The Opportunities of the Tactile Internet And A Challenge For Future Electronics Gerhard P. Fettweis Vodafone Chair Professor coordinator serial entrepreneur
Gerhard Fettweis Slide 2 Via Della Conciliazione 2005/4/4 2013/3/12 Source: http://www.spiegel.de/panorama/bild-889031-473266.html Source: http://www.spiegel.de/panorama/bild-889031-473242.html
Wireless >2020 Outlook 100Tb/s 10 Tb/s? 1 Tb/s 100Gb/s 10Gb/s 1Gb/s 802.11ac/ad 100Mb/s 802.11ag 802.11n LTE Advanced 802.11b HSPA 10Mb/s LTE HSDPA 1Mb/s 802.11 3G R99 / EDGE 100Kb/s 10Kb/s GSM GPRS WLAN (10m) Cellular (100m) 1995 2000 2005 2010 2015 2020 2025 2030
HIGHLY ADAPTIVE ENERGY-EFFICIENT COMPUTING DFG SFB 912 (German Science Foundation Collaborative Research Center) In operations since July-1, 2011 Gerhard P. Fettweis (coordinator) Wolfgang Lehner (vice coordinator) Wolfgang Nagel (vice coordinator)
Gerhard Fettweis Slide 5 Highly Adaptive Energy-Efficient Computing Inter-Chip Communications Optical Interconnect adaptive analog/digital circuits for e/o transceiver embedded polymer waveguide packaging technologies (e.g. 3D stacking of Si/III-V hybrids) 90 coupling of laser Radio Interconnect on-chip/on-package antenna arrays analog/digital beamsteering and interference minimization 100Gb/s 220GHz carrier / 25GHz channel 3D routing & flow management
Gerhard Fettweis Slide 6 The Outlook: The Box in 2020+ Assume 128K processors per chip 128x chips stacked in 3D 2x 4x4 chip-stacks on board 4x boards in a box HAEC Box in 10x10x10 cm 3 (1 liter) 10 9 processors! 8192 chips + 8192 memory chips 10 5 x performance of today!
The Tactile Internet And Its Millisecond
http://ostsee-spezial.de/?p=148 Gerhard Fettweis Slide 8 The Tactile Internet Moving from 25ms RTT 1ms tomorrow
Gaming Gerhard Fettweis Slide 9
http://baumgartnerfl.lima-city.de/stadion.html Tactile Internet Killer App: Free Viewpoint Video 10 cameras @ 100Hz frame rate 100Gb/s Latency @ <10ms
The Tactile Internet: Remote Controlled Humanoid Robots http://www.dvice.com/archives/2011/05/kinect_controll_1.php http://images.gizmag.com/hero/8456_51207105642.jpg
Human Touch Gerhard Fettweis Slide 12
Gerhard Fettweis Slide 13 The Tactile Internet The Manufacturing Revolution Ahead http://jerryrushing.net/wpcontent/uploads/2012/04/robotic_assembly_line1.jpg http://www.witchdoctor.co.nz/wpcontent/uploads/2013/01/robot-fabrication-station.jpg
Gerhard Fettweis Revolution Ahead in Communications: The Tactile Internet 4G: Content Communications 5G: Steering & Control Communications Health & Care Traffic Sports Education Manufacturing Serious Games Smart Grid
f ast Inhalt a ctuators s ensors & t ransceivers Coordinators: Frank Ellinger, (Gerhard Fettweis), TU Dresden Starting 2014, appox. 75M project size, 60+ partners fast value chain sales & service systems, networks, software circuits components semiconductors fast network of states Berlin Brandenburg Mecklenburg Vorpommern Saxony-Anhalt Saxony Thuringia Baden-Württ. Lower Saxony Bavaria
1ms Impact Software Ecosystem Sensor Actuator Embedded Computing 1ms Embedded Computing Trans mitter Receiver 100 µs 100 µs Tomahawk2 Receiver Trans mitter Hosted Computing (decider) Network Config. Manager (SON) Latency Goals: Σ = 0.3 ms Terminal Σ = 0.2 ms Air Interface Σ = 0.5 ms Base Station & Compute
Tommahawk2 TSMC 65nm LP CMOS 6mm x 6mm Pads: 465 Gates: 10,2 Millionen SRAM: 750 kbyte Cores: 20 processor elements Power 150mW typical Tapeout: 04/2013 Dresden: 06/2013 Successor of Tomahawk1 (2007): serial on-chip link (72GBit/s) Atlas local ADPLL clock generator Gerhard Fettweis Slide 18 Winner of 2009 DAC/ISSCC Student Design Contest
