11 Internet of Things (IoT) Protocols You Need to Know About
|
|
|
- Belinda Taylor
- 10 years ago
- Views:
Transcription
1 11 Internet of Things (IoT) Protocols You Need to Know About by RS Components There exists an almost bewildering choice of connectivity options for electronics engineers and application developers working on products and systems for the Internet of Things (IoT). Many communication technologies are well known such as WiFi, Bluetooth, ZigBee and 2G/3G/4G cellular, but there are also several new emerging networking options such as Thread as an alternative for home automation applications, and Whitespace TV technologies being implemented in major cities for wider area IoT-based use cases. Depending on the application, factors such as range, data requirements, security and power demands and battery life will dictate the choice of one or some form of combination of technologies. These are some of the major communication technologies on offer to developers. Bluetooth An important short-range communications technology is of course Bluetooth, which has become very important in computing and many consumer product markets. It is expected to be key for wearable products in particular, again connecting to the IoT albeit probably via a smartphone in many cases. The new Bluetooth Low-Energy (BLE) or Bluetooth Smart, as it is now branded is a significant protocol for IoT applications. Importantly, while it offers similar range to Bluetooth it has been designed to offer significantly reduced power consumption. However, Smart/BLE is not really designed for file transfer and is more suitable for small chunks of data. It has a major advantage certainly in a more personal device context over many competing technologies given its widespread integration in smartphones and many other mobile devices. According to the Bluetooth SIG, more than 90 percent of Bluetooth-enabled smartphones, including ios, Android and Windows based models, are expected to be Smart Ready by Devices that employ Bluetooth Smart features incorporate the Bluetooth Core Specification Version 4.0 (or higher the latest is version 4.2 announced in late 2014) with a combined basic-data-rate and lowenergy core configuration for a RF transceiver, baseband and protocol stack. Importantly, version 4.2 via its Internet Protocol Support Profile will allow Bluetooth Smart sensors to access the Internet directly via 6LoWPAN connectivity (more on this below). This IP connectivity makes it possible to use existing IP infrastructure to manage Bluetooth Smart edge devices. More information on Bluetooth 4.2 is available here and a wide range of Bluetooth modules are available from RS.
2 Standard: Bluetooth 4.2 core specification Frequency: 2.4GHz (ISM) Range: m (Smart/BLE) Data Rates: 1Mbps (Smart/BLE) Zigbee ZigBee, like Bluetooth, has a large installed base of operation, although perhaps traditionally more in industrial settings. ZigBee PRO and ZigBee Remote Control (RF4CE), among other available ZigBee profiles, are based on the IEEE protocol, which is an industry-standard wireless networking technology operating at 2.4GHz targeting applications that require relatively infrequent data exchanges at low data-rates over a restricted area and within a 100m range such as in a home or building. ZigBee/RF4CE has some significant advantages in complex systems offering low-power operation, high security, robustness and high scalability with high node counts and is well positioned to take advantage of wireless control and sensor networks in M2M and IoT applications. The latest version of ZigBee is the recently launched 3.0, which is essentially the unification of the various ZigBee wireless standards into a single standard. An example product and kit for ZigBee development are TI s CC2538SF53RTQT ZigBee System-On-Chip IC and CC2538 ZigBee Development Kit. Standard: ZigBee 3.0 based on IEEE Frequency: 2.4GHz Range: m Data Rates: 250kbps Z-Wave Z-Wave is a low-power RF communications technology that is primarily designed for home automation for products such as lamp controllers and sensors among many others. Optimized for reliable and lowlatency communication of small data packets with data rates up to 100kbit/s, it operates in the sub- 1GHz band and is impervious to interference from WiFi and other wireless technologies in the 2.4-GHz range such as Bluetooth or ZigBee. It supports full mesh networks without the need for a coordinator
