Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.



Similar documents
MATH 60 NOTEBOOK CERTIFICATIONS

2.3. Finding polynomial functions. An Introduction:

Algebra Cheat Sheets

Section 1.1 Linear Equations: Slope and Equations of Lines

Vocabulary Words and Definitions for Algebra

Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown.

Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the school year.

Solutions of Linear Equations in One Variable

Slope-Intercept Form of a Linear Equation Examples

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

HIBBING COMMUNITY COLLEGE COURSE OUTLINE

A synonym is a word that has the same or almost the same definition of

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

Mathematics Placement

EQUATIONS and INEQUALITIES

2.6 Exponents and Order of Operations

What are the place values to the left of the decimal point and their associated powers of ten?

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

The Point-Slope Form

1.3 Polynomials and Factoring

IV. ALGEBRAIC CONCEPTS

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Indiana State Core Curriculum Standards updated 2009 Algebra I

Write the Equation of the Line Review

Algebra 2 PreAP. Name Period

Fractions and Linear Equations

3. Solve the equation containing only one variable for that variable.

Click on the links below to jump directly to the relevant section

Review of Intermediate Algebra Content

Factoring Quadratic Expressions

Algebra I Vocabulary Cards

COLLEGE ALGEBRA 10 TH EDITION LIAL HORNSBY SCHNEIDER 1.1-1

Florida Algebra 1 End-of-Course Assessment Item Bank, Polk County School District

The Properties of Signed Numbers Section 1.2 The Commutative Properties If a and b are any numbers,

Florida Math Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2

Radicals - Rational Exponents

Graphing Linear Equations

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

1.3 Algebraic Expressions

Graphing - Parallel and Perpendicular Lines

Absolute Value Equations and Inequalities

Solving Equations Involving Parallel and Perpendicular Lines Examples

A Quick Algebra Review

Linear Equations in One Variable

Make sure you look at the reminders or examples before each set of problems to jog your memory! Solve

1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.

Big Bend Community College. Beginning Algebra MPC 095. Lab Notebook

Solving Systems of Two Equations Algebraically

5 Systems of Equations

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills

Chapter 9. Systems of Linear Equations

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

MATH 90 CHAPTER 1 Name:.

6.1 The Greatest Common Factor; Factoring by Grouping

Algebra I. In this technological age, mathematics is more important than ever. When students

Overview. Observations. Activities. Chapter 3: Linear Functions Linear Functions: Slope-Intercept Form

PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71. Applications. F = mc + b.

7. Solving Linear Inequalities and Compound Inequalities

2.3 Solving Equations Containing Fractions and Decimals

1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved.

Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test

IOWA End-of-Course Assessment Programs. Released Items ALGEBRA I. Copyright 2010 by The University of Iowa.

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Negative Integer Exponents

Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan

Answer Key for California State Standards: Algebra I

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Graphing - Slope-Intercept Form

Mathematics Common Core Sample Questions

Chapter 2: Linear Equations and Inequalities Lecture notes Math 1010

1.6 The Order of Operations

MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006

1 Determine whether an. 2 Solve systems of linear. 3 Solve systems of linear. 4 Solve systems of linear. 5 Select the most efficient

Slope-Intercept Equation. Example

Algebra I Teacher Notes Expressions, Equations, and Formulas Review

Answers to Basic Algebra Review

Five 5. Rational Expressions and Equations C H A P T E R

Graphing Linear Equations in Two Variables

MATH Fundamental Mathematics IV

MATD Intermediate Algebra Review for Pretest

Math 25 Activity 6: Factoring Advanced

LAKE ELSINORE UNIFIED SCHOOL DISTRICT

The Greatest Common Factor; Factoring by Grouping

Writing the Equation of a Line in Slope-Intercept Form

Veterans Upward Bound Algebra I Concepts - Honors

Temperature Scales. The metric system that we are now using includes a unit that is specific for the representation of measured temperatures.