Duo-PE Concept Challenge: Data transfers dominate power consumption, network congestions, latency Two cores connected to one local Memory: 4-fold SIMD Vector DSP 16-bit fixed point comp. General Purpose RISC Core high precision FP comp. Advantage: Further increase of data locality and area efficiency Context aware dynamic core selection during runtime
Block Diagram hs-serial hs-serial hs-serial hs-serial hs-serial parallel Router (1,0) FPGA- Interface Router (1,1) Router (0,1) Router (0,0) Duo-PE0 Duo-PE1 FEC Duo-PE2 SD Duo-PE6 Duo-PE7 Duo-PE5 Duo-PE3 CM ADPLL, PMGT ADPLL, PMGT ADPLL, PMGT AVS Contr. UART- GPIO ADPLL, PMGT ADPLL, PMGT ADPLL, PMGT ADPLL, PMGT ADPLL, PMGT ADPLL, PMGT ADPLL, PMGT ADPLL, PMGT ADPLL ADPLL DDR- SDRAM- Interface Tomahawk2_core APP Duo-PE4 ADPLL, PMGT VDSP RISC VDSP RISC VDSP RISC VDSP RISC VDSP RISC VDSP RISC VDSP RISC ADPLL, PMGT VDSP RISC
Tomahawk Architecture Framework SW Application Start T1 if T2 T5 Control Flow Control-Plane Cache App. Proc Global Memory CM Data-Plane Local Memory PE1... Local Memory PEn T3 T4 End Data Flow task specification chronology T3...T1 T2 T3 T4 T2 T3 T4 T5 T3 T2 T1 T2 T4 T4 T5 Dynamic out-of-order task dispatching PE3 PE2 PE1
Power Management Fine-grained: CoreManager Based on application requirements (e.g., start times and deadlines) and system status (e.g., allocated PEs ) Result: target frequency and voltage level for each PE for each task Enabled by fine grained fast DVFS at PE level Coarse-grained Global AVS voltage control of DVFS levels Result: slow voltage adaption for temperature and process for DVFS rails
Power Management Architecture External DC/DC AVS contr. V DD,0 V DD,1 V DD,2 V DD,core V DD slow AVS adaption V DD,0 V DD,1 V DD,2 HPM 0 N 0 HPM 1 N 1 HPM 2 N 2 Duo PE V DD fast DVFS switching t V DD,core t ADPLL Ref CLK f 0 f 1 f 2 DVFS domain LUT 0 1 2 PMC AO domain DVFS PLEVEL
Fast DVFS Measurement Result 1.0V 100MHz 0.7V 200MHz Ultra fast DVFS level change of Duo-PE in <20ns
Multi-Mode Forward Error Correction DATA MEM f max 500 MHz Conf Interconnect Area 1.15 mm² Power* 360 mw Ctrl path PU0 PU1 PU2 Local Mem Local Mem Local Mem PU3 Local Mem Throughput** 155 Mb/s * @1.2V ** LDPC Programmable ASIP implementation Four SIMD-parallel FEC processing units (PUs) Combined decoding operations for Viterbi/Turbo/LDPC codes
Tomahawk2 Components Area [mm2] f max [MHz] Throughput @f max P Application-Scenario * total mem @VDD=1.2 V [mw] APP 0.582 0.245 445 890 MOPS off CM 1.360 0.870 445 1.1 MTasks/s 14.1 @200MHz, 0.9 V Duo-PE RISC VDSP 1.357 0.800 445 890 MOPS off 500 10 GOPS 35.0 @282 MHz, 0.9 V SD 36.5 @200 MHz, 1.15 0.522 0.260 445 396 Mb/s V FEC 132.2 @200 MHz, 1.15 1.154 0.618 500 155 Mb/s V FPGA-IF 0.602-500 10 Gb/s - DDR-IF 4.552-400 12.8 Gb/s - NoC 18.0 @286 MHz, 1.15 3.417-500 80 Gb/s/link V *4 4 MIMO 3GPP-LTE baseband application
SDR Architectures for MIMO 3GPP-LTE/WiMAX Clocking and Power Management Scheduling Tomahawk2 Magali [6] Tomahawk [3] GALS, local DVFS and AVS, power-gating Dynamic (flexible, energy adaptable) GALS, local DFS Static Global clock Dynamic (fixed algorithm) Peak Performance 105 GOPS (3.6 GFLOPS) 37 GOPS 40 GOPS Application for power measurements 4x4 MIMO 3GPP-LTE Rx baseband, 60 Mbit/s 4x2 MIMO, 2x2 MIMO Tx, MAC, 10.8 Mbit/s LTE/WiMAX Power consumption 480 mw @ 1.15V 477 mw @ 1.2V 1.2W @ 1.3V NoC Throughput (per link) 80 Gbit/s 17 Gbit/s 5.47 Gbit/s Die size 36mm² 29.6 mm² 100 mm² Technology 65nm 65nm 130nm [6] Clermidy, et al., A 477mW NoC-based digital baseband for MIMO 4G SDR, ISSCC Dig. Tech. Papers, pp. 278-279, 2010
Conclusions Merging Computing and Communications Dynamic configuration management PEs as needed: VDSPs, GP-cores and ASIPs Hierarchical DVFS at 20ns and 1ms (50-100% power savings per voltage step) Scheduling via CoreManager Star-mesh NoC with high-speed serial links Low-latency / low-power / high-performance
MODULATION
