# NRZ Bandwidth - HF Cutoff vs. SNR

Save this PDF as:

Size: px
Start display at page:

Download "NRZ Bandwidth - HF Cutoff vs. SNR"

## Transcription

1 Application Note: HFAN Rev.2; 04/08 NRZ Bandwidth - HF Cutoff vs. SNR Functional Diagrams Pin Configurations appear at end of data sheet. Functional Diagrams continued at end of data sheet. UCSP is a trademark of Products, Inc. AVAILABLE

2 NRZ Bandwidth HF Cutoff vs. SNR Introduction A fundamental goal of physical layer digital communication system design is transmission of the data signal through the system with minimum distortion. In order to accomplish this goal, it is imperative to match (as closely as possible) the system bandwidth to the bandwidth requirements of the data. The purpose of this application note is to analyze the bandwidth required for effective transmission of nonreturn-to-zero (NRZ) encoded data. 2 NRZ Encoded Data In order to transmit binary data, it must be encoded into a signal (e.g., an electrical or optical waveform) that is suitable for the transmission medium (e.g., copper cable, optical fiber, etc.). Of the many binary data encoding methods currently in use, nonreturnto-zero (NRZ) is one of the most common. In NRZ encoding, each binary digit (bit) is assigned an equal amount of time, called the bit period, T b. During each bit period, a binary one is represented by a high amplitude, and a binary zero is represented by a low amplitude. The sequence of encoded bits is called the bit stream or data signal. Timing synchronization is maintained by a square-wave signal called the bit clock. An NRZ-encoded bit stream and the bit clock are illustrated in Figure. t 0 NRZ Bit Stream Bit Clock t t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 0 t n-2 t n- t n t n t n- = Bit Period (T b ) = Unit Interval (UI) Figure. NRZ encoded bit stream 3 Autocorrelation of Random NRZ Data The Wiener-Khinchin theorem states that, for a random process that is at least wide-sense stationary, the power spectral density of the process is equal to the Fourier transform of its autocorrelation function. Using this theorem, we can compute the power spectral density of random NRZ data by first determining the autocorrelation function and then calculating its Fourier transform. Random binary data can be defined as a sequence of bits in which the probability that any given bit in the sequence has a value of one or zero is independent of the value of all other bits in the sequence. In other words, we can never predict the value of the next bit in the sequence based on the previous bits (there are no patterns). We can use the random data model as the basis for determining the necessary system bandwidth. The autocorrelation of any function of time can be computed by multiplying the function by a timeshifted version of itself and then integrating this product over all values of the time shift. This can be written mathematically as R XX / 2 lim T X ( t) X ( t + T T / 2 ( τ ) = τ ) dt () T where R XX (τ) represents the autocorrelation of the function X(t), t represents time, and τ represents the time-shift (sometimes called the lag or lag factor). Figure 2 is an example showing R XX (T b ), the autocorrelation of X(t) at a lag factor of bit period, where X(t) equals the NRZ representation of the binary sequence 000. To compute the autocorrelation of a random bit stream it is important to observe that there is no correlation for lag factors outside of plus or minus one bit period (i.e., R XX (τ) = 0 for τ < -T b or τ > T b ). This is due to the random nature of the bit stream, which results in the fact that, for any value of t, there is an equal probability that X(t) represents a one or a zero. Page 2 of 5

