Graphing - Parallel and Perpendicular Lines
|
|
|
- Agatha Webb
- 9 years ago
- Views:
Transcription
1 . Graphing - Parallel and Perpendicular Lines Objective: Identify the equation of a line given a parallel or perpendicular line. There is an interesting connection between the slope of lines that are parallel and the slope of lines that are perpendicular (meet at a right angle). This is shown in the following example. Example 1. The above graph has two parallel lines. The slope of the top line is down, run, or. The slope of the bottom line is down, run as well, or. The above graph has two perpendicular lines. The slope of the flatter line is up, run or. The slope of the steeper line is down, runor. World View Note: Greek Mathematician Euclid lived around 00 BC and published a book titled, The Elements. In it is the famous parallel postulate which mathematicians have tried for years to drop from the list of postulates. The attempts have failed, yet all the work done has developed new types of geometries! As the above graphs illustrate, parallel lines have the same slope and perpendicular lines have opposite (one positive, one negative) reciprocal (flipped fraction) slopes. We can use these properties to make conclusions about parallel and perpendicular lines. Example. Find the slope of a line parallel to y x = 7. y x =7 To find the slope we will put equation in slope intercept form +x + x Add x to both sides 1
2 y = x +7 Putxterm first Divide each term by y = x + 7 The slope is the coefficient of x m = Slope of first line. Parallel lines have the same slope m = Example. Find the slope of a line perpendicular to x 4y = x 4y = To find slope we will put equation in slope intercept form x x Subtractx from both sides 4y = x + Putxterm first Divide each term by 4 y = 4 x 1 The slope is the coefficient of x m = 4 Slope of first lines. Perpendicular lines have opposite reciprocal slopes m = 4 Once we have a slope, it is possible to find the complete equation of the second line if we know one point on the second line. Example 4. Find the equation of a line through (4, ) and parallel to x y =6. x y =6 We first need slope of parallel line x x Subtract x from each side y = x +6 Putxterm first Divide each term by y = x Identify the slope, the coefficient of x
3 m = Parallel lines have the same slope m = We will use this slope and our point(4, ) y y 1 =m(x x 1 ) y ( )= (x 4) Plug this information into point slope formula Simplify signs y += (x 4) Example. Find the equation of the line through (6, 9) perpendicular to y = x + 4 in slope-intercept form. y = x + 4 Identify the slope, coefficient of x m = Perpendicular lines have opposite reciprocal slopes m = We will use this slope and our point(6, 9) y y 1 = m(x x 1 ) Plug this information into point slope formula y ( 9) = (x 6) Simplify signs y + 9= (x 6) Distribute slope y + 9= x 10 Solve for y 9 9 Subtract9from both sides y = x 19 Zero slopes and no slopes may seem like opposites (one is a horizontal line, one is a vertical line). Because a horizontal line is perpendicular to a vertical line we can say that no slope and zero slope are actually perpendicular slopes! Example 6.
4 Find the equation of the line through (, 4) perpendicular to x = x = This equation has no slope, a vertical line no slope Perpendicular line then would have a zero slope m = 0 Use this and our point (,4) y y 1 = m(x x 1 ) Plug this information into point slope formula y 4=0(x ) Distribute slope y 4=0 Solve for y Add 4 to each side y = 4 Being aware that to be perpendicular to a vertical line means we have a horizontal line through a y value of 4, thus we could have jumped from this point right to the solution, y =4. Beginning and Intermediate Algebra by Tyler Wallace is licensed under a Creative Commons Attribution.0 Unported License. ( 4
5 . Practice - Parallel and Perpendicular Lines Find the slope of a line parallel to each given line. 1) y = x +4 ) y = 4x ) x y = 4 7) 7x + y = ) y = x + 4) y = 10 x 6) 6x y = 0 8) x +4y = 8 Find the slope of a line perpendicular to each given line. 9) x = 11) y = 1 x 1) x y = 6 1) x +y =8 10) y = 1 x 1 1) y = 4 x 14) x y = 16) 8x y = 9 Write the point-slope form of the equation of the line described. 17) through:(, ), parallel to x =0 18) through: (, ), parallel to y = 7 x ) through:(, 4), parallel to y = 9 x 0) through: (1, 1), parallel to y = x + 4 1) through:(, ), parallel to y = 7 x +4 ) through:( 1,), parallel to y = x 1 ) through:(4, ), parallel to x =0 4) through:(1, 4), parallel to y = 7 x + ) through: (1, ), perpendicular to x + y =1 6) through:(1, ), perpendicular to x+y = 7) through:(, ), perpendicular to x + y =
