Convolution / Solutions S4-15 (d) If x[n] = 6[n], then y[n] = h[n]. If x[n] = go[n] + is[n-n], then y[n] = -h[n] + -h[n], y[n] = h[n] S4.12 (a) b[n] = #[n] - -4[n - 1], x[n] = ( x[k][n - k] = ( x[k]q([n - k] - -p[n - k - 1]), k=-- k=--w x[n] = E (x[k] - ix[k - 1])4[n- k] k= -w So ak = x[k] - lx[k - 1]. (b) If r[n] is the response to #[n], we can use superposition to note that if x[n] = ( akp[n - k], k=then and, from part (a), y[n] = Z akr[n - k] k= -w y[n] = ( (x [k] - fx[k - 1])r[n - k] k= (c) y[n] = i/[n] *x[n] * r[n] when and, from above, So [n] = b[n] - in- 1] 3[n] 4[n] - -[- 1] /[n] = #[n] - -#[n (#[n $[n - 2]), 0[n] = *[n] - *[n - 1] + {1[n - 2] (d) 4[n] - r[n], #[n - 1] - r[n - 1], b[n] = 4[n] - -1[n- 1] - r[n] - fr[n -1] So h[n] = r[n] - tr[n -1], where h[n] is the impulse response. Also, from part (c) we know that y[n] = Q[n] *x[n] *r[n] and if x[n] = #[n] produces r[n], it is apparent that #[n] * 4[n] = 6[n].
16 MIT OpenCourseWare Resource: Signals and Systems Professor Alan V. Oppenheim The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource. For information about citing these materials or our Terms of Use, visit:
3 Signals and Systems: Part II
3 Signals and Systems: Part II Recommended Problems P3.1 Sketch each of the following signals. (a) x[n] = b[n] + 3[n - 3] (b) x[n] = u[n] - u[n - 5] (c) x[n] = 6[n] + 1n + (i)2 [n - 2] + (i)ag[n - 3] (d)
4 Convolution. Recommended Problems. x2[n] 1 2[n]
4 Convoluion Recommended Problems P4.1 This problem is a simple example of he use of superposiion. Suppose ha a discree-ime linear sysem has oupus y[n] for he given inpus x[n] as shown in Figure P4.1-1.
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals MIDTERM EXAM You are allowed one 2-sided sheet of notes. No books, no other
T = 10-' s. p(t)= ( (t-nt), T= 3. n=-oo. Figure P16.2
16 Sampling Recommended Problems P16.1 The sequence x[n] = (-1)' is obtained by sampling the continuous-time sinusoidal signal x(t) = cos oot at 1-ms intervals, i.e., cos(oont) = (-1)", Determine three
6 Systems Represented by Differential and Difference Equations
6 Systems Represented by ifferential and ifference Equations An important class of linear, time-invariant systems consists of systems represented by linear constant-coefficient differential equations in
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals FINAL EXAM WITH SOLUTIONS (YOURS!) You are allowed one 2-sided sheet of
10 Discrete-Time Fourier Series
10 Discrete-Time Fourier Series In this and the next lecture we parallel for discrete time the discussion of the last three lectures for continuous time. Specifically, we consider the representation of
9 Fourier Transform Properties
9 Fourier Transform Properties The Fourier transform is a major cornerstone in the analysis and representation of signals and linear, time-invariant systems, and its elegance and importance cannot be overemphasized.
NETWORK STRUCTURES FOR IIR SYSTEMS. Solution 12.1
NETWORK STRUCTURES FOR IIR SYSTEMS Solution 12.1 (a) Direct Form I (text figure 6.10) corresponds to first implementing the right-hand side of the difference equation (i.e. the eros) followed by the left-hand
C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t
1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).
PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a
SGN-1158 Introduction to Signal Processing Test. Solutions
SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:
1.1 Discrete-Time Fourier Transform
1.1 Discrete-Time Fourier Transform The discrete-time Fourier transform has essentially the same properties as the continuous-time Fourier transform, and these properties play parallel roles in continuous
1.4 Fast Fourier Transform (FFT) Algorithm
74 CHAPTER AALYSIS OF DISCRETE-TIME LIEAR TIME-IVARIAT SYSTEMS 4 Fast Fourier Transform (FFT Algorithm Fast Fourier Transform, or FFT, is any algorithm for computing the -point DFT with a computational
TTT4120 Digital Signal Processing Suggested Solution to Exam Fall 2008
Norwegian University of Science and Technology Department of Electronics and Telecommunications TTT40 Digital Signal Processing Suggested Solution to Exam Fall 008 Problem (a) The input and the input-output
Class Note for Signals and Systems. Stanley Chan University of California, San Diego
Class Note for Signals and Systems Stanley Chan University of California, San Diego 2 Acknowledgement This class note is prepared for ECE 101: Linear Systems Fundamentals at the University of California,
8 Continuous-Time Fourier Transform
8 Continuous-Time Fourier Transform Solutions to Recommended Problems S8. (a) x(t) Tj Tj t Figure S8.- (b) Note that the total width is T,. i(t) t 3T -- T To T T To Tl 3 T =O Figure S8.- (c) Using the
Discrete-Time Signals and Systems
2 Discrete-Time Signals and Systems 2.0 INTRODUCTION The term signal is generally applied to something that conveys information. Signals may, for example, convey information about the state or behavior
CONVOLUTION Digital Signal Processing
CONVOLUTION Digital Signal Processing Introduction As digital signal processing continues to emerge as a major discipline in the field of electrical engineering an even greater demand has evolved to understand
Frequency Response of FIR Filters
Frequency Response of FIR Filters Chapter 6 This chapter continues the study of FIR filters from Chapter 5, but the emphasis is frequency response, which relates to how the filter responds to an input
(Refer Slide Time: 01:11-01:27)
Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 6 Digital systems (contd.); inverse systems, stability, FIR and IIR,
LS.6 Solution Matrices
LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions
Signal Detection C H A P T E R 14 14.1 SIGNAL DETECTION AS HYPOTHESIS TESTING
C H A P T E R 4 Signal Detection 4. SIGNAL DETECTION AS HYPOTHESIS TESTING In Chapter 3 we considered hypothesis testing in the context of random variables. The detector resulting in the minimum probability
Probability and Random Variables. Generation of random variables (r.v.)
Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly
Chapter 8 - Power Density Spectrum
EE385 Class Notes 8/8/03 John Stensby Chapter 8 - Power Density Spectrum Let X(t) be a WSS random process. X(t) has an average power, given in watts, of E[X(t) ], a constant. his total average power is
ORDINARY DIFFERENTIAL EQUATIONS
ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. SEPTEMBER 4, 25 Summary. This is an introduction to ordinary differential equations.
Figure 2.1: Center of mass of four points.
Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would
min ǫ = E{e 2 [n]}. (11.2)
C H A P T E R 11 Wiener Filtering INTRODUCTION In this chapter we will consider the use of LTI systems in order to perform minimum mean-square-error (MMSE) estimation of a WSS random process of interest,
1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years
Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957
2 Signals and Systems: Part I
2 Signals and Systems: Part I In this lecture, we consider a number of basic signals that will be important building blocks later in the course. Specifically, we discuss both continuoustime and discrete-time
Review of Fourier series formulas. Representation of nonperiodic functions. ECE 3640 Lecture 5 Fourier Transforms and their properties
ECE 3640 Lecture 5 Fourier Transforms and their properties Objective: To learn about Fourier transforms, which are a representation of nonperiodic functions in terms of trigonometric functions. Also, to
Systems with Persistent Memory: the Observation Inequality Problems and Solutions
Chapter 6 Systems with Persistent Memory: the Observation Inequality Problems and Solutions Facts that are recalled in the problems wt) = ut) + 1 c A 1 s ] R c t s)) hws) + Ks r)wr)dr ds. 6.1) w = w +
Content. Professur für Steuerung, Regelung und Systemdynamik. Lecture: Vehicle Dynamics Tutor: T. Wey Date: 01.01.08, 20:11:52
1 Content Overview 1. Basics on Signal Analysis 2. System Theory 3. Vehicle Dynamics Modeling 4. Active Chassis Control Systems 5. Signals & Systems 6. Statistical System Analysis 7. Filtering 8. Modeling,
Semester Exam Review ANSWERS. b. The total amount of money earned by selling sodas in a day was at least $1,000. 800 4F 200 F
Unit 1, Topic 1 P 2 1 1 W L or P2 L or P L or P L 2 2 2 2 1. 2. A. 5F 160 C 9 3. B. The equation is always true, because both sides are identical.. A. There is one solution, and it is x 30. 5. C. The equation
Week 2: Exponential Functions
Week 2: Exponential Functions Goals: Introduce exponential functions Study the compounded interest and introduce the number e Suggested Textbook Readings: Chapter 4: 4.1, and Chapter 5: 5.1. Practice Problems:
RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A
RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:
Trend and Seasonal Components
Chapter 2 Trend and Seasonal Components If the plot of a TS reveals an increase of the seasonal and noise fluctuations with the level of the process then some transformation may be necessary before doing
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard
i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner
í d : r ' " B o m m 1 E x p e r i e n c e L : i i n g S e c u r it y. 1-1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his g u id e å ] - ew i c h P e t e r M u la e n PACKT ' TAÞ$Æo
FFT Algorithms. Chapter 6. Contents 6.1
Chapter 6 FFT Algorithms Contents Efficient computation of the DFT............................................ 6.2 Applications of FFT................................................... 6.6 Computing DFT
5 Signal Design for Bandlimited Channels
225 5 Signal Design for Bandlimited Channels So far, we have not imposed any bandwidth constraints on the transmitted passband signal, or equivalently, on the transmitted baseband signal s b (t) I[k]g
CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises
CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =
The integrating factor method (Sect. 2.1).
