How To Understand The Nyquist Sampling Theorem
|
|
|
- Lewis Arnold
- 5 years ago
- Views:
Transcription
1 Nyquist Sampling Theorem By: Arnold Evia
2 Table of Contents What is the Nyquist Sampling Theorem? Bandwidth Sampling Impulse Response Train Fourier Transform of Impulse Response Train Sampling in the Fourier Domain o Sampling cases Review
3 What is the Nyquist Sampling Theorem? Formal Definition: o If the frequency spectra of a function x(t) contains no frequencies higher than B hertz, x(t) is completely determined by giving its ordinates at a series of points spaced 1/(2B) seconds apart. In other words, to be able to accurately reconstruct a signal, samples must be recorded every 1/(2B) seconds, where B is the bandwidth of the signal.
4 Bandwidth There are many definitions to bandwidth depending on the application For signal processing, it is referred to as the range of frequencies above 0 ( F(w) of f(t)) Signals that have a definite value for the highest frequency are bandlimited ( F(w) =0 for w >B) In reality, signals are never bandlimited o In order to be bandlimited, the signal must have infinite duration in time Bandlimited signal with bandwidth B Non-bandlimited signal (representative of real signals)
5 Sampling Sampling is recording values of a function at certain times Allows for transformation of a continuous time function to a discrete time function This is obtained by multiplication of f(t) by a unit impulse train
6 Impulse Response Train Consider an impulse train: Sometimes referred to as comb function Periodic with a value of 1 for every nt0, where n is integer values from - to, and 0 elsewhere
7 Fourier Transform of Impulse Train Input Set up the Equations function into the fourier transform eqs. T0 is the period of the func. Solve Solve Dn for one Dn period Consider period from T0/2 to T0/2 Only one value: at t=0 Integral equates to 1 as e-jnw0(0) = 1 Substitute Understand Dn into Answer first equation The fourier spectra of the function has an amplitude of 1/T0 at nw0 for values of n from to +, and 0 elsewhere Distance between each w0 is dependent on T0. Decreasing T0, increases the w0 and distance Original Function Fourier Spectra
8 Sampling in the Fourier Domain Consider a bandlimited signal f(t) multiplied with an impulse response train (sampled): o If the period of the impulse train is insufficient (T0 > 1/(2B)), aliasing occurs o When T0=1/(2B), T0 is considered the nyquist rate. 1/T0 is the nyquist frequency Recall that multiplication in the time domain is convolution. in the frequency domain: = As can be seen in the fourier spectra, it is isual Representation of Property ime omain req. omain only necessary to extract the fourier spectra from one period to reconstruct the signal! * =
9 Sampling Cases T0>1/(2B) o Undersampling o Distance between copies of F(w) that overlap happens o Aliasing occurs, and the higher frequencies of the signal are corrupted T0<=1/(2B) o Oversampling o Distance between copies of F(w) is sufficient enough to prevent overlap o Spectra can be filtered to accurately reconstruct signal
10 Review Nyquist sampling rate is the rate which samples of the signal must be recorded in order to accurately reconstruct the sampled signal o Must satisfy T0 <= 1/(2B); where T0 is the time between recorded samples and B is the bandwidth of the signal A signal sampled every T0 seconds can be represented as: where Ts = T0
11 Review (cont.) One way of understanding the importance of the Nyquist sampling rate is observing the fourier spectra of a sampled signal A sampled signal s fourier spectra is a periodic function of the original unsampled signal s fourier spectra o Therefore, it is only necessary to extract the data from one period to accurately reconstruct the signal Aliasing can occur if the sampling rate is less than the Nyquist sampling rate o There is overlap in the fourier spectra, and the signal cannot be accurately reconstructed (Undersampling)
12 References Some basic resources can be found here: ARC website: ARC BME schedule: html
SGN-1158 Introduction to Signal Processing Test. Solutions
SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:
Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.
Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal
Aliasing, Image Sampling and Reconstruction
Aliasing, Image Sampling and Reconstruction Recall: a pixel is a point It is NOT a box, disc or teeny wee light It has no dimension It occupies no area It can have a coordinate More than a point, it is
5 Signal Design for Bandlimited Channels
225 5 Signal Design for Bandlimited Channels So far, we have not imposed any bandwidth constraints on the transmitted passband signal, or equivalently, on the transmitted baseband signal s b (t) I[k]g
Analysis/resynthesis with the short time Fourier transform
Analysis/resynthesis with the short time Fourier transform summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Röbel Institute of communication science TU-Berlin IRCAM Analysis/Synthesis
Sampling and Interpolation. Yao Wang Polytechnic University, Brooklyn, NY11201
Sampling and Interpolation Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Basics of sampling and quantization A/D and D/A converters Sampling Nyquist sampling theorem
SIGNAL PROCESSING & SIMULATION NEWSLETTER
1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty
The continuous and discrete Fourier transforms
FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1
Time series analysis Matlab tutorial. Joachim Gross
Time series analysis Matlab tutorial Joachim Gross Outline Terminology Sampling theorem Plotting Baseline correction Detrending Smoothing Filtering Decimation Remarks Focus on practical aspects, exercises,
PYKC Jan-7-10. Lecture 1 Slide 1
Aims and Objectives E 2.5 Signals & Linear Systems Peter Cheung Department of Electrical & Electronic Engineering Imperial College London! By the end of the course, you would have understood: Basic signal
Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics:
Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Voice Digitization in the POTS Traditional
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya ([email protected]) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper
T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p
Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided
Lecture 8 ELE 301: Signals and Systems
Lecture 8 ELE 3: Signals and Systems Prof. Paul Cuff Princeton University Fall 2-2 Cuff (Lecture 7) ELE 3: Signals and Systems Fall 2-2 / 37 Properties of the Fourier Transform Properties of the Fourier
Frequency Response of FIR Filters
Frequency Response of FIR Filters Chapter 6 This chapter continues the study of FIR filters from Chapter 5, but the emphasis is frequency response, which relates to how the filter responds to an input
CONVOLUTION Digital Signal Processing
CONVOLUTION Digital Signal Processing Introduction As digital signal processing continues to emerge as a major discipline in the field of electrical engineering an even greater demand has evolved to understand
Correlation and Convolution Class Notes for CMSC 426, Fall 2005 David Jacobs
Correlation and Convolution Class otes for CMSC 46, Fall 5 David Jacobs Introduction Correlation and Convolution are basic operations that we will perform to extract information from images. They are in
Probability and Random Variables. Generation of random variables (r.v.)
Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly
Digital Transmission (Line Coding)
Digital Transmission (Line Coding) Pulse Transmission Source Multiplexer Line Coder Line Coding: Output of the multiplexer (TDM) is coded into electrical pulses or waveforms for the purpose of transmission
EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines
EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation
Analog and Digital Signals, Time and Frequency Representation of Signals
1 Analog and Digital Signals, Time and Frequency Representation of Signals Required reading: Garcia 3.1, 3.2 CSE 3213, Fall 2010 Instructor: N. Vlajic 2 Data vs. Signal Analog vs. Digital Analog Signals
Analog Representations of Sound
Analog Representations of Sound Magnified phonograph grooves, viewed from above: The shape of the grooves encodes the continuously varying audio signal. Analog to Digital Recording Chain ADC Microphone
Sampling Theory For Digital Audio By Dan Lavry, Lavry Engineering, Inc.
