The Opportunities of the Tactile Internet And A Challenge For Future Electronics



Similar documents
5G Technology Breaking Grounds from Thingbook to the Tactile Internet

5G LAB GERMANY. Das Internet der Dinge Wandel wird Standard. Dr. Rico Radeke. Chair of Communication Networks Dresden University of Technology

Agile Cloud supporting the Tactile Internet

Intel Labs at ISSCC Copyright Intel Corporation 2012

The future of mobile networking. David Kessens

Interconnection Generation for System-on-Chip Design and Design Space Exploration

All Programmable Logic. Hans-Joachim Gelke Institute of Embedded Systems. Zürcher Fachhochschule

Hot Issues in Wireless Broadband Networking

Architectural Level Power Consumption of Network on Chip. Presenter: YUAN Zheng

The 5G Infrastructure Public-Private Partnership

FPGAs in Next Generation Wireless Networks

A CDMA Based Scalable Hierarchical Architecture for Network- On-Chip

Evolution to 5G: An operator's perspective

A Survey on ARM Cortex A Processors. Wei Wang Tanima Dey

ZigBee Technology Overview

Breaking the Interleaving Bottleneck in Communication Applications for Efficient SoC Implementations

Chapter 2 Heterogeneous Multicore Architecture

Power Reduction Techniques in the SoC Clock Network. Clock Power

Mobile broadband. Trends and future evolution. LUIS MUCHACHO MBB Customer Solutions

FutureWorks 5G use cases and requirements

Network connectivity controllers

Energy Efficiency of Wireless Sensor Networks

The Internet of Things: Opportunities & Challenges

BEAGLEBONE BLACK ARCHITECTURE MADELEINE DAIGNEAU MICHELLE ADVENA

The Wireless World - 5G and Beyond. Björn Ekelund Ericsson Research

How To Build An Ark Processor With An Nvidia Gpu And An African Processor

Implementation of Wireless Gateway for Smart Home

MIMO detector algorithms and their implementations for LTE/LTE-A

5G & Internet of Things. Hartmut Kremling Vodafone Ambassador Dresden,

7a. System-on-chip design and prototyping platforms

Potential of LTE for Machine-to-Machine Communication. Dr. Joachim Sachs Ericsson Research

Low-Overhead Hard Real-time Aware Interconnect Network Router

A Scalable Large Format Display Based on Zero Client Processor

Von der Hardware zur Software in FPGAs mit Embedded Prozessoren. Alexander Hahn Senior Field Application Engineer Lattice Semiconductor

Evolution in Mobile Radio Networks

«A 32-bit DSP Ultra Low Power accelerator»

Software Stacks for Mixed-critical Applications: Consolidating IEEE AVB and Time-triggered Ethernet in Next-generation Automotive Electronics

How To Use A Sound Card With A Subsonic Sound Card

WiSER: Dynamic Spectrum Access Platform and Infrastructure

Reconfigurable System-on-Chip Design

App coverage. ericsson White paper Uen Rev B August 2015

THE Evolution of Mobile network and THE role of Network transport. Rodolfo Di Muro, PhD, MBA Programs marketing

Product Information S N O. Portable VIP protection CCTV & Alarm System 2

M2M communications in future cellular networks

Mobile Broadband of Deutsche Telekom AG LTE to cover White Spaces. Karl-Heinz Laudan Deutsche Telekom AG 16 June 2011

SC-FDMA for 3GPP LTE uplink. Hong-Jik Kim, Ph. D.

USE CASES BROADBAND EXPERIENCE EVERYWHERE, ANYTIME SMART VEHICLES, TRANSPORT & INFRASTRUCTURE MEDIA EVERYWHERE CRITICAL CONTROL OF REMOTE DEVICES

HSPA, LTE and beyond. HSPA going strong. PRESS INFORMATION February 11, 2011

Networking Virtualization Using FPGAs

The topic of this presentation is comparing cellular with other communication technologies. The focus is on Smart Grid applications.