3 +A A +A A R XX X(t) ( Tb ) = { Tb[( A + ( A + ( A + ( A 6T b T b + ( A + ( A ]} = 0 X(t-T b ) is equal to αt b sinc 2 (T b f), where sinc(f) is defined as (sin πf)/πf and f is the frequency in Hertz 2. This result is the power spectral density of the random NRZ bit stream and is illustrated in Figure 4 (note that the frequency axis is normalized to the data rate). αt b αt b sinc 2 (T b f) Figure 2. Autocorrelation example with τ = T b For example, if (-T b < τ < T b ) and we assume that the probability that [X(t) = -A] is 50% and the probability that [X(t) = +A] is also 50%, then there are only four equally probable possibilities for the product X(t)X(t-τ); i.e., (( = A 2, ((- = -A 2, (-( = -A 2, and (-(- = A 2. Since there is equal probability of A 2 and -A 2 at each point in the autocorrelation of a random bit stream, the sum of the products at each of the points will, in the limit, be equal to zero. The important conclusion is that, for random data, the limits on the autocorrelation integral of equation () can be changed to (-T b and + T b ) since, in the limit, the autocorrelation will be zero outside of this interval. Using the above conclusion, the autocorrelation of a random bit stream can be greatly simplified, since we only have to consider lag factors between -T b and +T b. In this region, the autocorrelation starts at R XX (-T b ) = 0, increases linearly to a peak value α at R XX (0), and then decreases linearly to a final value at R XX (+T b ) = 0. The resulting triangular autocorrelation function is illustrated in Figure 3. R XX (τ) -T b 0 +T b Figure 3. Autocorrelation of random NRZ data 4 Power Spectrum of Random NRZ Data The Fourier transform of a triangular function centered at zero with amplitude α and width 2T b (i.e., the autocorrelation function shown in Figure 3) α τ T b f = Frequency (Hz)/Data Rate Figure 4. Power spectrum of random NRZ data 5 Bandwidth Limits The power spectrum of random NRZ data includes non-zero components that extend out to infinite frequencies. Since real systems have high frequency cutoffs that limit the bandwidth to finite values, an important question is: Where should these cutoffs be placed? Since the fundamental frequency of the fastest bit transitions in an NRZ bit stream (i.e., a repeating one-zero pattern) is one-half of the data rate, this represents the lowest possible high-frequency cutoff. More bandwidth is required, however, to reduce distortion of the data signal and increase the signalto-noise ratio. Integration of the power spectrum of Figure 4 over the full frequency range provides considerable insight into possible choices for the high-frequency cutoff, as shown in Figure 5. This figure shows that the majority of the power (94% of the total) in random NRZ data is contained in the spectrum between the frequencies of 0 and 0.75 times the data rate. Tabulated values for the cumulative power of Figure 5 are shown in Table. As Figure 5 and Table illustrate, the gain in signal power with increased bandwidth almost levels off somewhere between 0.75 and 0.8 times the data rate and then Page 3 of 5

4 increases somewhat between.2 and.6 times the data rate. It is important to note that, if the bandwidth is doubled from 0.75 to.5 times the data rate, then the total cumulative power increases from 93.6% to 98.% for a net power gain of only 4.5%. Another way to state this is that a 00% increase in bandwidth (from 0.75 to.5 times the data rate) only provides a 4.5% increase in signal power. Cumulative Power T b f = Frequency (Hz)/Data Rate Figure 5. Cumulative (integrated) power spectrum of random NRZ data Table. Tabulated Values for Cumulative Power in Random NRZ Freqency(Hz) Cumulative % Data Rate(bits/s) of Total Power % % % %.0 95.%. 95.2% % %.4 97.%.5 98.% % % % When choosing the high-frequency cutoff, it is important to consider the effect of increased bandwidth on the system noise. The power spectrum of random Gaussian noise can be modeled as a constant (horizontal line) over the entire frequency spectrum 3. This means that the cumulative noise power increases linearly as the bandwidth increases, and therefore the system signal-to-noise ratio (SNR) will also change with the bandwidth. As noted previously, increasing the high-frequency cutoff above 0.75 results in only a small increase in signal power. But, since the cumulative noise power increases linearly over the entire spectrum, this increase in high-frequency cutoff will result in a significant gain in noise power. For example, let us assume that the SNR at a normalized bandwidth of 0.75 is equal to 2.7, which equates to a bit error ratio (BER) of 0-0, when considering only the effects of Gaussian noise. (For more detail on the relationship between SNR and BER see Maxim application note HFAN "Converting Between RMS and Peak-to-Peak Jitter at a Specified BER.") If the normalized bandwidth is increased by 33% (to.0), the noise power will also increase by 33%. Meanwhile, the signal power will increase by only.5%. The result is a change in system SNR that can be calculated as =.0).05 = N(fc =.0).333 =.75) =.75) = = 9.65 (2) where S is the signal power, N is the noise power, and f c is the high-frequency cutoff. For an SNR of 9.65, the corresponding BER is Thus a 33% increase in bandwidth resulted in a reduction of BER by a factor of 6,840! Page 4 of 5