Sampling Theory Page Copyright Dan Lavry, Lavry Engineering, Inc, 24 Sampling Theory For Digital Audio By Dan Lavry, Lavry Engineering, Inc. Credit: Dr. Nyquist discovered the sampling theorem, one of
Convolution, Correlation, & Fourier Transforms. James R. Graham 10/25/2005
Convolution, Correlation, & Fourier Transforms James R. Graham 10/25/2005 Introduction A large class of signal processing techniques fall under the category of Fourier transform methods These methods fall
NRZ Bandwidth - HF Cutoff vs. SNR
Application Note: HFAN-09.0. Rev.2; 04/08 NRZ Bandwidth - HF Cutoff vs. SNR Functional Diagrams Pin Configurations appear at end of data sheet. Functional Diagrams continued at end of data sheet. UCSP
BSEE Degree Plan Bachelor of Science in Electrical Engineering: 2015-16
BSEE Degree Plan Bachelor of Science in Electrical Engineering: 2015-16 Freshman Year ENG 1003 Composition I 3 ENG 1013 Composition II 3 ENGR 1402 Concepts of Engineering 2 PHYS 2034 University Physics
Implementation of Digital Signal Processing: Some Background on GFSK Modulation
Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering [email protected] Version 4 (February 7, 2013)
Linear Filtering Part II
Linear Filtering Part II Selim Aksoy Department of Computer Engineering Bilkent University [email protected] Fourier theory Jean Baptiste Joseph Fourier had a crazy idea: Any periodic function can
Agilent Creating Multi-tone Signals With the N7509A Waveform Generation Toolbox. Application Note
Agilent Creating Multi-tone Signals With the N7509A Waveform Generation Toolbox Application Note Introduction Of all the signal engines in the N7509A, the most complex is the multi-tone engine. This application
The Fourier Analysis Tool in Microsoft Excel
The Fourier Analysis Tool in Microsoft Excel Douglas A. Kerr Issue March 4, 2009 ABSTRACT AD ITRODUCTIO The spreadsheet application Microsoft Excel includes a tool that will calculate the discrete Fourier
Short-time FFT, Multi-taper analysis & Filtering in SPM12
Short-time FFT, Multi-taper analysis & Filtering in SPM12 Computational Psychiatry Seminar, FS 2015 Daniel Renz, Translational Neuromodeling Unit, ETHZ & UZH 20.03.2015 Overview Refresher Short-time Fourier
1995 Mixed-Signal Products SLAA013
Application Report 995 Mixed-Signal Products SLAA03 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service
EE 179 April 21, 2014 Digital and Analog Communication Systems Handout #16 Homework #2 Solutions
EE 79 April, 04 Digital and Analog Communication Systems Handout #6 Homework # Solutions. Operations on signals (Lathi& Ding.3-3). For the signal g(t) shown below, sketch: a. g(t 4); b. g(t/.5); c. g(t
CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging
Physics of Medical X-Ray Imaging (1) Chapter 3 CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY 3.1 Basic Concepts of Digital Imaging Unlike conventional radiography that generates images on film through
chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective
Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything
Waves. Wave Parameters. Krauss Chapter Nine
Waves Krauss Chapter Nine Wave Parameters Wavelength = λ = Length between wave crests (or troughs) Wave Number = κ = 2π/λ (units of 1/length) Wave Period = T = Time it takes a wave crest to travel one
Motorola Digital Signal Processors
Motorola Digital Signal Processors Principles of Sigma-Delta Modulation for Analog-to- Digital Converters by Sangil Park, Ph. D. Strategic Applications Digital Signal Processor Operation MOTOROLA APR8
Digital Transmission of Analog Data: PCM and Delta Modulation
Digital Transmission of Analog Data: PCM and Delta Modulation Required reading: Garcia 3.3.2 and 3.3.3 CSE 323, Fall 200 Instructor: N. Vlajic Digital Transmission of Analog Data 2 Digitization process
Final Year Project Progress Report. Frequency-Domain Adaptive Filtering. Myles Friel. Supervisor: Dr.Edward Jones
Final Year Project Progress Report Frequency-Domain Adaptive Filtering Myles Friel 01510401 Supervisor: Dr.Edward Jones Abstract The Final Year Project is an important part of the final year of the Electronic
How To Understand The Discrete Fourier Transform
The Fast Fourier Transform (FFT) and MATLAB Examples Learning Objectives Discrete Fourier transforms (DFTs) and their relationship to the Fourier transforms Implementation issues with the DFT via the FFT
T = 10-' s. p(t)= ( (t-nt), T= 3. n=-oo. Figure P16.2
16 Sampling Recommended Problems P16.1 The sequence x[n] = (-1)' is obtained by sampling the continuous-time sinusoidal signal x(t) = cos oot at 1-ms intervals, i.e., cos(oont) = (-1)", Determine three