COLLEGE ALGEBRA. Paul Dawkins

Algebra 2 Year-at-a-Glance Leander ISD st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks

Factoring (pp. 1 of 4)

EAP/GWL Rev. 1/2011 Page 1 of 5. Factoring a polynomial is the process of writing it as the product of two or more polynomial factors.

Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving

3.1. RATIONAL EXPRESSIONS

POLYNOMIALS and FACTORING

How To Understand And Solve Algebraic Equations

SIMPLIFYING ALGEBRAIC FRACTIONS

SAT Math Facts & Formulas Review Quiz

5.1 Radical Notation and Rational Exponents

Equations Involving Fractions

Transcription:

Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear equations. Graphs of linear functions. Simplifying Algebraic Expressions Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. 3x + 4 5x 2y + 6 x 2 + 5x 4 x 4 16 x 2 + 5xy + 6y 2 The terms of an algebraic expression are those quantities that are separated by addition. Example: List the terms of the algebraic expression 4x 2 3x + 6 Terms are identified by the addition operation. Write the expression using addition.. Solution 4x 2 3x + 6 Write the expression using addition. 4x 2 + ( 3x)+ 6 Subtraction can be written in terms of addition: a b = a + ( b) 4x 2, 3x and 6 Identify the terms in the expression.

Page 2 of 13 The coefficient of a term is its numerical factor. Example: Determine the coefficients of the following terms. 5x 2, 2xy 3, x2 y 3 4, a2 b. Factors are quantities that are multiplied together. Think of each term as a product of a number (the coefficient) and variables. Solution 5x 2 The coefficient is 5. 2xy 2 The coefficient is 2. x 2 y 3 4 = 1 4 x2 y 3 The coefficient is 1 4. a 2 b = 1 a 2 b The coefficient is 1. Like terms (also known as common terms or similar terms) are terms that have the same variable factors. Example: Determine the like terms in the following list. 5x 2, 3y 2,8xy,2x 2 y,2xy,7x 2 y,10x,and9y 2 Compare the variable factors in two terms. For example, when considering the term 7x 2 y, the variable factors are x 2 y. (Note that 7 is the coefficient.) Solution 3y 2 and 9y 2 are like terms. The variable factors are y 2 in both terms. 8xy and 2xy are like terms. The variable factors are xy in both terms. 2x 2 y and 7x 2 y are like terms. The variable factors are x 2 y in both terms. Note that there are two terms left over: the same ( x 2 and x respectively). 5x 2 and 10x. These two terms are not like terms because their variable factors are not

Page 3 of 13 The properties of the real numbers are used when working with algebraic expression. Consider the following examples. Properties of Real Numbers Property Example Commutative Property of Addition a + b = b + a 14x + 5x 2 = 5x 2 +14x Commutative Property of Multiplication a b = b a x 3 7 = 7x 3 Associative Property of Addition ( a + b)+ c = a + ( b + c) ( 3x 2 + 4x)+ 7x = 3x 2 + 4x + 7x Associative Property of Multiplication ( a b) c = a ( b c) 54x ( )= ( 5 4)x Distributive Property ab+ ( c)= a b + a c 5( x + 2)= 5x + 5 2 Can also be written as: b + c ( )a = b a + c a ( 4 + y)x = 4 x + y x ( ) The distributive property allows us to add or subtract like terms. The adding (or subtracting) of s like terms is known as combining like terms. Example: Combine the like terms 3x 2 + 5x 2 The two terms being added are like terms. Their variable factors are both x 2. Therefore it is possible to combine them using the distributive property. Solution 3x 2 + 5x 2 2 ( 3+ 5) x Use the distributive property. 8x 2