5 6 Conclusions For systems transmitting random NRZ data, the majority of the signal power (94%) is contained within the frequency spectrum between 0 and 0.75 times the data rate. Noise power, on the other hand, accumulates at a constant rate as the high-frequency cutoff is increased. The result is a rapid decrease in signal-to-noise ratio when the high-frequency cutoff is increased beyond 0.75, which leads to a significant degradation in bit error performance. Thus, for most systems transmitting random NRZ data, 0.75 times the data rate is a good choice for the high-frequency cutoff. J.W. Goodman, Statistical Optics, New York, NY: John Wiley & Sons 985, p J.D. Gaskill, Linear Systems, Fourier Transforms, and Optics, New York, NY: John Wiley & Sons 978, p H. Taub and D. Schilling, Priciples of Communication Stystems, 2 nd Edition, New York, NY: McGraw-Hill, 986, p.328. Page 5 of 5

### Digital Transmission (Line Coding)

Digital Transmission (Line Coding) Pulse Transmission Source Multiplexer Line Coder Line Coding: Output of the multiplexer (TDM) is coded into electrical pulses or waveforms for the purpose of transmission

### MODULATION Systems (part 1)

Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-62-2) is published by CORONA publishing co.,

### Jitter Measurements in Serial Data Signals

Jitter Measurements in Serial Data Signals Michael Schnecker, Product Manager LeCroy Corporation Introduction The increasing speed of serial data transmission systems places greater importance on measuring

### Digital Baseband Modulation

Digital Baseband Modulation Later Outline Baseband & Bandpass Waveforms Baseband & Bandpass Waveforms, Modulation A Communication System Dig. Baseband Modulators (Line Coders) Sequence of bits are modulated

### TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of

### Chapter 8 - Power Density Spectrum

EE385 Class Notes 8/8/03 John Stensby Chapter 8 - Power Density Spectrum Let X(t) be a WSS random process. X(t) has an average power, given in watts, of E[X(t) ], a constant. his total average power is

### Convolution, Correlation, & Fourier Transforms. James R. Graham 10/25/2005

Convolution, Correlation, & Fourier Transforms James R. Graham 10/25/2005 Introduction A large class of signal processing techniques fall under the category of Fourier transform methods These methods fall

### Accurate Loss-of-Signal Detection in 10Gbps Optical Receivers using the MAX3991

Design Note: HFDN-34.0 Rev.1; 04/08 Accurate Loss-of-Signal Detection in 10Gbps Optical Receivers using the MAX3991 Functional Diagrams Pin Configurations appear at end of data sheet. Functional Diagrams

### T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

### Implementation of Digital Signal Processing: Some Background on GFSK Modulation

Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering s.h.gerez@utwente.nl Version 4 (February 7, 2013)

### ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1

WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's

### Probability and Random Variables. Generation of random variables (r.v.)

Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly

### Module 13 : Measurements on Fiber Optic Systems

Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)

### Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage

Lecture 3: Signaling and Clock Recovery CSE 123: Computer Networks Stefan Savage Last time Protocols and layering Application Presentation Session Transport Network Datalink Physical Application Transport

### Analog and Digital Signals, Time and Frequency Representation of Signals

1 Analog and Digital Signals, Time and Frequency Representation of Signals Required reading: Garcia 3.1, 3.2 CSE 3213, Fall 2010 Instructor: N. Vlajic 2 Data vs. Signal Analog vs. Digital Analog Signals

### Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

### The Effect of Network Cabling on Bit Error Rate Performance. By Paul Kish NORDX/CDT

The Effect of Network Cabling on Bit Error Rate Performance By Paul Kish NORDX/CDT Table of Contents Introduction... 2 Probability of Causing Errors... 3 Noise Sources Contributing to Errors... 4 Bit Error

### EECC694 - Shaaban. Transmission Channel

The Physical Layer: Data Transmission Basics Encode data as energy at the data (information) source and transmit the encoded energy using transmitter hardware: Possible Energy Forms: Electrical, light,

### Physical Layer Part 2. Data Encoding Techniques. Networks: Data Encoding 1

Physical Layer Part 2 Data Encoding Techniques Networks: Data Encoding 1 Analog and Digital Transmissions Figure 2-23.The use of both analog and digital transmissions for a computer to computer call. Conversion

### USB 3.0 CDR Model White Paper Revision 0.5

USB 3.0 CDR Model White Paper Revision 0.5 January 15, 2009 INTELLECTUAL PROPERTY DISCLAIMER THIS WHITE PAPER IS PROVIDED TO YOU AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