3 node and is very scalable, enabling control of up to 232 devices. Z-Wave uses a simpler protocol than some others, which can enable faster and simpler development, but the only maker of chips is Sigma Designs compared to multiple sources for other wireless technologies such as ZigBee and others. Standard: Z-Wave Alliance ZAD12837 / ITU-T G.9959 Frequency: 900MHz (ISM) Range: 30m Data Rates: 9.6/40/100kbit/s 6LowPAN A key IP (Internet Protocol)-based technology is 6LowPAN (IPv6 Low-power wireless Personal Area Network). Rather than being an IoT application protocols technology like Bluetooth or ZigBee, 6LowPAN is a network protocol that defines encapsulation and header compression mechanisms. The standard has the freedom of frequency band and physical layer and can also be used across multiple communications platforms, including Ethernet, Wi-Fi, and sub-1ghz ISM. A key attribute is the IPv6 (Internet Protocol version 6) stack, which has been a very important introduction in recent years to enable the IoT. IPv6 is the successor to IPv4 and offers approximately 5 x 1028 addresses for every person in the world, enabling any embedded object or device in the world to have its own unique IP address and connect to the Internet. Especially designed for home or building automation, for example, IPv6 provides a basic transport mechanism to produce complex control systems and to communicate with devices in a cost-effective manner via a low-power wireless network. Designed to send IPv6 packets over IEEE based networks and implementing open IP standards including TCP, UDP, HTTP, COAP, MQTT, and websockets, the standard offers end-to-end addressable nodes, allowing a router to connect the network to IP. 6LowPAN is a mesh network that is robust, scalable and self-healing. Mesh router devices can route data destined for other devices, while hosts are able to sleep for long periods of time. An explanation of 6LowPAN is available here, courtesy of TI. Standard: RFC6282 Frequency: (adapted and used over a variety of other networking media including Bluetooth Smart (2.4GHz) or ZigBee or low-power RF (sub-1ghz) Range: N/A Data Rates: N/A
4 Thread A very new IP-based IPv6 networking protocol aimed at the home automation environment is Thread. Based on 6LowPAN, and also like it, it is not an IoT applications protocol like Bluetooth or ZigBee. However, from an application point of view, it is primarily designed as a complement to WiFi as it recognises that while WiFi is good for many consumer devices that it has limitations for use in a home automation setup. Launched in mid-2014 by the Thread Group, the royalty-free protocol is based on various standards including IEEE (as the wireless air-interface protocol), IPv6 and 6LoWPAN, and offers a resilient IP-based solution for the IoT. Designed to work on existing IEEE wireless silicon from chip vendors such as Freescale and Silicon Labs, Thread supports a mesh network using IEEE radio transceivers and is capable of handling up to 250 nodes with high levels of authentication and encryption. A relatively simple software upgrade should allow users to run thread on existing IEEE enabled devices. Standard: Thread, based on IEEE and 6LowPAN Frequency: 2.4GHz (ISM) Range: N/A Data Rates: N/A WiFi WiFi connectivity is often an obvious choice for many developers, especially given the pervasiveness of WiFi within the home environment within LANs. It requires little further explanation except to state the obvious that clearly there is a wide existing infrastructure as well as offering fast data transfer and the ability to handle high quantities of data. Currently, the most common WiFi standard used in homes and many businesses is n, which offers serious throughput in the range of hundreds of megabit per second, which is fine for file transfers, but may be too power-consuming for many IoT applications. A series of RF development kits designed for building WiFi-based applications are available from RS. Standard: Based on n (most common usage in homes today)
5 Frequencies: 2.4GHz and 5GHz bands Range: Approximately 50m Data Rates: 600 Mbps maximum, but Mbps is more typical, depending on channel frequency used and number of antennas (latest ac standard should offer 500Mbps to 1Gbps) Cellular Any IoT application that requires operation over longer distances can take advantage of GSM/3G/4G cellular communication capabilities. While cellular is clearly capable of sending high quantities of data, especially for 4G, the expense and also power consumption will be too high for many applications, but it can be ideal for sensor-based low-bandwidth-data projects that will send very low amounts of data over the Internet. A key product in this area is the SparqEE range of products, including the original tiny CELLv1.0 low-cost development board and a series of shield connecting boards for use with the Raspberry Pi and Arduino platforms. Standard: GSM/GPRS/EDGE (2G), UMTS/HSPA (3G), LTE (4G) Frequencies: 900/1800/1900/2100MHz Range: 35km max for GSM; 200km max for HSPA Data Rates (typical download): kps (GPRS), kbps (EDGE), 384Kbps-2Mbps (UMTS), 600kbps-10Mbps (HSPA), 3-10Mbps (LTE) NFC NFC (Near Field Communication) is a technology that enables simple and safe two-way interactions between electronic devices, and especially applicable for smartphones, allowing consumers to perform contactless payment transactions, access digital content and connect electronic devices. Essentially it extends the capability of contactless card technology and enables devices to share information at a distance that is less than 4cm. Further information is available here. Standard: ISO/IEC