Page 4 of 13 Example: Combine the like terms: 3x 2 + 4x 2x 2 + 3x 4 There are five terms in this expression. Identify the like terms. Solution 3x 2 + 4x 2x 2 + 3x 4 3x 2 and 2x 2 are like terms as are 4x and 3x. 3x 2 2x 2 + 4x + 3x 4 Use the commutative property of addition to bring like terms together. ( 3 2)x + ( 4 + 3)x 4 Use of the distributive property to combine like terms. x 2 + 7x 4 To simplify an algebraic expression with parenthesis use the distributive property, then combine like terms. Example: Simplify 2( 5x 1)+14x Before any terms can be combined in this expression the distributive property must be used in order to remove the parenthesis. Solution 25x ( 1)+14x 10x 2 +14x 24x 2 Use of the distributive property. Example: Simplify 5( x 2 + 2x) x( 2x 4) There are two sets of parenthesis so the distributive property will be used twice. Solution 5( x 2 + 2x) x( 2x 4) 5x 2 +10x 2x 2 + 4x 5x 2 2x 2 +10x + 4x 3x 2 +14x Use of the distributive property. Use of the commutative property of addition to bring like terms together.

Page 5 of 13 Linear Expressions The degree of a term is the sum of the exponents on the variable factors. Example: Determine the degree of 5x 2 y. Identify the exponents on the variable factor, to determine the degree of the terms. Solution 5x 2 y x 2 and y Identify the variable factors. 2 and 1 Identify the exponents on the variable factors. 2 +1or 3 Add the exponents to determine the degree of the term. Note: The degree of a constant (e.g. 6) is 0, since Example: Determine the degree of the constant 8. 0 6= 6x. Since the degree of a term is based on the variable factor, rewrite the term using a variable (recall that x 0 = 1). Solution 8 8x 0 Rewrite 8 with a variable factor. 0 The degree of the term.

Page 6 of 13 A linear expression is a sum (or difference) of terms in which the highest degree of any term is 1. Example: Determine if the expression 3x 4 is linear. To determine whether or not the expression is linear we must determine the degree of each term. Solution 3x and 4 List the two terms of the expression. 1 and 0 Identify the degree of 3x and 4 respectively. The expression is linear. Since the highest degree is 1, the expression is linear. Example: Determine whether the expression 3( x 4) 2( x 6) is linear. Since there are parenthesis, before determining the degree of each term, simplify the expression. Solution 3( x 5) 2( x 6) 3x 15 2x +12 Use of distributive property. x 3 x and 3 List the terms. 1 and 0 Identify the degree of x and 3 respectively. The expression is linear. Since the highest degree is 1, the expression is linear. Example: Determine if the expression 3x 2 4x + 7 is linear. To determine whether or not the expression is linear, determine the degree of each term. Solution 3x 2, 4x,and,7 List the three terms of the expression. 2, 1 and 0 Identify the degree of 3x 2, 4x, and, 7 respectively. The expression in not linear. The highest degree is greater than 1, so the expression is not linear.

Page 7 of 13 Solving Linear Equations A linear equation (in one variable x) is an equation that can be written in the form ax + b = 0. Two properties are used to solve linear equations. Addition Property of Equality: The same number (or algebraic expression) can be added to both sides of an equation without changing the equation s solution set. Multiplication Property of Equality: The same nonzero number may multiply both sides of an equation without changing the equation s solution set. Example: Solve the equation. x 4 = 7 This is a linear equation since the variable, x, is raised to the first power. Solve for x. Solution x 4 = 7 Add 4 to both sides. x 4 + 4 = 7 + 4 Simplify. x = 11 There is one solution. Check ( 11) 4 7 Example: Solve the equation. 5y = 40 = Substitute x =11 into the original equation and simplify the results. 7= 7 The statement is true so x = 11 is the solution. This is a linear equation since the variable, y, is raised to the first power. Solve for y Solution 5y = 40 5y 5 = 40 5 y = 8 Check 58 ( ) 40 Divide by 5. Note: Dividing by 5 is equivalent to multiplying by 1/5. There is one solution. x =11 results. The statement is true so x = 8 is the solution = Substitute into the original equation and simplify the