### 5 Signal Design for Bandlimited Channels

225 5 Signal Design for Bandlimited Channels So far, we have not imposed any bandwidth constraints on the transmitted passband signal, or equivalently, on the transmitted baseband signal s b (t) I[k]g

### 1. (Ungraded) A noiseless 2-kHz channel is sampled every 5 ms. What is the maximum data rate?

Homework 2 Solution Guidelines CSC 401, Fall, 2011 1. (Ungraded) A noiseless 2-kHz channel is sampled every 5 ms. What is the maximum data rate? 1. In this problem, the channel being sampled gives us the

### PYKC Jan-7-10. Lecture 1 Slide 1

Aims and Objectives E 2.5 Signals & Linear Systems Peter Cheung Department of Electrical & Electronic Engineering Imperial College London! By the end of the course, you would have understood: Basic signal

### AN-756 APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 www.analog.com

APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 www.analog.com Sampled Systems and the Effects of Clock Phase Noise and Jitter by Brad Brannon

### - T-Carrier Technologies -

1 T-Carrier Fundamentals - T-Carrier Technologies - T-Carrier systems provide digitized communication for voice or data traffic across a telephone provider s network. The T-Carrier specification defines

### Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.

Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal

### Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)

Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques

### Large-Capacity Optical Transmission Technologies Supporting the Optical Submarine Cable System

Large-Capacity Optical Transmission Technologies Supporting the Optical Submarine Cable System INOUE Takanori Abstract As one of the foundations of the global network, the submarine cable system is required

### Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements. Application Note 1304-6

Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements Application Note 1304-6 Abstract Time domain measurements are only as accurate as the trigger signal used to acquire them. Often

### EE 179 April 21, 2014 Digital and Analog Communication Systems Handout #16 Homework #2 Solutions

EE 79 April, 04 Digital and Analog Communication Systems Handout #6 Homework # Solutions. Operations on signals (Lathi& Ding.3-3). For the signal g(t) shown below, sketch: a. g(t 4); b. g(t/.5); c. g(t

### Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System

Digital Modulation David Tipper Associate Professor Department of Information Science and Telecommunications University of Pittsburgh http://www.tele.pitt.edu/tipper.html Typical Communication System Source

### Understand the effects of clock jitter and phase noise on sampled systems A s higher resolution data converters that can

designfeature By Brad Brannon, Analog Devices Inc MUCH OF YOUR SYSTEM S PERFORMANCE DEPENDS ON JITTER SPECIFICATIONS, SO CAREFUL ASSESSMENT IS CRITICAL. Understand the effects of clock jitter and phase

### Physical Layer, Part 2 Digital Transmissions and Multiplexing

Physical Layer, Part 2 Digital Transmissions and Multiplexing These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable

### Lecture 8 ELE 301: Signals and Systems

Lecture 8 ELE 3: Signals and Systems Prof. Paul Cuff Princeton University Fall 2-2 Cuff (Lecture 7) ELE 3: Signals and Systems Fall 2-2 / 37 Properties of the Fourier Transform Properties of the Fourier

### Contents. A Error probability for PAM Signals in AWGN 17. B Error probability for PSK Signals in AWGN 18

Contents 5 Signal Constellations 3 5.1 Pulse-amplitude Modulation (PAM).................. 3 5.1.1 Performance of PAM in Additive White Gaussian Noise... 4 5.2 Phase-shift Keying............................

### Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29.

Broadband Networks Prof. Dr. Abhay Karandikar Electrical Engineering Department Indian Institute of Technology, Bombay Lecture - 29 Voice over IP So, today we will discuss about voice over IP and internet

### AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz

AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2

### Evaluating System Suitability CE, GC, LC and A/D ChemStation Revisions: A.03.0x- A.08.0x

CE, GC, LC and A/D ChemStation Revisions: A.03.0x- A.08.0x This document is believed to be accurate and up-to-date. However, Agilent Technologies, Inc. cannot assume responsibility for the use of this

### Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B

CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation

### Timing Errors and Jitter

Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big

### Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept

Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept ONR NEURO-SILICON WORKSHOP, AUG 1-2, 2006 Take Home Messages Introduce integrate-and-fire

### Introduction to Digital Audio

Introduction to Digital Audio Before the development of high-speed, low-cost digital computers and analog-to-digital conversion circuits, all recording and manipulation of sound was done using analog techniques.