6 Frequency: 13.56MHz (ISM) Range: 10cm Data Rates: kbps Sigfox An alternative wide-range technology is Sigfox, which in terms of range comes between WiFi and cellular. It uses the ISM bands, which are free to use without the need to acquire licenses, to transmit data over a very narrow spectrum to and from connected objects. The idea for Sigfox is that for many M2M applications that run on a small battery and only require low levels of data transfer, then WiFi s range is too short while cellular is too expensive and also consumes too much power. Sigfox uses a technology called Ultra Narrow Band (UNB) and is only designed to handle low data-transfer speeds of 10 to 1,000 bits per second. It consumes only 50 microwatts compared to 5000 microwatts for cellular communication, or can deliver a typical stand-by time 20 years with a 2.5Ah battery while it is only 0.2 years for cellular. Already deployed in tens of thousands of connected objects, the network is currently being rolled out in major cities across Europe, including ten cities in the UK for example. The network offers a robust, power-efficient and scalable network that can communicate with millions of battery-operated devices across areas of several square kilometres, making it suitable for various M2M applications that are expected to include smart meters, patient monitors, security devices, street lighting and environmental sensors. The Sigfox system uses silicon such as the EZRadioPro wireless transceivers from Silicon Labs, which deliver industry-leading wireless performance, extended range and ultra-low power consumption for wireless networking applications operating in the sub-1ghz band. Standard: Sigfox Frequency: 900MHz Range: 30-50km (rural environments), 3-10km (urban environments) Data Rates: bps Neul
7 Similar in concept to Sigfox and operating in the sub-1ghz band, Neul leverages very small slices of the TV White Space spectrum to deliver high scalability, high coverage, low power and low-cost wireless networks. Systems are based on the Iceni chip, which communicates using the white space radio to access the high-quality UHF spectrum, now available due to the analogue to digital TV transition. The communications technology is called Weightless, which is a new wide-area wireless networking technology designed for the IoT that largely competes against existing GPRS, 3G, CDMA and LTE WAN solutions. Data rates can be anything from a few bits per second up to 100kbps over the same single link; and devices can consume as little as 20 to 30mA from 2xAA batteries, meaning 10 to 15 years in the field. Standard: Neul Frequency: 900MHz (ISM), 458MHz (UK), MHz (White Space) Range: 10km Data Rates: Few bps up to 100kbps LoRaWAN Again, similar in some respects to Sigfox and Neul, LoRaWAN targets wide-area network (WAN) applications and is designed to provide low-power WANs with features specifically needed to support low-cost mobile secure bi-directional communication in IoT, M2M and smart city and industrial applications. Optimized for low-power consumption and supporting large networks with millions and millions of devices, data rates range from 0.3 kbps to 50 kbps. Standard: LoRaWAN Frequency: Various Range: 2-5km (urban environment), 15km (suburban environment) Data Rates: kbps.
Maximizing Range and Battery Life in Low-Cost Wireless Networks
Maximizing Range and Battery Life in Low-Cost Wireless Networks The proliferation of cost-effective wireless technology has led to the rise of entirely new types of networks across a wide range of applications
The Internet of Things: Opportunities & Challenges
The Internet of Things: Opportunities & Challenges What is the IoT? Things, people and cloud services getting connected via the Internet to enable new use cases and business models Cloud Services How is
IOT WPAN technologies IoT binnen handbereik. EA IoT 2015 Pepijn Herman 2-6-2015
Internet of Things IOT WPAN technologies IoT binnen handbereik EA IoT 2015 Pepijn Herman 2-6-2015 Metatronics Development of smart electronics solution HQ in Eindhoven, The Netherlands Team of 21 engineers
Mobile and Embedded/IoT market Overview and Trends. June 2014
Mobile and Embedded/IoT market Overview and Trends June 2014 2 Ubiquitous Connectivity Quantified Self Ultra HD Media Streaming Global Wireless Broadband Wearables 3 Contactless Payments Wearable Momentum
Thingsquare Technology
Thingsquare Technology Thingsquare connects smartphone apps with things such as thermostats, light bulbs, and street lights. The devices have a programmable wireless chip that runs the Thingsquare firmware.