The integrating factor method (Sect. 2.1). Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Variable
Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date
Leaving Certificate Honours Maths - Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many
Solutions to Linear First Order ODE s
First Order Linear Equations In the previous session we learned that a first order linear inhomogeneous ODE for the unknown function x = x(t), has the standard form x + p(t)x = q(t) () (To be precise we
How To Understand The Nyquist Sampling Theorem
Nyquist Sampling Theorem By: Arnold Evia Table of Contents What is the Nyquist Sampling Theorem? Bandwidth Sampling Impulse Response Train Fourier Transform of Impulse Response Train Sampling in the Fourier
College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions
College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use
To define function and introduce operations on the set of functions. To investigate which of the field properties hold in the set of functions
Chapter 7 Functions This unit defines and investigates functions as algebraic objects. First, we define functions and discuss various means of representing them. Then we introduce operations on functions
EE 179 April 21, 2014 Digital and Analog Communication Systems Handout #16 Homework #2 Solutions
EE 79 April, 04 Digital and Analog Communication Systems Handout #6 Homework # Solutions. Operations on signals (Lathi& Ding.3-3). For the signal g(t) shown below, sketch: a. g(t 4); b. g(t/.5); c. g(t
Fast Fourier Transform: Theory and Algorithms
Fast Fourier Transform: Theory and Algorithms Lecture Vladimir Stojanović 6.973 Communication System Design Spring 006 Massachusetts Institute of Technology Discrete Fourier Transform A review Definition
2) Based on the information in the table which choice BEST shows the answer to 1 906? 906 899 904 909
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ) Multiplying a number by results in what type of. even. 0. even.,0. odd..,0. even ) Based on the information in the table which choice BEST shows the answer to 0? 0 0 0 )
MATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3. Stability and pole locations.
Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3 Stability and pole locations asymptotically stable marginally stable unstable Imag(s) repeated poles +
Lecture 5 Least-squares
EE263 Autumn 2007-08 Stephen Boyd Lecture 5 Least-squares least-squares (approximate) solution of overdetermined equations projection and orthogonality principle least-squares estimation BLUE property
Math 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
Sequences. A sequence is a list of numbers, or a pattern, which obeys a rule.
Sequences A sequence is a list of numbers, or a pattern, which obeys a rule. Each number in a sequence is called a term. ie the fourth term of the sequence 2, 4, 6, 8, 10, 12... is 8, because it is the
Chapter 9. Systems of Linear Equations
Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables
PYKC Jan-7-10. Lecture 1 Slide 1
Aims and Objectives E 2.5 Signals & Linear Systems Peter Cheung Department of Electrical & Electronic Engineering Imperial College London! By the end of the course, you would have understood: Basic signal
Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.)
Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.) Outline 1. The saturation regime 2. Backgate characteristics Reading Assignment: Howe and Sodini, Chapter 4, Section 4.4 Announcements: 1. Quiz#1:
Lecture 7: Finding Lyapunov Functions 1
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1
Sampling and Interpolation. Yao Wang Polytechnic University, Brooklyn, NY11201
Sampling and Interpolation Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Basics of sampling and quantization A/D and D/A converters Sampling Nyquist sampling theorem
MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.
MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P
Convolution, Correlation, & Fourier Transforms. James R. Graham 10/25/2005
Convolution, Correlation, & Fourier Transforms James R. Graham 10/25/2005 Introduction A large class of signal processing techniques fall under the category of Fourier transform methods These methods fall
1. Prove that the empty set is a subset of every set.
1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: [email protected] Proof: For any element x of the empty set, x is also an element of every set since
Homework 2 Solutions
Homework Solutions Igor Yanovsky Math 5B TA Section 5.3, Problem b: Use Taylor s method of order two to approximate the solution for the following initial-value problem: y = + t y, t 3, y =, with h = 0.5.
Sensor Performance Metrics
Sensor Performance Metrics Michael Todd Professor and Vice Chair Dept. of Structural Engineering University of California, San Diego [email protected] Email me if you want a copy. Outline Sensors as dynamic
Math 22B, Homework #8 1. y 5y + 6y = 2e t
Math 22B, Homework #8 3.7 Problem # We find a particular olution of the ODE y 5y + 6y 2e t uing the method of variation of parameter and then verify the olution uing the method of undetermined coefficient.
Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu
O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u i s p r z» t a n i a o b i e k t ó w G d y s k i e C eo n t r u m S p o r t us I S t a d i o n p i ł k a r s k i
OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS
ONDERZOEKSRAPPORT NR 8904 OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS BY M. VANDEBROEK & J. DHAENE D/1989/2376/5 1 IN A OPTIMAl PREMIUM CONTROl NON-liFE INSURANCE BUSINESS By Martina Vandebroek
Lecture 5: Variants of the LMS algorithm
1 Standard LMS Algorithm FIR filters: Lecture 5: Variants of the LMS algorithm y(n) = w 0 (n)u(n)+w 1 (n)u(n 1) +...+ w M 1 (n)u(n M +1) = M 1 k=0 w k (n)u(n k) =w(n) T u(n), Error between filter output
SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou
SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou (Revision date: February 7, 7) SA. A periodic signal can be represented by the equation x(t) k A k sin(ω k t +
So far, we have looked at homogeneous equations
Chapter 3.6: equations Non-homogeneous So far, we have looked at homogeneous equations L[y] = y + p(t)y + q(t)y = 0. Homogeneous means that the right side is zero. Linear homogeneous equations satisfy
Vilnius University. Faculty of Mathematics and Informatics. Gintautas Bareikis
Vilnius University Faculty of Mathematics and Informatics Gintautas Bareikis CONTENT Chapter 1. SIMPLE AND COMPOUND INTEREST 1.1 Simple interest......................................................................
Manual for SOA Exam MLC.
Chapter 5 Life annuities Extract from: Arcones Manual for the SOA Exam MLC Fall 2009 Edition available at http://wwwactexmadrivercom/ 1/70 Due n year deferred annuity Definition 1 A due n year deferred
24 Butterworth Filters
24 Butterworth Filters To illustrate some of the ideas developed in Lecture 23, we introduce in this lecture a simple and particularly useful class of filters referred to as Butterworthfilters. Filters
MATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1
MATH 3B: MIDTERM REVIEW JOE HUGHES. Inverses. Let f() = 3. Find the inverse g() for f. Solution: Setting y = ( 3) and solving for gives and g() = +3. y 3y = = + 3y y. Let f() = 4 + 3. Find a domain on
S. Boyd EE102. Lecture 1 Signals. notation and meaning. common signals. size of a signal. qualitative properties of signals.
S. Boyd EE102 Lecture 1 Signals notation and meaning common signals size of a signal qualitative properties of signals impulsive signals 1 1 Signals a signal is a function of time, e.g., f is the force
The continuous and discrete Fourier transforms
FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1
Lecture 13 Linear quadratic Lyapunov theory
EE363 Winter 28-9 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discrete-time
Math 2280 - Assignment 6
Math 2280 - Assignment 6 Dylan Zwick Spring 2014 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.8 - Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue
CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology. Problem Set 5
8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Tuesday March 5 Problem Set 5 Due Tuesday March 12 at 11.00AM Assigned Reading: E&R 6 9, App-I Li. 7 1 4 Ga. 4 7, 6 1,2
System of First Order Differential Equations
CHAPTER System of First Order Differential Equations In this chapter, we will discuss system of first order differential equations. There are many applications that involving find several unknown functions
Lecture 8 ELE 301: Signals and Systems
Lecture 8 ELE 3: Signals and Systems Prof. Paul Cuff Princeton University Fall 2-2 Cuff (Lecture 7) ELE 3: Signals and Systems Fall 2-2 / 37 Properties of the Fourier Transform Properties of the Fourier
LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to,
LINEAR INEQUALITIES When we use the equal sign in an equation we are stating that both sides of the equation are equal to each other. In an inequality, we are stating that both sides of the equation are
Functions, Expressions, and Equations
Chapter 4 Functions, Expressions, and Equations CONTENTS 4.1 What Is a Function? 78 Function Notation 78 Dependent and Independent Variables 79 Evaluating Functions 80 Tables and Graphs 81 4. Functions
Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.
LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing
The Fourier Series of a Periodic Function
1 Chapter 1 he Fourier Series of a Periodic Function 1.1 Introduction Notation 1.1. We use the letter with a double meaning: a) [, 1) b) In the notations L p (), C(), C n () and C () we use the letter
Homework #2 Solutions
MAT Spring Problems Section.:, 8,, 4, 8 Section.5:,,, 4,, 6 Extra Problem # Homework # Solutions... Sketch likely solution curves through the given slope field for dy dx = x + y...8. Sketch likely solution
9. Particular Solutions of Non-homogeneous second order equations Undetermined Coefficients
September 29, 201 9-1 9. Particular Solutions of Non-homogeneous second order equations Undetermined Coefficients We have seen that in order to find the general solution to the second order differential
Class Meeting # 1: Introduction to PDEs
MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x
Section 9.5: Equations of Lines and Planes
Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that