Page 8 of 13 Example: Solve the equation. 3x + 2 = 17 This is a linear equation since the variable, x, is raised to the first power. Solve for x. Solution 3x + 2 = 17 Subtract 2 from both sides. 3x + 2 2 = 17 2 3x = 15 3x 3 = 15 Divide both sides by 3. 3 x = 5 There is one solution. Check ( ) 35+ 2= 17 Substitute x = 5 into the original equation and simplify the 15 + 2 = 17 results. 17 = 17 The statement is true so x = 5 is the solution. The previous examples have all been in the most basic form. As the problems become more involved you may want to follow the procedure outlined below. Steps used to Solve a Linear Equation 1. Simplify the algebraic expressions on each side of the equation (remove grouping symbols and combine like terms). 2. Collect all the terms with the variable on one side of the equation and all the constants (numerical terms) on the other side. This isolates the variable. 3. Divide both sides by the coefficient of the variable. (Multiplying by the reciprocal of the coefficient of the variable gives the same result.) 4. Check or verify the solution by substituting the value into the original equation.

Page 9 of 13 Example: Solve the equation. 2( x 4) 5x + 2 = 3 This is a linear equation since the variable, x, is raised to the first power. Solve for x Solution 2( x 4) 5x + 2 = 3 Use the distributive property. 2x 8 5x + 2 = 3 3x 6 = 3 Collect the constants on one side, so add 6 to both sides. 3x 6 + 6 = 3+ 6 Simplify. 3x = 3 3x 3 = 3 Divide both sides by 3, the coefficient of x. 3 x = 1 There is one possible solution. Verification 2( x 4) 5x + 2 = 3 Original Equation 2( 1 4) 5( 1)+ 2 = 3 Substitute 1 for x in the original equation. 2( 5) 5( 1)+ 2 = 3 Simplify inside the parentheses. 10 + 5 + 2 = 3 Perform multiplication operations. 3 = 3 The statement is true so x = 1 is a solution. Example: Solve the equation. 5( 2z 8) 2 = 5( z 3)+ 3 (Verification will be omitted for this problem.) This is a linear equation since the variable, z, is raised to the first power. Solve for z. Solution 52z ( 8) 2 = 5( z 3)+ 3 10z 40 2 = 5x 15 + 3 10x 42 = 5x 12 10x 42 5x = 5x 12 5x 5x 42 = 12 5x 42 + 42 = 12 + 42 Use the distributive property. Subtract 5x from both sides to collect the variables on one side. Add 42 to both sides to collect the constants on the opposite side of the variables. 5x = 30 Divide both sides by 5. x = 6 Check the solution on your own.

Page 10 of 13 Example: Solve the equation. 3x 4 3 = x 2 + 2 (Verification will be omitted for this problem.) Solution This is a linear equation involving fractions. Begin by multiplying both sides of the equation by the least common denominator. 4 3x 4 3 = x 2 + 2 3x 4 3 = x 2 + 2 4 Multiply both sides by 4 4 3x 4 4 3 = 4 x 2 + 4 2 Use the distributive property. 3x 12 = 2x + 8 Simplify the fractions. 3x 12 2x = 2x + 8 2x Subtract 2x from both sides to collect the variables on one side. x 12 = 8 x 12 +12 = 8 +12 Add 12 to both sides to collect the constants on the opposite side of the variables. x = 20 Linear Equations can have one, none, or many solutions. Thus far all of our examples have had a single solution. It is also possible that a linear equation will have no solution or all real numbers as the solution. When solving an equation with no solution, the variable will be eliminated as you attempt to collect the variables on one side and the constants on the other side. This will result in a false statement, such as 5 = 8 or 3= 1. Thus, when you obtain a false statement there are no solutions to the linear equation. When solving an equation with all real numbers as the solution, you will eliminate the variable as you collect the variables on one side and the constants on the other side. Instead of a false statement you will obtain a true statement, such as 7 = 7. Thus, when you obtain a true statement, an identity, any real number will satisfy the linear equation.