Demystifying Wireless for Real-World Measurement Applications
Proceedings of the IMAC-XXVIII February 1 4, 2010, Jacksonville, Florida USA 2010 Society for Experimental Mechanics Inc. Demystifying Wireless for Real-World Measurement Applications Kurt Veggeberg, Business,
Short-range Low Power Wireless Devices and Internet of Things (IoT)
Short-range Low Power Wireless Devices and Internet of Things (IoT) Mats Andersson, CTO, connectblue Phone: +46 40 630 71 00 Email: [email protected] Web: www.connectblue.com Version 1.1 February
ZigBee Technology Overview
ZigBee Technology Overview Presented by Silicon Laboratories Shaoxian Luo 1 EM351 & EM357 introduction EM358x Family introduction 2 EM351 & EM357 3 Ember ZigBee Platform Complete, ready for certification
Connecting IPv6 capable Bluetooth Low Energy sensors with the Internet of Things
Connecting IPv6 capable Bluetooth Low Energy sensors with the Internet of Things Johanna Nieminen (Nokia), Future Internet SHOK preconference 30.05.2012 IoT Taxonomy ZigBee 802.5.4 Bluetooth Video RFID
Use case possibilities with Bluetooth low energy in IoT applications
Use case possibilities with Bluetooth low energy in IoT applications White paper Author Mats Andersson Senior Director Technology, Product Center Short Range Radio, u-blox Abstract With yearly shipments
End-to-End M2M and IoT Services
End-to-End M2M and IoT Services 2015 Internet of Things Symposium. May 21, 2015. Syed Zaeem Hosain ( Z ), CTO, Aeris. [email protected], Twitter: @AerisCTO Presentation Agenda What we will cover Who
Internet of Things based approach to Agriculture Monitoring
Internet of Things based approach to Agriculture Monitoring A. Paventhan ERNET India Regional Centre, Bangalore Asia-Pacific Advanced Network (APAN) 36th Meeting 20th August 2013 1 / 19 Outline 1 IP-based
Applying Mesh Networking to Wireless Lighting Control
White Paper Applying Mesh Networking to Wireless Lighting Control www.daintree.net Abstract Recent advances in wireless communications standards and energy-efficient lighting equipment have made it possible
Short range low power wireless devices and Internet of Things (IoT)
Short range low power wireless devices and Internet of Things (IoT) White paper Author Mats Andersson Senior Director Technology, Product Center Short Range Radio, u-blox Abstract This paper discusses
SmartDiagnostics Application Note Wireless Interference
SmartDiagnostics Application Note Wireless Interference Publication Date: May 27, 2015 KCF Technologies, Inc. Background The SmartDiagnostics wireless network is an easy to install, end-to-end machine
Microchip Technology. February 2008 Valerio Moretto Slide 1
Microchip Technology February 2008 Valerio Moretto Slide 1 Connectivity Solutions Wired Wireless February 2008 Valerio Moretto Slide 2 Microchip Solutions More complex software Operating Systems >40 MIPS
Key Priorities for Sub-GHz Wireless Deployment
Key Priorities for Sub-GHz Wireless Deployment Silicon Laboratories Inc., Austin, TX Introduction To build an advanced wireless system, most developers will end up choosing between two industrial, scientific
ZIGBEE 802.15.4. ECGR-6185 Advanced Embedded Systems. Charlotte. University of North Carolina-Charlotte. Chaitanya Misal Vamsee Krishna
ECGR-6185 Advanced Embedded Systems ZIGBEE 802.15.4 University of North Carolina-Charlotte Charlotte Chaitanya Misal Vamsee Krishna WPAN A personal area network (PAN) is a computer network used for communication
The Future of IoT. Zach Shelby VP Marketing, IoT Feb 3 rd, 2015
The Future of IoT Zach Shelby VP Marketing, IoT Feb 3 rd, 2015 1 Internet of (really nerdy) People 1980s 2 Internet of (content silo) People 1990s 3 Internet of (Web) People 2000s 4 Internet of (really
Wireless The answer to all our communications needs?
Wireless The answer to all our communications needs? Introduction Since BT s last review of its leased lines back in 2003, there has been a concern in local government that analogue lines will go the way
LoRaWAN. What is it? A technical overview of LoRa and LoRaWAN. Technical Marketing Workgroup 1.0
LoRaWAN What is it? A technical overview of LoRa and LoRaWAN Technical Marketing Workgroup 1.0 November 2015 TABLE OF CONTENTS 1. INTRODUCTION... 3 What is LoRa?... 3 Long Range (LoRa )... 3 2. Where does
A Faster, More Accurate Approach for System-Level Performance Verification of a Wireless RFIC Design
A Faster, More Accurate Approach for System-Level Performance Verification of a Wireless RFIC Design By Nebabie Kebebew and Rich Davis, Cadence Wireless RFIC designs are growing more complex, increasing
The Role of Telecommunications in Smart Cities
The Role of Telecommunications in Cities Rohit Kumar Sethi Senior Solution Architect, GlobalLogic Inc. A smart city uses digital technologies or information and communication technologies (ICT) to enhance
communication over wireless link handling mobile user who changes point of attachment to network
Wireless Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet
GreenPeak White Paper Wireless Communication Standards for the Internet of Things
GreenPeak White Paper Wireless Communication Standards for the Internet of Things By Cees Links, CEO GreenPeak Technologies GreenPeak Technologies www.greenpeak.com This white paper provides an overview
Communication Architecture for AMI and other Smart Grid/Smart City Applications. Presented By: Reji Kumar Pillai President - ISGF
Communication Architecture for AMI and other Smart Grid/Smart City Applications Presented By: Reji Kumar Pillai President - ISGF Evolution of Smart Metering Electromechanical Meters Electronic Meters AMR
IoT for surveillance applications!
