UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE Fall 2009 Linear Systems Fundamentals
|
|
|
- Lawrence Porter
- 10 years ago
- Views:
Transcription
1 UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE Fall 2009 Linear Systems Fundamentals MIDTERM EXAM You are allowed one 2-sided sheet of notes. No books, no other notes, no calculators. PRINT YOUR NAME Marc-Antoine Parseval des Chênes Signature 1 T T x(t) 2 dt = a k 2 Student ID Number...,a 2, a 1, a 0, a 1, a 2,... Problem Weight Score 1 30 pts pts pts pts 10 Total 100 pts 100 Please do not begin until told. Write your name on all pages. Show your work. Use back of previous page and attached scratch sheets as needed. Tables 3.1 and 3.2 from the textbook are attached to the back of the exam. Good luck! 1
2 Problem 1 (30 points) For each part, check the appropriate boxes. Justify your answers. Each answer is worth 6 points. (a) Let x[n] = δ[n] + 2δ[n 1] + 3δ[n 2]. Let x e [n] be the even part of x[n] and let x o [n] be the odd part of x[n]. Check the box next to the correct statement: x e [0] = 1 2 and x o[0] = 1 2 x e [1] = 3 2 and x o[1] = 1 2 X x e [ 2] = 3 2 and x o[ 2] = 3 2 x e [2] = 2 and x o [2] = 1 Since x e [n] = x[n]+x[ n] 2, we see that x e [0] = 1, x e [1] = 1, x e [ 2] = 3 2, x e[2] = 3 2. So, the only possible answer is the third one. Recalling that x o [n] = x[n] x[ n] 2, we confirm that x o [ 2] = 3 2. This confirms the choice of the third answer. 2
3 Problem 1 (cont.) (b) Consider the signal x[n] = e j 2π 9 (n 1) + δ[n 6k + 2]. The smallest positive integer N such that x[n + N] = x[n] for all integer values of n is: 9 12 X No such N Note that the first term in x[n], namely x 1 [n] = e j 2π 9 (n 1), has fundamental period N 1 = 9 because it is simply a time-shifted version of the periodic discrete-time exponential signal e j 2π 9 n with fundamental period 9. The second part of x[n], namely x 2 [n] = δ[n 6k + 2], has fundamental period N 2 = 6 because is simply a time shift of the periodic discrete-time impulse train δ[n 6k] with fundamental period 6. Therefore, the fundamental period N of x[n] = x 1 [n] + x 2 [n], is the least common multiple of N 1 and N 2 ; that is, N = lcm(n 1, N 2 ) = lcm(9, 6) = 18. 3
4 Problem 1 (cont.) (c) Let x(t) = 2e 3t be the input to a continuous-time LTI system with impulse response h(t) and transfer function H(s). Suppose the corresponding output of the system, y(t), satisfies y(ln 2) = 8. Check the box next to the correct statement: y(t) = 4e t X y(1) = e 3 H(3) = 1 8 H(3) = 2 None of the above Since the system, which we denote by S, is LTI, we have Therefore, x(t) = 2e 3t S y(t) = 2H(3)e 3t. y(ln 2) = 2H(3)e 3ln 2 = 2H(3)2 3 = 16H(3). Since the problem states that y(ln 2) = 8, we conclude that H(3) = 1 2, implying that y(t) = e 3t. Therefore, y(1) = e 3. 4
5 Problem 1 (cont.) (d) A discrete-time LTI system is described by y[n] = n+1 k=n 1 x[k]. Check the appropriate box indicating whether or not the system satisfies the specified property: True False X Stable X Causal The input-output relationship can be written as y[n] = x[n 1]+x[n]+x[n+1]. If the input is bounded, say x[n] B <, this means that y[n] = x[n 1] + x[n] + x[n + 1] x[n 1] + x[n] + x[n + 1] 3B <, where the first inequality follows from the generlized triangle inequality. Thus, a bounded input produces a bounded output, so the system is stable. On the other hand, since y[n], the output at time n, depends on x[n+1], the input at time n + 1, the system is not causal. 5
6 Problem 2 (36 points) Consider the discrete-time LTI system S 1 defined by the input-output relation: y[n] = x[n] + 2x[n 1] x[n 2] 2x[n 3]. (a) Determine and sketch precisely the impulse response h 1 [n]. (6 points) The impulse response is immediately seen to be h 1 [n] = δ[n] + 2δ[n 1] δ[n 2] 2δ[n 3]. The sketch of h 1 [n] is now easy to draw and is left to the reader. 6