40 Requirements / Challenges scalable bandwidth fragmented spectrum f f LTE clocking scheme New Air Interface t async. operation f
44 Multi-Carrier Revisited OFDM GFDM SC-FDM N subcarriers N=KM M freq. samples K subcarriers N frequency samples N time samples K time samples M sub-symbols N symbols
Realtime 5G Research Testbed: GFDM With -45dB to -65dB Notches! Research on 5G Slide 45
RESILIENCE
Planning & Optimization Overview Slide 49 Carrier Grade Wireless: Use cases Traffic safety & efficiency Availability (time) Latency Coverage/ Availability (space) Speed > 99.999% < 1ms 100% < 500kmh Industrial automation (Motion control) > 99.999999% < 1ms 100% n/a Telesurgery > 99.999% < 1ms n/a n/a Emergency Communication > 99.999% n/a 100% n/a Others: Power Networks / Smart Grid, Real-Time Remote Computing, Platooning, ESP, Exoskeleton [1] [1] Fettweis, G., "The Tactile Internet: Applications and Challenges," Vehicular Technology Magazine, IEEE, vol.9, no.1, pp.64,70, March 2014.
Gerhard Fettweis Slide 50 Serious Carrier Grade: 10 -x via Diversity # indep. channels 1 2 3 4 5 6 outage 3% 10-3 3 10-5 10-6 2 10-8 7 10-10
Handoff Revisited
Gerhard Fettweis Slide 54 Mobile Edge Cloud / Micro Cloud / Cloud Application Handoff!!! router Distributed Compute Within Distributed Cloud Data Center Steering & Control Center
55 Networking The Connnection node node
56 Single Path node node
57 Revolution Compute & Forward (Disintergration of packet) node node
58 Revolution Distributed Everything Storage/Computing/Networking/ node node
5G CHALLENGES
61 5G Massive Requirements Massive throughput State of the art Massive low latency Massive sensing Massive resilience Massive safety and security 5G The Tactile Internet Massive fractal heterogenity > 10Gbit/s per user < 1ms RTT > 10k sensors per cell < 10 8 outage < 10 12 security 10x10 heterogeneity
63 5G Research on four Tracks Tactile Internet applications Wireless Dresden 5G Lab Silicon systems Opening Event Sept-24 2014 @ 16:30 in Dresden Mobile edge cloud
64 Members on Tracks Silicon systems track Wireless track Mobile edge cloud track Tactile Internet application track Rene Schüffny Frank Ellinger Gerhard Fettweis Eduard Jorswieck Christof Fetzer Wolfgang Nagel Leon Urbas Uwe Aßmann Frank Fitzek Wolfgang Lehner Michael Schröter Dirk Plettemeier Silvia Santini Team of 500+ Researchers!!! Thorsten Strufe Hermann Härtig Christel Baier Ercan Altinsoy Klaus Janschek
65 Relevant Startups Generated by Team Silicon systems track Wireless track Mobile edge cloud track Tactile Internet application track freedelity
Currently Connected Partners 66
CONCLUSIONS
69 Telco Markets: A First Glimpse At Germany care manufacturing events German ambulatory care ~ 35B TAM 10B/a German industrial interconnect revenue ~ 2B TAM 10B/a German event/concert/sport/stadium/congress TAM 10B/a edutainement German TechniSat.5B (home entertainment 11B) TAM 10B/a mobility German Tollcollect 5B, TAM 10B/a smart grid EU smart grid ICT market 27B, $47B by 2020 TAM 10B/a x20 x10 =200x =$20T
Cellular Roadmap of USPs 2G 1992 Voice Messages 3G 2002 + Data + Positioning 5G 2022 + Tactile Internet + massive M2M + Tb/s + carrier grade 4G 2012 + safe & secure + Video everything + 3D Graphics Gerhard Fettweis 70
71 Thank you Dresden 5G Lab Coordinator: Gerhard Fettweis dresden5glab.org contact@dresden5glab.org
72 Related publications [1] Fettweis, Gerhard, and Siavash Alamouti. 5G: Personal Mobile Internet beyond What Cellular Did to Telephony Communications Magazine, IEEE 52.2 (2014): 140-145. [2] Fettweis, G. "The Tactile Internet: Applications and Challenges." Vehicular Technology Magazine, IEEE 9.1 (2014): 64-70. [3] Fettweis et al. Positionspapier Das Taktile Internet, VDE ITG [4] HUAWEI. 5G: A Technology Vision