! IoT for surveillance applications!! (and how to connect & schedule them)! EU-SEA workshop and cooperation on IoT and open platforms! January 25th, 2015!! IEEE RIVF 2015, Can Tho, Vietnam! Prof. Congduc
LTE, WLAN, BLUETOOTHB
LTE, WLAN, BLUETOOTHB AND Aditya K. Jagannatham FUTURE Indian Institute of Technology Kanpur Commonwealth of Learning Vancouver 4G LTE LTE (Long Term Evolution) is the 4G wireless cellular standard developed
6LoWPAN: An Open IoT Networking Protocol
6LoWPAN: An Open IoT Networking Protocol OpenIoT Summit 2016 San Diego Stefan Schmidt [email protected] 1 6LoWPAN: An Open IoT Networking Protocol Open: Specified by the IETF Specifications available
Smart Cities are the Internet of Things
June 20th, 2013 Smart Cities are the Internet of Things Zach Shelby, Chief Nerd 1 About Sensinode Vision The Internet of Things (IoT) is the next evolution of the Internet where devices of all types and
Home Passport Gateway Series Simplify your Life with Smart Solutions
Home Passport Gateway Series Simplify your Life with Smart Solutions HPGW Series - Home Passport Gateway Series HPGW Series is Home Passport Gateway, representing a breakthrough product in the intrusion
Chapter 3 Cellular Networks. Wireless Network and Mobile Computing Professor: Dr. Patrick D. Cerna
Chapter 3 Cellular Networks Wireless Network and Mobile Computing Professor: Dr. Patrick D. Cerna Objectives! Understand Cellular Phone Technology! Know the evolution of evolution network! Distinguish
Developments in 900 MHz wireless connectivity systems. Guido Dolmans Holst Centre / Imec-NL
Developments in 900 MHz wireless connectivity systems Guido Dolmans Holst Centre / Imec-NL 3 HOLST CENTRE PROJECTS SUB-GHZ NUTSHELL 900 MHz UHF RFID European project Pasteur for sensor-enhanced RFID for
Wireless Technologies for Automation
Wireless Technologies for Automation Prof. Dr.-Ing. Jörg F. Wollert Wireless Technologies for Automation Why using wireless communication? Pros and cons in wireless networks Embedded Wireless Hardware
WI-FI VS. BLUETOOTH TWO OUTSTANDING RADIO TECHNOLOGIES FOR DEDICATED PAYMENT APPLICATION
WI-FI VS. BLUETOOTH TWO OUTSTANDING RADIO TECHNOLOGIES FOR DEDICATED PAYMENT APPLICATION Ingenico is often asked: what are the differences between Bluetooth and Wi-Fi technologies, which is the best one,
M2M I/O Modules. To view all of Advantech s M2M I/O Modules, please visit www.advantech.com/products.
M2M I/O Modules 14 M2M I/O Modules Overview 14-2 M2M I/O Modules Selection Guide 14-6 ADAM-2510Z Wireless Router Node 14-8 ADAM-2520Z Wireless Modbus RTU Gateway 14-9 ADAM-2031Z ADAM-2632Z ADAM-2017Z ADAM-2018Z
XBEE 802.15.4 PROTOCOL COMPARISON
Connect with Confidence XBEE 802.15.4 PROTOCOL COMPARISON Abstract Creating wireless networks can be done using a variety of RF protocols. Some protocols are proprietary to individual vendors, others are
Tnet WIRELESS MESH SENSOR NETWORKS
Product Line Overview Tnet WIRELESS MESH SENSOR NETWORKS The fusion of advanced sensor and actuator technology with state of the art wireless networks has enabled a whole new level of applications for
Overcoming Challenges of Connecting Intelligent Nodes to the Internet of Things
Overcoming Challenges of Connecting Intelligent Nodes to the Internet of Things The Internet has come a long way over the last 30 years. Old-fashioned IPv4 is giving way to IPv6 so that every device on
Mobile Broadband of Deutsche Telekom AG LTE to cover White Spaces. Karl-Heinz Laudan Deutsche Telekom AG 16 June 2011
Mobile Broadband of Deutsche Telekom AG LTE to cover White Spaces Karl-Heinz Laudan Deutsche Telekom AG 16 June 2011 Spectrum is the basis for any mobile radio communication service Satellites (1,5 2,2
Wi-Fi for the Smart Grid:
Wi-Fi for the Smart Grid: Mature, Interoperable, Security-Protected Technology for Advanced Utility Management Communications Wi-Fi Alliance September 2009 Page 1 1.0 Executive Summary 3 2.0 Background
ARM mbed IoT Device Platform. November 3 rd, 2014
ARM mbed IoT Device Platform November 3 rd, 2014 1 The Big Picture What? At TechCon 2014 we announced the ARM mbed IoT Device Platform consisting of: An expanded partner ecosystem spanning silicon to the