7 Problem 2 (cont.) (b) Determine and sketch precisely the step response s 1 [n]. (6 points) The step response s 1 [n] is the running sum of the impulse response, meaning that n s 1 [n] = h 1 [k]. By inspection, this translates to s 1 [n] = 0, n < 0, s 1 [0] = 1, s 1 [1] = 3, s 1 [2] = 2, s 1 [n] = 0, n > 2. The sketch of s 1 [n] is now easy to draw and is left to the reader. 7
8 Problem 2 (cont.) (c) Suppose that S 1 is concatenated with the LTI system S 2 that has the impulse response h 2 [n] = u[n] u[n 5]. Call the resulting system S. Determine and sketch precisely the impulse response h[n] of the system S. (12 points) The overall impulse response h[n] satisfies h[n] = h 1 [n] h 2 [n]. Using the graphical approach discussed in class, we see that h[n] = 0, for n < 0 and n > 7. The values in the range 0 n 7 can be found by inspection to be: h[0] = 1 h[4] = 0 h[1] = 3 h[5] = 1 h[2] = 2 h[6] = 3 h[3] = 0 h[7] = 2 The sketch of h[n] is now easy to draw and is left to the reader. 8
9 Problem 2 (cont.) (d) The system S 1 is not invertible. Find two distinct input signals x 1 [n] and x 2 [n] that produce the same output y[n]. Specify x 1 [n], x 2 [n], and y[n] precisely. (12 points) Recall that for system S 1, we have y[n] = x[n]+2x[n 1] x[n 2] 2x[n 3]. Let x 1 [n] = 0, for all n. The corresponding output is easily seen to be y 1 [n] = 0, for all n. Let x 2 [n] = 1, for all n. The corresponding output is easily seen to be y 2 [n] = 0, for all n. Hence, the two distinct inputs x 1 [n] and x 2 [n] produce the same output, namely y[n] = 0, for all n. This proves that the system S 1 is not invertible. 9
10 Problem 3 (24 points) Let x[n] be a real discrete-time signal with fundamental period N = 6. Denote the Fourier series coefficients of x[n] by a k. Suppose x[n] satisfies the following properties: (i) 6 n=1 x[n] = 6 (ii) a 1 = 2 (iii) a 2 = j (iv) a 3 = 1 (a) Determine the values of the Fourier series coefficients a k, k = 0, 1,...,5 and list them below. (12 points) From the analysis equation, we see that a 0 = 1 6 n=<6> x[n] = 6 x[n] = 1. Since x[n] is stated to be real, the Fourier Series coefficients satisfy the conjugate symmetry property. Using facts (ii), (iii), and (iv), along with the conjugate-symmetry property and the periodicity of the a k, we deduce that n=1 a 1 = a 1 = a 5 = 2 a 2 = a 2 = a 4 = j a 3 = a 3 = a 3 = 1 One period of the coefficients a k is therefore given by: a 0 = 1, a 1 = 2, a 2 = j, a 3 = 1, a 4 = j, a 5 = 2. 10
11 Problem 3 (cont.) (b) Express x[n] in the form (8 points) x[n] = A 0 + A k sin(ω k n + φ k ). k=1 Using the results of part (a), we have x[n] = a 0 + a 1 e j 2π 6 n + a 2 e j 4π 6 n +a 3 e j 6π 6 n + a 4 e j 8π 6 n + a 5 e j 10π 6 n = 1 + 2e j π 3 n + je j 2π 3 n +e jπn je j 2π 3 n + 2e j π 3 n. Grouping terms, applying Euler s Formula, and using the fact that cos(θ) = sin(θ + π 2 ), we find x[n] = 1 + 2(e j π 3 n + e j π 3 n ) + j(e j 2π 3 n e j 2π 3 n ) + e jπn = cos( π 3 n) 2 sin(2π 3 n) + cos(πn) = sin( π 3 n + π 2 ) 2 sin(2π 3 n) + sin(πn + π 2 ) Note that e jπn = cos(πn) + j sin(πn) = cos(πn), since sin(πn) = 0, n. 11
12 Problem 3 (cont.) (c) Determine (4 points) 2 n= 3 x[n] 2 From Parseval s Relation, we know 1 6 n=<6> x[n] 2 = k=<6> a k 2. The sums can be evaluated over any length-6 interval of integers, such as n = 3, 2, 1, 0, 1, 2. Therefore, 2 n= 3 x[n] 2 = 6 5 a k 2 k=0 = 6( j j ) = 6( ) = 6 12 =
13 Problem 4 (10 points) Consider a continuous-time system S with frequency response { 1 for ω 101 H(jω) = 0 for ω > 101. When the input to this system is a signal x(t) with fundamental period T = π/5 and Fourier series coefficients a k, the output signal y(t) satisfies y(t) = x(t). Determine the values of k for which a k must be equal to zero. Since the fundamental period of x(t) is T = π 5, the fundamental frequency is ω 0 = 2π T = 10. Therefore, x(t) has Fourier Series representation x(t) = a k e jkω0t = a k e jk10t. The corresponding output y(t) satisfies y(t) = b k e jkω 0t = a k H(jkω 0 )e jkω 0t = For the specified frequency response H(jω), we see that { ak for 10k 101 b k = 0 for 10k > 101. a k H(jk10)e jk10t. That is, y(t) = 10 k= 10 a k e jk10t. Since y(t) = x(t), if follows that a k = 0 for k >