1.4 Fast Fourier Transform (FFT) Algorithm
74 CHAPTER AALYSIS OF DISCRETE-TIME LIEAR TIME-IVARIAT SYSTEMS 4 Fast Fourier Transform (FFT Algorithm Fast Fourier Transform, or FFT, is any algorithm for computing the -point DFT with a computational
Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept
Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept ONR NEURO-SILICON WORKSHOP, AUG 1-2, 2006 Take Home Messages Introduce integrate-and-fire
Introduction to IQ-demodulation of RF-data
Introduction to IQ-demodulation of RF-data by Johan Kirkhorn, IFBT, NTNU September 15, 1999 Table of Contents 1 INTRODUCTION...3 1.1 Abstract...3 1.2 Definitions/Abbreviations/Nomenclature...3 1.3 Referenced
Adding Sinusoids of the Same Frequency. Additive Synthesis. Spectrum. Music 270a: Modulation
Adding Sinusoids of the Same Frequency Music 7a: Modulation Tamara Smyth, [email protected] Department of Music, University of California, San Diego (UCSD) February 9, 5 Recall, that adding sinusoids of
Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage
Lecture 3: Signaling and Clock Recovery CSE 123: Computer Networks Stefan Savage Last time Protocols and layering Application Presentation Session Transport Network Datalink Physical Application Transport
Public Switched Telephone System
Public Switched Telephone System Structure of the Telephone System The Local Loop: Modems, ADSL Structure of the Telephone System (a) Fully-interconnected network. (b) Centralized switch. (c) Two-level
Giant Slinky: Quantitative Exhibit Activity
Name: Giant Slinky: Quantitative Exhibit Activity Materials: Tape Measure, Stopwatch, & Calculator. In this activity, we will explore wave properties using the Giant Slinky. Let s start by describing the
PeakVue Analysis for Antifriction Bearing Fault Detection
August 2011 PeakVue Analysis for Antifriction Bearing Fault Detection Peak values (PeakVue) are observed over sequential discrete time intervals, captured, and analyzed. The analyses are the (a) peak values
ADC and DAC. Quantization
CHAPTER ADC and DAC Most of the signals directly encountered in science and engineering are continuous: light intensity that changes with distance; voltage that varies over time; a chemical reaction rate
Applications of the DFT
CHAPTER 9 Applications of the DFT The Discrete Fourier Transform (DFT) is one of the most important tools in Digital Signal Processing. This chapter discusses three common ways it is used. First, the DFT
Example/ an analog signal f ( t) ) is sample by f s = 5000 Hz draw the sampling signal spectrum. Calculate min. sampling frequency.
1 2 3 4 Example/ an analog signal f ( t) = 1+ cos(4000πt ) is sample by f s = 5000 Hz draw the sampling signal spectrum. Calculate min. sampling frequency. Sol/ H(f) -7KHz -5KHz -3KHz -2KHz 0 2KHz 3KHz
This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.
This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Transcription of polyphonic signals using fast filter bank( Accepted version ) Author(s) Foo, Say Wei;
TDS5000B, TDS6000B, TDS/CSA7000B Series Acquisition Modes
TDS5000B, TDS6000B, TDS/CSA7000B Series Acquisition Modes Tektronix oscilloscopes provide several different acquisition modes. While this gives the user great flexibility and choice, each mode is optimized
Real time spectrum analyzer light
Faculty of Engineering and Sustainable Development Real time spectrum analyzer light Cátia Isabel Jesus Pereira Gävle May 2011 Bachelor of Program in Electronics/Telecommunications Examiner: Charles Nader
Auto-Tuning Using Fourier Coefficients
Auto-Tuning Using Fourier Coefficients Math 56 Tom Whalen May 20, 2013 The Fourier transform is an integral part of signal processing of any kind. To be able to analyze an input signal as a superposition
Transformations and Expectations of random variables
Transformations and Epectations of random variables X F X (): a random variable X distributed with CDF F X. Any function Y = g(x) is also a random variable. If both X, and Y are continuous random variables,
Computing Fourier Series and Power Spectrum with MATLAB
Computing Fourier Series and Power Spectrum with MATLAB By Brian D. Storey. Introduction Fourier series provides an alternate way of representing data: instead of representing the signal amplitude as a
Superresolution images reconstructed from aliased images
Superresolution images reconstructed from aliased images Patrick Vandewalle, Sabine Süsstrunk and Martin Vetterli LCAV - School of Computer and Communication Sciences Ecole Polytechnique Fédérale de Lausanne
Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B
CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation
(2) (3) (4) (5) 3 J. M. Whittaker, Interpolatory Function Theory, Cambridge Tracts
Communication in the Presence of Noise CLAUDE E. SHANNON, MEMBER, IRE Classic Paper A method is developed for representing any communication system geometrically. Messages and the corresponding signals
SIGNAL PROCESSING FOR EFFECTIVE VIBRATION ANALYSIS
SIGNAL PROCESSING FOR EFFECTIVE VIBRATION ANALYSIS Dennis H. Shreve IRD Mechanalysis, Inc Columbus, Ohio November 1995 ABSTRACT Effective vibration analysis first begins with acquiring an accurate time-varying
CARLETON UNIVERSITY Department of Systems and Computer Engineering. SYSC4700 Telecommunications Engineering Winter 2014. Term Exam 13 February 2014
CARLETON UNIVERSITY Department of Systems and Computer Engineering SYSC4700 Telecommunications Engineering Winter 2014 Term Exam 13 February 2014 Duration: 75 minutes Instructions: 1. Closed-book exam
Principles of Digital Communication
Principles of Digital Communication Robert G. Gallager January 5, 2008 ii Preface: introduction and objectives The digital communication industry is an enormous and rapidly growing industry, roughly comparable
Digital Baseband Modulation
Digital Baseband Modulation Later Outline Baseband & Bandpass Waveforms Baseband & Bandpass Waveforms, Modulation A Communication System Dig. Baseband Modulators (Line Coders) Sequence of bits are modulated
Lecture 18: The Time-Bandwidth Product
WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 18: The Time-Bandwih Product Prof.Prof.V.M.Gadre, EE, IIT Bombay 1 Introduction In this lecture, our aim is to define the time Bandwih Product,
SOFTWARE FOR GENERATION OF SPECTRUM COMPATIBLE TIME HISTORY
3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 24 Paper No. 296 SOFTWARE FOR GENERATION OF SPECTRUM COMPATIBLE TIME HISTORY ASHOK KUMAR SUMMARY One of the important
Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19
Doppler Doppler Chapter 19 A moving train with a trumpet player holding the same tone for a very long time travels from your left to your right. The tone changes relative the motion of you (receiver) and
Introduction to Digital Audio
Introduction to Digital Audio Before the development of high-speed, low-cost digital computers and analog-to-digital conversion circuits, all recording and manipulation of sound was done using analog techniques.
Evaluating Oscilloscope Bandwidths for Your Application
Evaluating Oscilloscope Bandwidths for Your Application Application Note Table of Contents Introduction....1 Defining Oscilloscope Bandwidth.....2 Required Bandwidth for Digital Applications...4 Digital
Time Series Analysis: Introduction to Signal Processing Concepts. Liam Kilmartin Discipline of Electrical & Electronic Engineering, NUI, Galway
Time Series Analysis: Introduction to Signal Processing Concepts Liam Kilmartin Discipline of Electrical & Electronic Engineering, NUI, Galway Aims of Course To introduce some of the basic concepts of
ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1
WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's
The Computer Music Tutorial
Curtis Roads with John Strawn, Curtis Abbott, John Gordon, and Philip Greenspun The Computer Music Tutorial Corrections and Revisions The MIT Press Cambridge, Massachusetts London, England 2 Corrections
What the Nyquist Criterion Means to Your Sampled Data System Design. by Walt Kester
TUTORAL What the Nyquist Criterion Means to Your Sampled Data System Design NTRODUCTON by Walt Kester A quick reading of Harry Nyquist's classic Bell System Technical Journal article of 194 (Reference
Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain)
Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain) The Fourier Sine Transform pair are F. T. : U = 2/ u x sin x dx, denoted as U
Sampling: What Nyquist Didn t Say, and What to Do About It
Sampling: What Nyquist Didn t Say, and What to Do About It Tim Wescott, Wescott Design Services The Nyquist-Shannon sampling theorem is useful, but often misused when engineers establish sampling rates
2 The wireless channel
CHAPTER The wireless channel A good understanding of the wireless channel, its key physical parameters and the modeling issues, lays the foundation for the rest of the book. This is the goal of this chapter.
1.1 Discrete-Time Fourier Transform
1.1 Discrete-Time Fourier Transform The discrete-time Fourier transform has essentially the same properties as the continuous-time Fourier transform, and these properties play parallel roles in continuous
Implementation of the LMS Algorithm for Noise Cancellation on Speech Using the ARM LPC2378 Processor.