Secure, Efficient, and Open Standard Internet of Things
Secure, Efficient, and Open Standard Internet of Things Zach Shelby Director of Technology, IoT ARM acknowledges the trademarks and copyrights of 3 rd parties included in this presentation What is the
Towards an Internet of Things: Android meets NFC. Dipartimento di Scienze dell Informazione Università di Bologna
Towards an Internet of Things: Android meets NFC Luca Bedogni Marco Di Felice Dipartimento di Scienze dell Informazione Università di Bologna Outline Internet of Things: History Internet of Things: Definition
UG103.1 APPLICATION DEVELOPMENT FUNDAMENTALS: WIRELESS NETWORKING
APPLICATION DEVELOPMENT FUNDAMENTALS: WIRELESS NETWORKING This document introduces some fundamental concepts of wireless networking. These concepts are referred to in other Application Development Fundamentals
Internet of Things. Opportunities for device differentiation
Internet of Things Opportunities for device differentiation What is the Internet of Things? The Internet of Things (IoT) is an emerging market trend impacting semiconductor devices, system OEMs, cloud
Wireless Personal Area Networks (WPANs)
Wireless Personal Area Networks (WPANs) Bluetooth, ZigBee Contents Introduction to the IEEE 802 specification family Concept of ISM frequency band Comparison between different wireless technologies ( and
The Evolution of Wireless Networks for the Internet of Things
The Evolution of Wireless Networks for the Internet of Things NSF Wireless Cities Workshop Presenter: Phil Fleming Mobile Networks Senior Technology Advisor Nokia Networks Arlington Hts., IL 1 Nokia Networks
WHITE PAPER. Emerging IoT Wireless Communication
WHITE PAPER Emerging IoT Wireless Communication ABSTRACT It is quite apparent by now that cellular technologies, built primarily for voice traffic, cannot currently provide a scalable solution for long-range
IEEE802.15.4-2006 Sub-1 GHz-Lösungen für Sensornetzwerke mit optimierter Funkabdeckung. 2008 Dr. Wolf Wireless GmbH
IEEE802.15.4-2006 Sub-1 GHz-Lösungen für Sensornetzwerke mit optimierter Funkabdeckung 2008 Dr. Wolf Wireless GmbH 1 Spectral Density is the Foundation of Wireless Communication Data Streaming (Access
CHAPTER 1 1 INTRODUCTION
CHAPTER 1 1 INTRODUCTION 1.1 Wireless Networks Background 1.1.1 Evolution of Wireless Networks Figure 1.1 shows a general view of the evolution of wireless networks. It is well known that the first successful
Internet of things (IOT) applications covering industrial domain. Dev Bhattacharya [email protected]
Internet of things (IOT) applications covering industrial domain Dev Bhattacharya [email protected] Outline Internet of things What is Internet of things (IOT) Simplified IOT System Architecture
INTRODUCTION TO WIRELESS SENSOR NETWORKS. Marco Zennaro, ICTP Trieste-Italy
INTRODUCTION TO WIRELESS SENSOR NETWORKS Marco Zennaro, ICTP Trieste-Italy Wireless sensor networks A Wireless Sensor Network is a self-configuring network of small sensor nodes communicating among themselves
920MHz Band Multi-hop Wireless Network System
920MHz Band Multi-hop Wireless Network System Hiroshi Hashizume Motohiro Inokuma Masayuki Suto Shigeru Fukunaga Motoharu Kawanishi One policy aimed at the growth of OKI Group is the development of a smart
Internet of Things: TI's Wireless Connectivity Solutions
Internet of Things: TI's Wireless Connectivity Solutions Market Size (units) Why the IoT is attractive 10B + The IoT is an enabling technology that will serve thousands of end products IoT 1B Cell phone
Mobile Communications
Mobile Communications Vincent Roca (2001-10) Claude Castelluccia (1998-2001) INRIA [email protected] [email protected] http://planete.inrialpes.fr/~roca/ Overview of the Course! Part 1:
Design of a Wireless Medical Monitoring System * Chavabathina Lavanya 1 G.Manikumar 2
Design of a Wireless Medical Monitoring System * Chavabathina Lavanya 1 G.Manikumar 2 1 PG Student (M. Tech), Dept. of ECE, Chirala Engineering College, Chirala., A.P, India. 2 Assistant Professor, Dept.