14 Scratch page Name/Student ID: 14
15 Scratch page Name/Student ID: 15
16 Scratch page Name/Student ID: 16
17 Scratch page Name/Student ID: 17
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals FINAL EXAM WITH SOLUTIONS (YOURS!) You are allowed one 2-sided sheet of
Class Note for Signals and Systems. Stanley Chan University of California, San Diego
Class Note for Signals and Systems Stanley Chan University of California, San Diego 2 Acknowledgement This class note is prepared for ECE 101: Linear Systems Fundamentals at the University of California,
Frequency Response of FIR Filters
Frequency Response of FIR Filters Chapter 6 This chapter continues the study of FIR filters from Chapter 5, but the emphasis is frequency response, which relates to how the filter responds to an input
3 Signals and Systems: Part II
3 Signals and Systems: Part II Recommended Problems P3.1 Sketch each of the following signals. (a) x[n] = b[n] + 3[n - 3] (b) x[n] = u[n] - u[n - 5] (c) x[n] = 6[n] + 1n + (i)2 [n - 2] + (i)ag[n - 3] (d)
Discrete-Time Signals and Systems
2 Discrete-Time Signals and Systems 2.0 INTRODUCTION The term signal is generally applied to something that conveys information. Signals may, for example, convey information about the state or behavior
The Z transform (3) 1
The Z transform (3) 1 Today Analysis of stability and causality of LTI systems in the Z domain The inverse Z Transform Section 3.3 (read class notes first) Examples 3.9, 3.11 Properties of the Z Transform
(Refer Slide Time: 01:11-01:27)
Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 6 Digital systems (contd.); inverse systems, stability, FIR and IIR,
Lecture 8 ELE 301: Signals and Systems
Lecture 8 ELE 3: Signals and Systems Prof. Paul Cuff Princeton University Fall 2-2 Cuff (Lecture 7) ELE 3: Signals and Systems Fall 2-2 / 37 Properties of the Fourier Transform Properties of the Fourier
SGN-1158 Introduction to Signal Processing Test. Solutions
SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:
9 Fourier Transform Properties
9 Fourier Transform Properties The Fourier transform is a major cornerstone in the analysis and representation of signals and linear, time-invariant systems, and its elegance and importance cannot be overemphasized.
1.1 Discrete-Time Fourier Transform
1.1 Discrete-Time Fourier Transform The discrete-time Fourier transform has essentially the same properties as the continuous-time Fourier transform, and these properties play parallel roles in continuous
10 Discrete-Time Fourier Series
10 Discrete-Time Fourier Series In this and the next lecture we parallel for discrete time the discussion of the last three lectures for continuous time. Specifically, we consider the representation of
BX in ( u, v) basis in two ways. On the one hand, AN = u+
1. Let f(x) = 1 x +1. Find f (6) () (the value of the sixth derivative of the function f(x) at zero). Answer: 7. We expand the given function into a Taylor series at the point x = : f(x) = 1 x + x 4 x
Chapter 8 - Power Density Spectrum
EE385 Class Notes 8/8/03 John Stensby Chapter 8 - Power Density Spectrum Let X(t) be a WSS random process. X(t) has an average power, given in watts, of E[X(t) ], a constant. his total average power is
South Carolina College- and Career-Ready (SCCCR) Algebra 1
South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR) Mathematical Process
min ǫ = E{e 2 [n]}. (11.2)
C H A P T E R 11 Wiener Filtering INTRODUCTION In this chapter we will consider the use of LTI systems in order to perform minimum mean-square-error (MMSE) estimation of a WSS random process of interest,
This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.
Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course
1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.
.(6pts Find symmetric equations of the line L passing through the point (, 5, and perpendicular to the plane x + 3y z = 9. (a x = y + 5 3 = z (b x (c (x = ( 5(y 3 = z + (d x (e (x + 3(y 3 (z = 9 = y 3
CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
6 Systems Represented by Differential and Difference Equations
6 Systems Represented by ifferential and ifference Equations An important class of linear, time-invariant systems consists of systems represented by linear constant-coefficient differential equations in
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
1.4 Fast Fourier Transform (FFT) Algorithm
74 CHAPTER AALYSIS OF DISCRETE-TIME LIEAR TIME-IVARIAT SYSTEMS 4 Fast Fourier Transform (FFT Algorithm Fast Fourier Transform, or FFT, is any algorithm for computing the -point DFT with a computational
Student name: Earlham College. Fall 2011 December 15, 2011
Student name: Earlham College MATH 320: Differential Equations Final exam - In class part Fall 2011 December 15, 2011 Instructions: This is a regular closed-book test, and is to be taken without the use
Lecture 18: The Time-Bandwidth Product
WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 18: The Time-Bandwih Product Prof.Prof.V.M.Gadre, EE, IIT Bombay 1 Introduction In this lecture, our aim is to define the time Bandwih Product,
2 Signals and Systems: Part I
2 Signals and Systems: Part I In this lecture, we consider a number of basic signals that will be important building blocks later in the course. Specifically, we discuss both continuoustime and discrete-time
4 Convolution. Solutions to Recommended Problems
4 Convolution Solutions to Recommended Problems S4.1 The given input in Figure S4.1-1 can be expressed as linear combinations of xi[n], x 2 [n], X 3 [n]. x,[ n] 0 2 Figure S4.1-1 (a) x 4[n] = 2x 1 [n]
TTT4120 Digital Signal Processing Suggested Solution to Exam Fall 2008
Norwegian University of Science and Technology Department of Electronics and Telecommunications TTT40 Digital Signal Processing Suggested Solution to Exam Fall 008 Problem (a) The input and the input-output
3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
FFT Algorithms. Chapter 6. Contents 6.1
Chapter 6 FFT Algorithms Contents Efficient computation of the DFT............................................ 6.2 Applications of FFT................................................... 6.6 Computing DFT
Section 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
Name: ID: Discussion Section:
Math 28 Midterm 3 Spring 2009 Name: ID: Discussion Section: This exam consists of 6 questions: 4 multiple choice questions worth 5 points each 2 hand-graded questions worth a total of 30 points. INSTRUCTIONS:
7. Show that the expectation value function that appears in Lecture 1, namely
Lectures on quantum computation by David Deutsch Lecture 1: The qubit Worked Examples 1. You toss a coin and observe whether it came up heads or tails. (a) Interpret this as a physics experiment that ends
TMA4213/4215 Matematikk 4M/N Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA43/45 Matematikk 4M/N Vår 3 Løsningsforslag Øving a) The Fourier series of the signal is f(x) =.4 cos ( 4 L x) +cos ( 5 L
1 Norms and Vector Spaces
008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)
Review of Fourier series formulas. Representation of nonperiodic functions. ECE 3640 Lecture 5 Fourier Transforms and their properties
ECE 3640 Lecture 5 Fourier Transforms and their properties Objective: To learn about Fourier transforms, which are a representation of nonperiodic functions in terms of trigonometric functions. Also, to
SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou
SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou (Revision date: February 7, 7) SA. A periodic signal can be represented by the equation x(t) k A k sin(ω k t +
Functions: Piecewise, Even and Odd.