### Making OSNR Measurements In a Modulated DWDM Signal Environment

Making OSNR Measurements In a Modulated DWDM Signal Environment Jack Dupre Jim Stimple Making OSNR measurements in a modulated DWDM signal environment May 2001 In a DWDM spectrum, it is desirable to measure

### 4 Digital Video Signal According to ITU-BT.R.601 (CCIR 601) 43

Table of Contents 1 Introduction 1 2 Analog Television 7 3 The MPEG Data Stream 11 3.1 The Packetized Elementary Stream (PES) 13 3.2 The MPEG-2 Transport Stream Packet.. 17 3.3 Information for the Receiver

### Taking the Mystery out of the Infamous Formula, "SNR = 6.02N + 1.76dB," and Why You Should Care. by Walt Kester

ITRODUCTIO Taking the Mystery out of the Infamous Formula, "SR = 6.0 + 1.76dB," and Why You Should Care by Walt Kester MT-001 TUTORIAL You don't have to deal with ADCs or DACs for long before running across

### Non-Data Aided Carrier Offset Compensation for SDR Implementation

Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center

### Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics:

Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Voice Digitization in the POTS Traditional

### Solutions to Exam in Speech Signal Processing EN2300

Solutions to Exam in Speech Signal Processing EN23 Date: Thursday, Dec 2, 8: 3: Place: Allowed: Grades: Language: Solutions: Q34, Q36 Beta Math Handbook (or corresponding), calculator with empty memory.

### The Calculation of G rms

The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving

### Lezione 6 Communications Blockset

Corso di Tecniche CAD per le Telecomunicazioni A.A. 2007-2008 Lezione 6 Communications Blockset Ing. Marco GALEAZZI 1 What Is Communications Blockset? Communications Blockset extends Simulink with a comprehensive

### Application Note Noise Frequently Asked Questions

: What is? is a random signal inherent in all physical components. It directly limits the detection and processing of all information. The common form of noise is white Gaussian due to the many random

### ELE745 Assignment and Lab Manual

ELE745 Assignment and Lab Manual August 22, 2010 CONTENTS 1. Assignment 1........................................ 1 1.1 Assignment 1 Problems................................ 1 1.2 Assignment 1 Solutions................................

### Example/ an analog signal f ( t) ) is sample by f s = 5000 Hz draw the sampling signal spectrum. Calculate min. sampling frequency.

1 2 3 4 Example/ an analog signal f ( t) = 1+ cos(4000πt ) is sample by f s = 5000 Hz draw the sampling signal spectrum. Calculate min. sampling frequency. Sol/ H(f) -7KHz -5KHz -3KHz -2KHz 0 2KHz 3KHz

### Current and Temperature Ratings

Document 361-1 Current and Temperature Ratings Introduction This application note describes: How to interpret Coilcraft inductor current and temperature ratings Our current ratings measurement method and

### Clock Jitter Definitions and Measurement Methods

January 2014 Clock Jitter Definitions and Measurement Methods 1 Introduction Jitter is the timing variations of a set of signal edges from their ideal values. Jitters in clock signals are typically caused

### Radar Systems Engineering Lecture 6 Detection of Signals in Noise

Radar Systems Engineering Lecture 6 Detection of Signals in Noise Dr. Robert M. O Donnell Guest Lecturer Radar Systems Course 1 Detection 1/1/010 Block Diagram of Radar System Target Radar Cross Section

### Suppression of Four Wave Mixing in 8 Channel DWDM System Using Hybrid Modulation Technique

International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 2 (2014), pp. 97-108 International Research Publication House http://www.irphouse.com Suppression of Four

### MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) pegasusdat@aol.com

MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) pegasusdat@aol.com Abstract: Ultra Narrow Band Modulation ( Minimum Sideband Modulation ) makes

### Signal Detection C H A P T E R 14 14.1 SIGNAL DETECTION AS HYPOTHESIS TESTING

C H A P T E R 4 Signal Detection 4. SIGNAL DETECTION AS HYPOTHESIS TESTING In Chapter 3 we considered hypothesis testing in the context of random variables. The detector resulting in the minimum probability

### Analog vs. Digital Transmission

Analog vs. Digital Transmission Compare at two levels: 1. Data continuous (audio) vs. discrete (text) 2. Signaling continuously varying electromagnetic wave vs. sequence of voltage pulses. Also Transmission