Introduction to M2M Technologies What Wireless or Wired Option is Right For Your Company or Products
Introduction to M2M Technologies What Wireless or Wired Option is Right For Your Company or Products Webinar. December 15, 2015. Syed Zaeem Hosain ( Z ), CTO, Aeris. [email protected], Twitter: @AerisCTO
LoRa FAQs. www.semtech.com 1 of 4 Semtech. Semtech Corporation LoRa FAQ
LoRa FAQs 1.) What is LoRa Modulation? LoRa (Long Range) is a modulation technique that provides significantly longer range than competing technologies. The modulation is based on spread-spectrum techniques
ZigBee Propagation for Smart Metering Networks
ZigBee Propagation for Smart Metering Networks The UK government requires energy suppliers to take all reasonable steps to deploy smart meters in customer residences in Great Britain by 2019, with the
An Overview of ZigBee Networks
An Overview of ZigBee Networks A guide for implementers and security testers Matt Hillman Contents 1. What is ZigBee?... 3 1.1 ZigBee Versions... 3 2. How Does ZigBee Operate?... 3 2.1 The ZigBee Stack...
Key requirements for Interoperable IoT systems
Key requirements for Interoperable IoT systems Pratul Sharma Technical Marketing Manager, ARM Inc. May/08/2014 Agenda Why Interoperability? Open standards for interoperability Data Communication Standards
Industrial Networks & Databases
Industrial Networks & Databases LONWORKS KNX 1 HVAC and BEMS HVAC - Heating, Ventilation & Air Conditioning BEMS - Building & Energy Management Systems 2 3 4 LONWORKS (Local Operating Networks) Open solution
Getting the Most Out of Your WirelessHART System
Getting the Most Out of Your WirelessHART System A White Paper presented by: Garrett Schmidt Wireless Product Manager Phoenix Contact Americas Business Unit P.O. Box 4100 Harrisburg, PA 17111-0100 Phone:
Questions from The New SensorTag - IoT Made Easy Webinar
Questions from The New SensorTag - IoT Made Easy Webinar Are there any plans to make a Windows API available (preferably portable for use in Windows 10 Universal applications) It is in our queue of projects,
Reti wireless in banda ISM e complementarieta con le reti cellulari
www.telit.com Reti wireless in banda ISM e complementarieta con le reti cellulari Milano: 15 giugno 2010 [email protected] M2M Market potential is huge White Goods, HVAC, Smart Grids/AMM Industrial/Park/Building/Stores/Home
IPv6 Based Sensor Home Networking
KRNET 2005 IPv6 Based Sensor Home Networking KRNET 2005 Soohong Daniel Park Mobile Platform Laboratory, SAMSUNG Electronics. [email protected] KRNET 2005 2/29 Trend of Home Networking Digital World
A G E N D A I O T P R E S S T O U R
I O T P R E S S T O U R A G E N D A _ Introduction Opening What is IoT The IoT Market _ AVM Strategy What does IoT mean to Avnet Memec? Where does Avnet Memec fit? _ AVM Solutions _ What s Next _ Summary
Performance Evaluation of Large-Scale Wireless Sensor Networks Communication Protocols that can be Integrated in a Smart City
Performance Evaluation of Large-Scale Wireless Sensor Networks Communication Protocols that can be Integrated in a Smart City A. Lavric 1, V. Popa 2 PhD.,Computers, Department of Electronics and Automation,
Industrial IOT Gateway Family Datasheet
Industrial IOT Gateway Family Datasheet GW-Series Overview Samsara IoT gateways securely connect sensor data to the Samsara cloud. All models include WiFi and built-in cellular connectivity, storage, and
Chapter 6 Wireless and Mobile Networks
Chapter 6 Wireless and Mobile Networks A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;
Network Communications System. Redefining Intelligent Utility Communications
Network Communications System Redefining Intelligent Utility Communications Technology that takes you from today to tomorrow. FlexNet Technology you can trust FlexNet is a robust, high-powered solution
IOT the Last Miles. Tze Chiew (PSM) [email protected] Jaap Breepoel (FAE) [email protected]
IOT the Last Miles Tze Chiew (PSM) [email protected] Jaap Breepoel (FAE) [email protected] Embedded IoT Solution Embedded IoT Software Remote Management Security OS Intelligent Systems RISC,
www.mindteck.com 6LoWPAN Technical Overview
www.mindteck.com 6LoWPAN Technical Overview 6LoWPAN : Slide Index Introduction Acronyms Stack Architecture Stack Layers Applications IETF documents References Confidential Mindteck 2009 2 6LoWPAN - Introduction
Remote Monitoring and Controlling System Based on ZigBee Networks