Functions: Piecewise, Even and Odd. MA161/MA1161: Semester 1 Calculus. Prof. Götz Pfeiffer School of Mathematics, Statistics and Applied Mathematics NUI Galway September 21-22, 2015 Tutorials, Online Homework.
An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate.
Chapter 10 Series and Approximations An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate 1 0 e x2 dx, you could set
San José State University Department of Electrical Engineering EE 112, Linear Systems, Spring 2010
San José State University Department of Electrical Engineering EE 112, Linear Systems, Spring 2010 Instructor: Robert H. Morelos-Zaragoza Office Location: ENGR 373 Telephone: (408) 924-3879 Email: [email protected]
General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1
A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions
PYKC Jan-7-10. Lecture 1 Slide 1
Aims and Objectives E 2.5 Signals & Linear Systems Peter Cheung Department of Electrical & Electronic Engineering Imperial College London! By the end of the course, you would have understood: Basic signal
Lecture 7: Finding Lyapunov Functions 1
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1
Introduction. Appendix D Mathematical Induction D1
Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to
DRAFT. Algebra 1 EOC Item Specifications
DRAFT Algebra 1 EOC Item Specifications The draft Florida Standards Assessment (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions as
Manual for SOA Exam MLC.
Chapter 4. Life Insurance. c 29. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam MLC. Fall 29 Edition. available at http://www.actexmadriver.com/ c 29. Miguel A. Arcones.
TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS
TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of
Equations. #1-10 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0
College Algebra Review Problems for Final Exam Equations #1-10 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve
Lecture Notes on Polynomials
Lecture Notes on Polynomials Arne Jensen Department of Mathematical Sciences Aalborg University c 008 Introduction These lecture notes give a very short introduction to polynomials with real and complex
Lecture 7 ELE 301: Signals and Systems
Lecture 7 ELE 3: Signals and Systems Prof. Paul Cuff Princeton University Fall 2-2 Cuff (Lecture 7) ELE 3: Signals and Systems Fall 2-2 / 22 Introduction to Fourier Transforms Fourier transform as a limit
The continuous and discrete Fourier transforms
FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1
Signal Detection C H A P T E R 14 14.1 SIGNAL DETECTION AS HYPOTHESIS TESTING
C H A P T E R 4 Signal Detection 4. SIGNAL DETECTION AS HYPOTHESIS TESTING In Chapter 3 we considered hypothesis testing in the context of random variables. The detector resulting in the minimum probability
Manual for SOA Exam MLC.
Chapter 5 Life annuities Extract from: Arcones Manual for the SOA Exam MLC Fall 2009 Edition available at http://wwwactexmadrivercom/ 1/70 Due n year deferred annuity Definition 1 A due n year deferred
LINES AND PLANES CHRIS JOHNSON
LINES AND PLANES CHRIS JOHNSON Abstract. In this lecture we derive the equations for lines and planes living in 3-space, as well as define the angle between two non-parallel planes, and determine the distance
Vilnius University. Faculty of Mathematics and Informatics. Gintautas Bareikis
Vilnius University Faculty of Mathematics and Informatics Gintautas Bareikis CONTENT Chapter 1. SIMPLE AND COMPOUND INTEREST 1.1 Simple interest......................................................................
Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions
Math 370, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the
1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
Algebra 1 Course Information
Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through
A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions
A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25
Sensor Performance Metrics
Sensor Performance Metrics Michael Todd Professor and Vice Chair Dept. of Structural Engineering University of California, San Diego [email protected] Email me if you want a copy. Outline Sensors as dynamic
March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions
MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial
Solutions to Linear First Order ODE s
First Order Linear Equations In the previous session we learned that a first order linear inhomogeneous ODE for the unknown function x = x(t), has the standard form x + p(t)x = q(t) () (To be precise we
Convolution, Correlation, & Fourier Transforms. James R. Graham 10/25/2005
Convolution, Correlation, & Fourier Transforms James R. Graham 10/25/2005 Introduction A large class of signal processing techniques fall under the category of Fourier transform methods These methods fall
Polynomial Operations and Factoring
Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.