8 Gbps CMOS interface for parallel fiber-optic interconnects

Dimensioning, configuration and deployment of Radio Access Networks. part 5: HSPA and LTE HSDPA. Shared Channel Transmission

HSPA+ and LTE Test Challenges for Multiformat UE Developers

Memory Architecture and Management in a NoC Platform

Use Current Success to Develop Future Business

SPARC64 VIIIfx: CPU for the K computer

3GPP Wireless Standard

Photonic Networks for Data Centres and High Performance Computing

IC-EMC Simulation of Electromagnetic Compatibility of Integrated Circuits

Wireless Technologies for the 450 MHz band

Low-Power Error Correction for Mobile Storage

Guide to Wireless Communications. Digital Cellular Telephony. Learning Objectives. Digital Cellular Telephony. Chapter 8

Performance Measurements on Power Line Carrier Data Transmissions in Indoor Office Environments

HUAWEI Enterprise AP Series ac Brochure

Product Description. HUAWEI E5186s-22a LTE CPE V200R001 HUAWEI TECHNOLOGIES CO., LTD. Issue 05. Date

Demystifying Wireless for Real-World Measurement Applications

1. Memory technology & Hierarchy

Introduction to the Latest Tensilica Baseband Solutions

An Introduction to High-Frequency Circuits and Signal Integrity

Implementation Details

Prof. Matti Latva-aho,

Architekturen und Einsatz von FPGAs mit integrierten Prozessor Kernen. Hans-Joachim Gelke Institute of Embedded Systems Professur für Mikroelektronik

Collaborating Objects Workshop. Bart Van Poucke IMEC

Introduction, Rate and Latency

Seeking Opportunities for Hardware Acceleration in Big Data Analytics

Transmit Smart with Transmit Beamforming

What is going on in Mobile Broadband Networks?

Cooperative Techniques in LTE- Advanced Networks. Md Shamsul Alam

Operating System Support for Multiprocessor Systems-on-Chip

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

11 Internet of Things (IoT) Protocols You Need to Know About

LTE Solution and Requirements for Smart Grids

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip.

Physical Layer Research Trends for 5G

ELEC 5260/6260/6266 Embedded Computing Systems

Bringing Mobile Broadband to Rural Areas. Ulrich Rehfuess Head of Spectrum Policy and Regulation Nokia Siemens Networks

A survey on Spectrum Management in Cognitive Radio Networks

DS1104 R&D Controller Board

White Paper: Pervasive Power: Integrated Energy Storage for POL Delivery

LTE Release 10 Small Cell Physical Layer Evolution Issues and Challenges Facing Small Cell Product Developers in Multi- Core Environments

Figure 1.Block diagram of inventory management system using Proximity sensors.

Mobile Communications TCS 455

Power Consumption Modeling of Different Base Station Types in Heterogeneous Cellular Networks

Mobile Multimedia Meet Cloud: Challenges and Future Directions

Transcription:

The Opportunities of the Tactile Internet And A Challenge For Future Electronics Gerhard P. Fettweis Vodafone Chair Professor coordinator serial entrepreneur

Gerhard Fettweis Slide 2 Via Della Conciliazione 2005/4/4 2013/3/12 Source: http://www.spiegel.de/panorama/bild-889031-473266.html Source: http://www.spiegel.de/panorama/bild-889031-473242.html

Wireless >2020 Outlook 100Tb/s 10 Tb/s? 1 Tb/s 100Gb/s 10Gb/s 1Gb/s 802.11ac/ad 100Mb/s 802.11ag 802.11n LTE Advanced 802.11b HSPA 10Mb/s LTE HSDPA 1Mb/s 802.11 3G R99 / EDGE 100Kb/s 10Kb/s GSM GPRS WLAN (10m) Cellular (100m) 1995 2000 2005 2010 2015 2020 2025 2030

HIGHLY ADAPTIVE ENERGY-EFFICIENT COMPUTING DFG SFB 912 (German Science Foundation Collaborative Research Center) In operations since July-1, 2011 Gerhard P. Fettweis (coordinator) Wolfgang Lehner (vice coordinator) Wolfgang Nagel (vice coordinator)

Gerhard Fettweis Slide 5 Highly Adaptive Energy-Efficient Computing Inter-Chip Communications Optical Interconnect adaptive analog/digital circuits for e/o transceiver embedded polymer waveguide packaging technologies (e.g. 3D stacking of Si/III-V hybrids) 90 coupling of laser Radio Interconnect on-chip/on-package antenna arrays analog/digital beamsteering and interference minimization 100Gb/s 220GHz carrier / 25GHz channel 3D routing & flow management

Gerhard Fettweis Slide 6 The Outlook: The Box in 2020+ Assume 128K processors per chip 128x chips stacked in 3D 2x 4x4 chip-stacks on board 4x boards in a box HAEC Box in 10x10x10 cm 3 (1 liter) 10 9 processors! 8192 chips + 8192 memory chips 10 5 x performance of today!