### PCI-SIG ENGINEERING CHANGE NOTICE

PCI-SIG ENGINEERING CHANGE NOTICE TITLE: Separate Refclk Independent SSC Architecture (SRIS) DATE: Updated 10 January 013 AFFECTED DOCUMENT: PCI Express Base Spec. Rev. 3.0 SPONSOR: Intel, HP, AMD Part

### Optical Communications Analysis of transmission systems. Henrique Salgado hsalgado@fe.up.pt. Point-to-point system

Optical Communications Analysis of transmission systems 2007-2008 Henrique Salgado hsalgado@fe.up.pt 1 Point-to-point system The project of a point-to-point link involves, in general, many interrelated

### SGN-1158 Introduction to Signal Processing Test. Solutions

SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:

### Adaptive Equalization of binary encoded signals Using LMS Algorithm

SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) volume issue7 Sep Adaptive Equalization of binary encoded signals Using LMS Algorithm Dr.K.Nagi Reddy Professor of ECE,NBKR

### What s The Difference Between Bit Rate And Baud Rate?

What s The Difference Between Bit Rate And Baud Rate? Apr. 27, 2012 Lou Frenzel Electronic Design Serial-data speed is usually stated in terms of bit rate. However, another oftquoted measure of speed is

### Sigma- Delta Modulator Simulation and Analysis using MatLab

Computer and Information Science; Vol. 5, No. 5; 2012 ISSN 1913-8989 E-ISSN 1913-8997 Published by Canadian Center of Science and Education Sigma- Delta Modulator Simulation and Analysis using MatLab Thuneibat

### AN-837 APPLICATION NOTE

APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance

### RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military

### PCM Encoding and Decoding:

PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth

### RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS

RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS Qizheng Gu Nokia Mobile Phones, Inc. 4y Springer Contents Preface xiii Chapter 1. Introduction 1 1.1. Wireless Systems 1 1.1.1. Mobile Communications

### Analysis and Design of Robust Multi-Gb/s Clock and Data Recovery Circuits

Analysis and Design of Robust Multi-Gb/s Clock and Data Recovery Circuits by David J. Rennie A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of

### Public Switched Telephone System

Public Switched Telephone System Structure of the Telephone System The Local Loop: Modems, ADSL Structure of the Telephone System (a) Fully-interconnected network. (b) Centralized switch. (c) Two-level

### SIGNAL PROCESSING FOR EFFECTIVE VIBRATION ANALYSIS

SIGNAL PROCESSING FOR EFFECTIVE VIBRATION ANALYSIS Dennis H. Shreve IRD Mechanalysis, Inc Columbus, Ohio November 1995 ABSTRACT Effective vibration analysis first begins with acquiring an accurate time-varying

### Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

### HD Radio FM Transmission System Specifications Rev. F August 24, 2011

HD Radio FM Transmission System Specifications Rev. F August 24, 2011 SY_SSS_1026s TRADEMARKS HD Radio and the HD, HD Radio, and Arc logos are proprietary trademarks of ibiquity Digital Corporation. ibiquity,

### Clock Recovery in Serial-Data Systems Ransom Stephens, Ph.D.

Clock Recovery in Serial-Data Systems Ransom Stephens, Ph.D. Abstract: The definition of a bit period, or unit interval, is much more complicated than it looks. If it were just the reciprocal of the data

### Highly Reliable Testing of 10-Gb/s Systems (STM-64/OC-192)

Highly Reliable Testing of 10-Gb/s Systems (STM-64/OC-192) Meeting the Growing Need for Bandwidth The communications industry s insatiable need for bandwidth, driven primarily by the exploding growth in

### EE2/ISE2 Communications II

EE2/ISE2 Communications II Part I Communications Principles Dr. Darren Ward Chapter 1 Introduction 1.1 Background Communication involves the transfer of information from one point to another. In general,

### Objectives. Lecture 4. How do computers communicate? How do computers communicate? Local asynchronous communication. How do computers communicate?