Lecture 14: Section 3.3
Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in
Cubic Functions: Global Analysis
Chapter 14 Cubic Functions: Global Analysis The Essential Question, 231 Concavity-sign, 232 Slope-sign, 234 Extremum, 235 Height-sign, 236 0-Concavity Location, 237 0-Slope Location, 239 Extremum Location,
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
TTT4110 Information and Signal Theory Solution to exam
Norwegian University of Science and Technology Department of Electronics and Telecommunications TTT4 Information and Signal Theory Solution to exam Problem I (a The frequency response is found by taking
Digital Signal Processing IIR Filter Design via Impulse Invariance
Digital Signal Processing IIR Filter Design via Impulse Invariance D. Richard Brown III D. Richard Brown III 1 / 11 Basic Procedure We assume here that we ve already decided to use an IIR filter. The basic
MATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1
MATH 3B: MIDTERM REVIEW JOE HUGHES. Inverses. Let f() = 3. Find the inverse g() for f. Solution: Setting y = ( 3) and solving for gives and g() = +3. y 3y = = + 3y y. Let f() = 4 + 3. Find a domain on
Modulation and Demodulation
MIT 6.02 DRAFT Lecture Notes Last update: April 11, 2012 Comments, questions or bug reports? Please contact {hari, verghese} at mit.edu CHAPTER 14 Modulation and Demodulation This chapter describes the
G.A. Pavliotis. Department of Mathematics. Imperial College London
EE1 MATHEMATICS NUMERICAL METHODS G.A. Pavliotis Department of Mathematics Imperial College London 1. Numerical solution of nonlinear equations (iterative processes). 2. Numerical evaluation of integrals.
The last three chapters introduced three major proof techniques: direct,
CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements
4.5 Chebyshev Polynomials
230 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION 4.5 Chebyshev Polynomials We now turn our attention to polynomial interpolation for f (x) over [ 1, 1] based on the nodes 1 x 0 < x 1 < < x N 1. Both
Probability and Random Variables. Generation of random variables (r.v.)
Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly
DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x
Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of
1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives
TRIGONOMETRY Chapter Trigonometry Objectives After studying this chapter you should be able to handle with confidence a wide range of trigonometric identities; be able to express linear combinations of
Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics
Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights
The Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
Polynomials. Dr. philippe B. laval Kennesaw State University. April 3, 2005
Polynomials Dr. philippe B. laval Kennesaw State University April 3, 2005 Abstract Handout on polynomials. The following topics are covered: Polynomial Functions End behavior Extrema Polynomial Division
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
Manual for SOA Exam MLC.
Chapter 5 Life annuities Extract from: Arcones Manual for the SOA Exam MLC Fall 2009 Edition available at http://wwwactexmadrivercom/ 1/94 Due n year temporary annuity Definition 1 A due n year term annuity
by the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that
Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)
Ver 3537 E. Analysis of Circuits () Key: [A]= easy... [E]=hard E. Circuit Analysis Problem Sheet (Lectures & ). [A] One of the following circuits is a series circuit and the other is a parallel circuit.
+ 4θ 4. We want to minimize this function, and we know that local minima occur when the derivative equals zero. Then consider
Math Xb Applications of Trig Derivatives 1. A woman at point A on the shore of a circular lake with radius 2 miles wants to arrive at the point C diametrically opposite A on the other side of the lake
Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering
Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques
1 Inner Products and Norms on Real Vector Spaces
Math 373: Principles Techniques of Applied Mathematics Spring 29 The 2 Inner Product 1 Inner Products Norms on Real Vector Spaces Recall that an inner product on a real vector space V is a function from
CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
Representation of functions as power series
Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions
1. [20 pts] Find an integrating factor and solve the equation y 3y = e 2t. Then solve the initial value problem y 3y = e 2t, y(0) = 3.
22M:034 Engineer Math IV: Differential Equations Midterm Exam 1 October 2, 2013 Name Section number 1. [20 pts] Find an integrating factor and solve the equation 3 = e 2t. Then solve the initial value
LS.6 Solution Matrices
LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions
correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
http://www.aleks.com Access Code: RVAE4-EGKVN Financial Aid Code: 6A9DB-DEE3B-74F51-57304
MATH 1340.04 College Algebra Location: MAGC 2.202 Meeting day(s): TR 7:45a 9:00a, Instructor Information Name: Virgil Pierce Email: [email protected] Phone: 665.3535 Teaching Assistant Name: Indalecio
Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only
Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: A-APR.3: Identify zeros of polynomials