The Tactile Internet And Its Millisecond

http://ostsee-spezial.de/?p=148 Gerhard Fettweis Slide 8 The Tactile Internet Moving from 25ms RTT 1ms tomorrow

Gaming Gerhard Fettweis Slide 9

http://baumgartnerfl.lima-city.de/stadion.html Tactile Internet Killer App: Free Viewpoint Video 10 cameras @ 100Hz frame rate 100Gb/s Latency @ <10ms

The Tactile Internet: Remote Controlled Humanoid Robots http://www.dvice.com/archives/2011/05/kinect_controll_1.php http://images.gizmag.com/hero/8456_51207105642.jpg

Human Touch Gerhard Fettweis Slide 12

Gerhard Fettweis Slide 13 The Tactile Internet The Manufacturing Revolution Ahead http://jerryrushing.net/wpcontent/uploads/2012/04/robotic_assembly_line1.jpg http://www.witchdoctor.co.nz/wpcontent/uploads/2013/01/robot-fabrication-station.jpg

Gerhard Fettweis Revolution Ahead in Communications: The Tactile Internet 4G: Content Communications 5G: Steering & Control Communications Health & Care Traffic Sports Education Manufacturing Serious Games Smart Grid

f ast Inhalt a ctuators s ensors & t ransceivers Coordinators: Frank Ellinger, (Gerhard Fettweis), TU Dresden Starting 2014, appox. 75M project size, 60+ partners fast value chain sales & service systems, networks, software circuits components semiconductors fast network of states Berlin Brandenburg Mecklenburg Vorpommern Saxony-Anhalt Saxony Thuringia Baden-Württ. Lower Saxony Bavaria

1ms Impact Software Ecosystem Sensor Actuator Embedded Computing 1ms Embedded Computing Trans mitter Receiver 100 µs 100 µs Tomahawk2 Receiver Trans mitter Hosted Computing (decider) Network Config. Manager (SON) Latency Goals: Σ = 0.3 ms Terminal Σ = 0.2 ms Air Interface Σ = 0.5 ms Base Station & Compute

Tommahawk2 TSMC 65nm LP CMOS 6mm x 6mm Pads: 465 Gates: 10,2 Millionen SRAM: 750 kbyte Cores: 20 processor elements Power 150mW typical Tapeout: 04/2013 Dresden: 06/2013 Successor of Tomahawk1 (2007): serial on-chip link (72GBit/s) Atlas local ADPLL clock generator Gerhard Fettweis Slide 18 Winner of 2009 DAC/ISSCC Student Design Contest

Duo-PE Concept Challenge: Data transfers dominate power consumption, network congestions, latency Two cores connected to one local Memory: 4-fold SIMD Vector DSP 16-bit fixed point comp. General Purpose RISC Core high precision FP comp. Advantage: Further increase of data locality and area efficiency Context aware dynamic core selection during runtime

Block Diagram hs-serial hs-serial hs-serial hs-serial hs-serial parallel Router (1,0) FPGA- Interface Router (1,1) Router (0,1) Router (0,0) Duo-PE0 Duo-PE1 FEC Duo-PE2 SD Duo-PE6 Duo-PE7 Duo-PE5 Duo-PE3 CM ADPLL, PMGT ADPLL, PMGT ADPLL, PMGT AVS Contr. UART- GPIO ADPLL, PMGT ADPLL, PMGT ADPLL, PMGT ADPLL, PMGT ADPLL, PMGT ADPLL, PMGT ADPLL, PMGT ADPLL, PMGT ADPLL ADPLL DDR- SDRAM- Interface Tomahawk2_core APP Duo-PE4 ADPLL, PMGT VDSP RISC VDSP RISC VDSP RISC VDSP RISC VDSP RISC VDSP RISC VDSP RISC ADPLL, PMGT VDSP RISC