School of Mathematics and Systems Engineering Reports from MSI - Rapporter från MSI Implementation of the LMS Algorithm for Noise Cancellation on Speech Using the ARM LPC2378 Processor. Cesar Augusto Azurdia
Em bedded DSP : I ntroduction to Digital Filters
Embedded DSP : Introduction to Digital Filters 1 Em bedded DSP : I ntroduction to Digital Filters Digital filters are a important part of DSP. In fact their extraordinary performance is one of the keys
Bandwidth-dependent transformation of noise data from frequency into time domain and vice versa
Topic Bandwidth-dependent transformation of noise data from frequency into time domain and vice versa Authors Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany),
ELECTRICAL ENGINEERING
EE ELECTRICAL ENGINEERING See beginning of Section H for abbreviations, course numbers and coding. The * denotes labs which are held on alternate weeks. A minimum grade of C is required for all prerequisite
L9: Cepstral analysis
L9: Cepstral analysis The cepstrum Homomorphic filtering The cepstrum and voicing/pitch detection Linear prediction cepstral coefficients Mel frequency cepstral coefficients This lecture is based on [Taylor,
9 Fourier Transform Properties
9 Fourier Transform Properties The Fourier transform is a major cornerstone in the analysis and representation of signals and linear, time-invariant systems, and its elegance and importance cannot be overemphasized.
Higher National Unit Specification. General information for centres. Transmission of Measurement Signals. Unit code: DX4T 35
Higher National Unit Specification General information for centres Unit title: Transmission of Measurement Signals Unit code: DX4T 35 Unit purpose: This Unit is designed to enable candidates to gain knowledge
Lab 1. The Fourier Transform
Lab 1. The Fourier Transform Introduction In the Communication Labs you will be given the opportunity to apply the theory learned in Communication Systems. Since this is your first time to work in the
Experiment 3: Double Sideband Modulation (DSB)
Experiment 3: Double Sideband Modulation (DSB) This experiment examines the characteristics of the double-sideband (DSB) linear modulation process. The demodulation is performed coherently and its strict
The Z transform (3) 1
The Z transform (3) 1 Today Analysis of stability and causality of LTI systems in the Z domain The inverse Z Transform Section 3.3 (read class notes first) Examples 3.9, 3.11 Properties of the Z Transform
1. (Ungraded) A noiseless 2-kHz channel is sampled every 5 ms. What is the maximum data rate?
Homework 2 Solution Guidelines CSC 401, Fall, 2011 1. (Ungraded) A noiseless 2-kHz channel is sampled every 5 ms. What is the maximum data rate? 1. In this problem, the channel being sampled gives us the
AN-007 APPLICATION NOTE MEASURING MAXIMUM SUBWOOFER OUTPUT ACCORDING ANSI/CEA-2010 STANDARD INTRODUCTION CEA-2010 (ANSI) TEST PROCEDURE
AUDIOMATICA AN-007 APPLICATION NOTE MEASURING MAXIMUM SUBWOOFER OUTPUT ACCORDING ANSI/CEA-2010 STANDARD by Daniele Ponteggia - [email protected] INTRODUCTION The Consumer Electronics Association (CEA),
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals FINAL EXAM WITH SOLUTIONS (YOURS!) You are allowed one 2-sided sheet of
Digital Signal Processing IIR Filter Design via Impulse Invariance
Digital Signal Processing IIR Filter Design via Impulse Invariance D. Richard Brown III D. Richard Brown III 1 / 11 Basic Procedure We assume here that we ve already decided to use an IIR filter. The basic
Finding Equations of Sinusoidal Functions From Real-World Data
Finding Equations of Sinusoidal Functions From Real-World Data **Note: Throughout this handout you will be asked to use your graphing calculator to verify certain results, but be aware that you will NOT
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals MIDTERM EXAM You are allowed one 2-sided sheet of notes. No books, no other
FFT Algorithms. Chapter 6. Contents 6.1
Chapter 6 FFT Algorithms Contents Efficient computation of the DFT............................................ 6.2 Applications of FFT................................................... 6.6 Computing DFT