Lecture 4 Continuation of transmission basics Chapter 3, pages 75-96 Dave Novak School of Business University of Vermont Objectives Line coding Modulation AM, FM, Phase Shift Multiplexing FDM, TDM, WDM

### Experiment 3: Double Sideband Modulation (DSB)

Experiment 3: Double Sideband Modulation (DSB) This experiment examines the characteristics of the double-sideband (DSB) linear modulation process. The demodulation is performed coherently and its strict

### DSAM Digital Quality Index (DQI) A New Technique for Assessing Downstream Digital Services

Application Note DSAM Digital Quality Index (DQI) A New Technique for Assessing Downstream Digital Services Overview As cable operators move to digital simulcast and all digital networks, the majority

### Lecture 8: Signal Detection and Noise Assumption

ECE 83 Fall Statistical Signal Processing instructor: R. Nowak, scribe: Feng Ju Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(, σ I n n and S = [s, s,...,

### Digital Fundamentals

Digital Fundamentals Tenth Edition Floyd Chapter 1 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved Analog Quantities Most natural quantities that we see

### RF Measurements Using a Modular Digitizer

RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.

### TDS5000B, TDS6000B, TDS/CSA7000B Series Acquisition Modes

TDS5000B, TDS6000B, TDS/CSA7000B Series Acquisition Modes Tektronix oscilloscopes provide several different acquisition modes. While this gives the user great flexibility and choice, each mode is optimized

### Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper

### Trigonometric functions and sound

Trigonometric functions and sound The sounds we hear are caused by vibrations that send pressure waves through the air. Our ears respond to these pressure waves and signal the brain about their amplitude

### TECHNICAL TBR 14 BASIS for April 1994 REGULATION

TECHNICAL TBR 14 BASIS for April 1994 REGULATION Source: ETSI TC-BTC Reference: DTBR/BTC-02038 ICS: 33.040.40 Key words: ONP, leased line Business TeleCommunications (BTC); 64 kbit/s digital unrestricted

### Lecture 1: Introduction

Mobile Data Networks Lecturer: Victor O.K. Li EEE Department Room: CYC601D Tel.: 857 845 Email: vli@eee.hku.hk Course home page: http://www.eee.hku.hk/courses.msc/ 1 Lecture 1: Introduction Mobile data

### Improving A D Converter Performance Using Dither

Improving A D Converter Performance Using Dither 1 0 INTRODUCTION Many analog-to-digital converter applications require low distortion for a very wide dynamic range of signals Unfortunately the distortion

### TCOM 370 NOTES 99-6 VOICE DIGITIZATION AND VOICE/DATA INTEGRATION

TCOM 370 NOTES 99-6 VOICE DIGITIZATION AND VOICE/DATA INTEGRATION (Please read appropriate parts of Section 2.5.2 in book) 1. VOICE DIGITIZATION IN THE PSTN The frequencies contained in telephone-quality

### Digital Transmission of Analog Data: PCM and Delta Modulation

Digital Transmission of Analog Data: PCM and Delta Modulation Required reading: Garcia 3.3.2 and 3.3.3 CSE 323, Fall 200 Instructor: N. Vlajic Digital Transmission of Analog Data 2 Digitization process

### Maximizing Receiver Dynamic Range for Spectrum Monitoring

Home Maximizing Receiver Dynamic Range for Spectrum Monitoring Brian Avenell, National Instruments Corp., Austin, TX October 15, 2012 As consumers continue to demand more data wirelessly through mobile

### RECOMMENDATION ITU-R BO.786 *

Rec. ITU-R BO.786 RECOMMENDATION ITU-R BO.786 * MUSE ** system for HDTV broadcasting-satellite services (Question ITU-R /) (992) The ITU Radiocommunication Assembly, considering a) that the MUSE system

### Chap#5 (Data communication)

Chap#5 (Data communication) Q#1: Define analog transmission. Normally, analog transmission refers to the transmission of analog signals using a band-pass channel. Baseband digital or analog signals are

### The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper

The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper Products: R&S RTO1012 R&S RTO1014 R&S RTO1022 R&S RTO1024 This technical paper provides an introduction to the signal

### Hideo Okawara s Mixed Signal Lecture Series. DSP-Based Testing Fundamentals 46 Per-pin Signal Generator

Hideo Okawara s Mixed Signal Lecture Series DSP-Based Testing Fundamentals 46 Per-pin Signal Generator Advantest Corporation, Tokyo Japan August 2012 Preface to the Series ADC and DAC are the most typical

### (2) (3) (4) (5) 3 J. M. Whittaker, Interpolatory Function Theory, Cambridge Tracts

Communication in the Presence of Noise CLAUDE E. SHANNON, MEMBER, IRE Classic Paper A method is developed for representing any communication system geometrically. Messages and the corresponding signals