Tomahawk Architecture Framework SW Application Start T1 if T2 T5 Control Flow Control-Plane Cache App. Proc Global Memory CM Data-Plane Local Memory PE1... Local Memory PEn T3 T4 End Data Flow task specification chronology T3...T1 T2 T3 T4 T2 T3 T4 T5 T3 T2 T1 T2 T4 T4 T5 Dynamic out-of-order task dispatching PE3 PE2 PE1

Power Management Fine-grained: CoreManager Based on application requirements (e.g., start times and deadlines) and system status (e.g., allocated PEs ) Result: target frequency and voltage level for each PE for each task Enabled by fine grained fast DVFS at PE level Coarse-grained Global AVS voltage control of DVFS levels Result: slow voltage adaption for temperature and process for DVFS rails

Power Management Architecture External DC/DC AVS contr. V DD,0 V DD,1 V DD,2 V DD,core V DD slow AVS adaption V DD,0 V DD,1 V DD,2 HPM 0 N 0 HPM 1 N 1 HPM 2 N 2 Duo PE V DD fast DVFS switching t V DD,core t ADPLL Ref CLK f 0 f 1 f 2 DVFS domain LUT 0 1 2 PMC AO domain DVFS PLEVEL

Fast DVFS Measurement Result 1.0V 100MHz 0.7V 200MHz Ultra fast DVFS level change of Duo-PE in <20ns

Multi-Mode Forward Error Correction DATA MEM f max 500 MHz Conf Interconnect Area 1.15 mm² Power* 360 mw Ctrl path PU0 PU1 PU2 Local Mem Local Mem Local Mem PU3 Local Mem Throughput** 155 Mb/s * @1.2V ** LDPC Programmable ASIP implementation Four SIMD-parallel FEC processing units (PUs) Combined decoding operations for Viterbi/Turbo/LDPC codes

Tomahawk2 Components Area [mm2] f max [MHz] Throughput @f max P Application-Scenario * total mem @VDD=1.2 V [mw] APP 0.582 0.245 445 890 MOPS off CM 1.360 0.870 445 1.1 MTasks/s 14.1 @200MHz, 0.9 V Duo-PE RISC VDSP 1.357 0.800 445 890 MOPS off 500 10 GOPS 35.0 @282 MHz, 0.9 V SD 36.5 @200 MHz, 1.15 0.522 0.260 445 396 Mb/s V FEC 132.2 @200 MHz, 1.15 1.154 0.618 500 155 Mb/s V FPGA-IF 0.602-500 10 Gb/s - DDR-IF 4.552-400 12.8 Gb/s - NoC 18.0 @286 MHz, 1.15 3.417-500 80 Gb/s/link V *4 4 MIMO 3GPP-LTE baseband application

SDR Architectures for MIMO 3GPP-LTE/WiMAX Clocking and Power Management Scheduling Tomahawk2 Magali [6] Tomahawk [3] GALS, local DVFS and AVS, power-gating Dynamic (flexible, energy adaptable) GALS, local DFS Static Global clock Dynamic (fixed algorithm) Peak Performance 105 GOPS (3.6 GFLOPS) 37 GOPS 40 GOPS Application for power measurements 4x4 MIMO 3GPP-LTE Rx baseband, 60 Mbit/s 4x2 MIMO, 2x2 MIMO Tx, MAC, 10.8 Mbit/s LTE/WiMAX Power consumption 480 mw @ 1.15V 477 mw @ 1.2V 1.2W @ 1.3V NoC Throughput (per link) 80 Gbit/s 17 Gbit/s 5.47 Gbit/s Die size 36mm² 29.6 mm² 100 mm² Technology 65nm 65nm 130nm [6] Clermidy, et al., A 477mW NoC-based digital baseband for MIMO 4G SDR, ISSCC Dig. Tech. Papers, pp. 278-279, 2010

Conclusions Merging Computing and Communications Dynamic configuration management PEs as needed: VDSPs, GP-cores and ASIPs Hierarchical DVFS at 20ns and 1ms (50-100% power savings per voltage step) Scheduling via CoreManager Star-mesh NoC with high-speed serial links Low-latency / low-power / high-performance

MODULATION

40 Requirements / Challenges scalable bandwidth fragmented spectrum f f LTE clocking scheme New Air Interface t async. operation f