Remote Monitoring and Controlling System Based on ZigBee Networks Soyoung Hwang and Donghui Yu* Department of Multimedia Engineering, Catholic University of Pusan, South Korea {soyoung, dhyu}@cup.ac.kr
Smart Cities & Internet of Things (IoT): New training opportunities. Dr. Periklis Chatzimisios
Smart Cities & Internet of Things (IoT): New training opportunities Dr. Periklis Chatzimisios Introduction on Smart Cities The smart city is the ability to access any application at anytime from anywhere
Computer Networks. Wireless and Mobile Networks. László Böszörményi Computer Networks Mobile - 1
Computer Networks Wireless and Mobile Networks László Böszörményi Computer Networks Mobile - 1 Background Number of wireless (mobile) phone subscribers now exceeds number of wired phone subscribers! Computer
Mobile Networking Concepts and Protocols CNT 5517
Mobile Networking Concepts and Protocols CNT 5517 Some slides are adapted from Dr. Dave Johnson Notes Dr. Sumi Helal, Ph.D. Professor Computer & Information Science & Engineering Department University
Iknaia Asset and Personnel Tracking Management System for the Construction Industry
Iknaia Asset and Personnel Tracking Management System for the Construction Industry Introduction The UK construction industry accounts for over 7%* of the UK s Gross Domestic Product and employs over two
Home Automation and Cybercrime
Trend Micro Incorporated Research Paper 2013 Home Automation and Cybercrime By: Ranieri Romera Contents Introduction...1 Distribution...2 Installation...3 Backdoor...3 Network Traffic Encryption... 5 Infrastructure...7
5G radio access. ericsson White paper Uen 284 23-3204 Rev B February 2015
ericsson White paper Uen 284 23-3204 Rev B February 2015 5G radio access TECHNOLOGY AND CAPABILITIES To enable connectivity for a wide range of new applications and use cases, the capabilities of 5G wireless
Implementation of Wireless Gateway for Smart Home
Communications and Network, 2013, 5, 16-20 doi:10.4236/cn.2013.51b005 Published Online February 2013 (http://www.scirp.org/journal/cn) Implementation of Wireless Gateway for Smart Home Yepeng Ni 1, Fang
Figure 1.Block diagram of inventory management system using Proximity sensors.
Volume 1, Special Issue, March 2015 Impact Factor: 1036, Science Central Value: 2654 Inventory Management System Using Proximity ensors 1)Jyoti KMuluk 2)Pallavi H Shinde3) Shashank VShinde 4)Prof VRYadav
Introduction to Clean-Slate Cellular IoT radio access solution. Robert Young (Neul) David Zhang (Huawei)
Introduction to Clean-Slate Cellular IoT radio access solution Robert Young (Neul) David Zhang (Huawei) Page 11 Introduction and motivation There is a huge opportunity for Mobile Network Operators to exploit
Chapter 6 Telecommunications, Networks, and Wireless. Computing
Chapter 6 Telecommunications, Networks, and Wireless Computing Essay Questions: 1. Define a hub, switch, and a router. 2. List the challenges associated with managing contemporary telecommunications and
Wireless LANs vs. Wireless WANs
White Paper Wireless LANs vs. Wireless WANs White Paper 2130273 Revision 1.0 Date 2002 November 18 Subject Supported Products Comparing Wireless LANs and Wireless WANs Wireless data cards and modules,
Guide to Wireless Connectivity Options for the Internet of Things (IoT) By Peggy Emerson
Guide to Wireless Connectivity Options for the Internet of Things (IoT) By Peggy Emerson CONTENTS Wireless Connectivity Choices... 2 Business Requirements... 2 Application Requirements... 3 Development
Nokia Siemens Networks Mobile WiMAX
Nokia Siemens Networks Mobile WiMAX 1. 2/6 Mobile WiMAX leads the way to wireless broadband access With Mobile WiMAX, the communications industry is another step closer to offering mobile broadband Internet
The topic of this presentation is comparing cellular with other communication technologies. The focus is on Smart Grid applications.
The topic of this presentation is comparing cellular with other communication technologies. The focus is on Smart Grid applications. 1 Study Approach We have performed a study to analyze Smart Grid Communication
M2M and IoT redefined through cost effective and energy optimized connectivity. Whitepaper
M2M and IoT redefined through cost effective and energy optimized connectivity Introduction The success of the Internet and the World Wide Web has resulted in more and more kinds of fixed and mobile computing