Page 11 of 13 Example: Solve the equation. 2( 2x 1) 3 = 4( x + 2) This is a linear equation in the variable x. Solve for x. Solution 22x ( 1) 3 = 4( x + 2) 4x 2 3 = 4x + 8 4x 5 = 4x + 8 4x 5 4x = 4x + 8 4x 5 = 8 No Solution Use the distributive property. Subtract 4x from both sides. The variable is eliminated. The statement is false. To verify there is no solution pick any real number for x. Substitute the value into the original equation. Verification 2( 2( 5) 1) 3= 4( 5+ 2) Substitute 5 for x in the original equation and simplify the results. Choose a second x value like x = 0 and check again. 210 ( 1) 3= 47 ( ) 29 ( ) 28 The statement is false which verifies x = 5 is not a solution. Any value you choose would result in a false statement so there are no solutions. Example: Solve the equation. 5y 3( y 1)= 2( y + 3) 3 This is a linear equation in the variable y. Solve for y. Solution 5y 3( y 1)= 2( y + 3) 3 5y 3y + 3 = 2y + 6 3 2y + 3 = 2y + 3 2y + 3 2y = 2y + 3 2y Use the distributive property. Combine like terms Subtract 2y from each side. 3 = 3 The variable y is eliminated. The statement is true. y y Any real number will satisfy the equation. The { is a real number} solution is the set of real numbers. ( y ) To verify any real number is a solution pick any real number for x. Substitute the value into the original equation. This is shown for y = 4 on the next page.

Page 12 of 13 Verification ( ) ( ) ( ) 20 9 = 2( 7) 3 54 34 1= 24+ 3 3 Substitute 4 for y in the original equation and simplify the results. Choose a second y like y = 0 or y = 1 and check again. 11 = 11 The statement is true which verifies y = 4 is a solution. Any value you choose would result in a true statement so y is any real number. Graphs of Linear Functions The graph of a linear function f( x)= mx + b is a line with slope m and y-intercept b. This format is called slope-intercept form. It is also written y = mx +b. The slope of a line through the points ( x 1, y 1 ) and ( x 2, y 2 ) is given by the formula m = y 2 y 1. x 2 x 1 Example: Determine the slope of the line through the points ( 5, 8) and ( 13, 4) When substituting into the slope formula it does not matter which point is chosen to be ( x 1, y 1 ). In this example we will let ( x 1, y 1 ) be ( 13, 4) and we will let ( x 2, y 2 ) be ( 5, 8). Solution m = 8 ( 4) 5 13 m = 12 8 m = 3 2 Substitute into the slope formula. Perform the subtraction operation in the numerator and denominator. Reduce the fraction.

Page 13 of 13 Example: Write the linear equation 3x + 4y = 6 in slope-intercept form. y = mx+ b or f ( x) = mx+ b To write the equation in slope-intercept form solve the equation for y. Solution 3x + 4y = 6 4y = 3x + 6 y = 3x + 6 4 y = 3 4 x + 3 2 3 3 f ( x) = x+ 4 2 or Subtract 3x from both sides. Divide both sides by 4. To obtain slope intercept form, separate the right side into two terms and simplify fractions if possible. Slope intercept form using y = mx+ b Slope intercept form using function notation Example: Determine the slope intercept form for the equation of the line through the points ( 12, 6) and ( 9, 8). To find the equation of the line determine the slope, m, and the y-intercept, b. Solution 6 8 12 9 = 14 21 = 2 3 ( ) be ( 12, 6) and Determine the slope. Let x 2, y 2 ( x 1, y 1 ) be ( 9, 8). Remember to reduce the fraction. 8 = 2 3 ()+ 9 b Determine the y-intercept. Substitute the slope of 2 3 and the 8 = 6 + b 2 = b ( ) into the linear function formula. Solve for b. point 9, 8 Note: Either point can be used to find b. f()= x 2 3 x + 2 State the equation using function notation.