44 Multi-Carrier Revisited OFDM GFDM SC-FDM N subcarriers N=KM M freq. samples K subcarriers N frequency samples N time samples K time samples M sub-symbols N symbols

Realtime 5G Research Testbed: GFDM With -45dB to -65dB Notches! Research on 5G Slide 45

RESILIENCE

Planning & Optimization Overview Slide 49 Carrier Grade Wireless: Use cases Traffic safety & efficiency Availability (time) Latency Coverage/ Availability (space) Speed > 99.999% < 1ms 100% < 500kmh Industrial automation (Motion control) > 99.999999% < 1ms 100% n/a Telesurgery > 99.999% < 1ms n/a n/a Emergency Communication > 99.999% n/a 100% n/a Others: Power Networks / Smart Grid, Real-Time Remote Computing, Platooning, ESP, Exoskeleton [1] [1] Fettweis, G., "The Tactile Internet: Applications and Challenges," Vehicular Technology Magazine, IEEE, vol.9, no.1, pp.64,70, March 2014.

Gerhard Fettweis Slide 50 Serious Carrier Grade: 10 -x via Diversity # indep. channels 1 2 3 4 5 6 outage 3% 10-3 3 10-5 10-6 2 10-8 7 10-10

Handoff Revisited

Gerhard Fettweis Slide 54 Mobile Edge Cloud / Micro Cloud / Cloud Application Handoff!!! router Distributed Compute Within Distributed Cloud Data Center Steering & Control Center

55 Networking The Connnection node node

56 Single Path node node

57 Revolution Compute & Forward (Disintergration of packet) node node

58 Revolution Distributed Everything Storage/Computing/Networking/ node node

5G CHALLENGES

61 5G Massive Requirements Massive throughput State of the art Massive low latency Massive sensing Massive resilience Massive safety and security 5G The Tactile Internet Massive fractal heterogenity > 10Gbit/s per user < 1ms RTT > 10k sensors per cell < 10 8 outage < 10 12 security 10x10 heterogeneity

63 5G Research on four Tracks Tactile Internet applications Wireless Dresden 5G Lab Silicon systems Opening Event Sept-24 2014 @ 16:30 in Dresden Mobile edge cloud

64 Members on Tracks Silicon systems track Wireless track Mobile edge cloud track Tactile Internet application track Rene Schüffny Frank Ellinger Gerhard Fettweis Eduard Jorswieck Christof Fetzer Wolfgang Nagel Leon Urbas Uwe Aßmann Frank Fitzek Wolfgang Lehner Michael Schröter Dirk Plettemeier Silvia Santini Team of 500+ Researchers!!! Thorsten Strufe Hermann Härtig Christel Baier Ercan Altinsoy Klaus Janschek

65 Relevant Startups Generated by Team Silicon systems track Wireless track Mobile edge cloud track Tactile Internet application track freedelity

Currently Connected Partners 66

CONCLUSIONS

69 Telco Markets: A First Glimpse At Germany care manufacturing events German ambulatory care ~ 35B TAM 10B/a German industrial interconnect revenue ~ 2B TAM 10B/a German event/concert/sport/stadium/congress TAM 10B/a edutainement German TechniSat.5B (home entertainment 11B) TAM 10B/a mobility German Tollcollect 5B, TAM 10B/a smart grid EU smart grid ICT market 27B, $47B by 2020 TAM 10B/a x20 x10 =200x =$20T

Cellular Roadmap of USPs 2G 1992 Voice Messages 3G 2002 + Data + Positioning 5G 2022 + Tactile Internet + massive M2M + Tb/s + carrier grade 4G 2012 + safe & secure + Video everything + 3D Graphics Gerhard Fettweis 70

71 Thank you Dresden 5G Lab Coordinator: Gerhard Fettweis dresden5glab.org contact@dresden5glab.org

72 Related publications [1] Fettweis, Gerhard, and Siavash Alamouti. 5G: Personal Mobile Internet beyond What Cellular Did to Telephony Communications Magazine, IEEE 52.2 (2014): 140-145. [2] Fettweis, G. "The Tactile Internet: Applications and Challenges." Vehicular Technology Magazine, IEEE 9.1 (2014): 64-70. [3] Fettweis et al. Positionspapier Das Taktile Internet, VDE ITG [4] HUAWEI. 5G: A Technology Vision