6 8) through: (1, ), perpendicular to x+ y = 1 9) through:(4, ), perpendicular to 4x+ y = 0 0) through: (, ), perpendicular to x + 7y = 0 1) through:(, ) perpendicular to y x=0 ) through: (, ). perpendicular to y x =0 Write the slope-intercept form of the equation of the line described. ) through:(4, ), parallel to y = x 4) through:(,), parallel to y = x ) through:(,1), parallel to y = 4 x 1 6) through:( 4,0), parallel to y = x ) through:( 4, 1), parallel to y = 1 x+1 8) through:(, ), parallel to y = x 1 9) through:(, 1), parallel to y = 1 x 40) through:(, 4), parallel to y = x 41) through:(4, ), perpendicular to x + y = 1 4) through:(, ), perpendicular to x + y = 4 4) through:(, ), perpendicular tox=0 44) through:(, 1), perpendicular to x + y = 10 4) through:(,), perpendicular to x+ y = 46) through:(, ), perpendicular to x +y = 10 47) through:(4, ), perpendicular to x+y = 6 48) through:( 4,1), perpendicular to 4x +y = 9 Beginning and Intermediate Algebra by Tyler Wallace is licensed under a Creative Commons Attribution.0 Unported License. ( 6
7 . Answers - Parallel and Perpendicular Lines 1) ) ) 4 4) 10 ) 1 6) 6 7) 7 8) 4 9) 0 10) 11) 1) 4 1) 14) 1 1) 16) 8 17) x = 18) y = 7 (x ) 19) y 4= 9 (x ) 0) y +1= (x 1) 4 1) y = 7 (x ) ) y = (x +1) ) x = 4 4) y 4= 7 (x 1) ) y += (x 1) 6) y += (x 1) 7) y = 1 (x ) 8) y = (x 1) 9) y = 1 (x 4) 4 0) y += 7 (x +) 1) y += (x ) ) y = 1 (x + ) ) y = x + 4) y = x + ) y = 4 x 6) y = x 4 7) y = 1 x 8) y = x 9) y = 1 x 40) y = x 1 41) y =x 1 4) y =x +1 4) y = 44) y = x+1 4) y = x+ 46) y = x+ 47) y = x + 48) y = x Beginning and Intermediate Algebra by Tyler Wallace is licensed under a Creative Commons Attribution.0 Unported License. ( 7
Graphing - Slope-Intercept Form
2.3 Graphing - Slope-Intercept Form Objective: Give the equation of a line with a known slope and y-intercept. When graphing a line we found one method we could use is to make a table of values. However,
Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown.
Warm Up Write an equation given the slope and y-intercept Write an equation of the line shown. EXAMPLE 1 Write an equation given the slope and y-intercept From the graph, you can see that the slope is
Example 1. Rise 4. Run 6. 2 3 Our Solution
. Graphing - Slope Objective: Find the slope of a line given a graph or two points. As we graph lines, we will want to be able to identify different properties of the lines we graph. One of the most important
Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}
Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in
Section 1.1 Linear Equations: Slope and Equations of Lines
Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of
The Point-Slope Form
7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope
Chapter 4.1 Parallel Lines and Planes
Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about
Slope-Intercept Equation. Example
1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine
5. Equations of Lines: slope intercept & point slope
5. Equations of Lines: slope intercept & point slope Slope of the line m rise run Slope-Intercept Form m + b m is slope; b is -intercept Point-Slope Form m( + or m( Slope of parallel lines m m (slopes
Systems of Equations - Addition/Elimination
4.3 Systems of Equations - Addition/Elimination Objective: Solve systems of equations using the addition/elimination method. When solving systems we have found that graphing is very limited when solving
Solving Linear Equations - General Equations
1.3 Solving Linear Equations - General Equations Objective: Solve general linear equations with variables on both sides. Often as we are solving linear equations we will need to do some work to set them
Pre-Algebra - Integers
0.1 Pre-Algebra - Integers Objective: Add, Subtract, Multiply and Divide Positive and Negative Numbers. The ability to work comfortably with negative numbers is essential to success in algebra. For this
Inequalities - Absolute Value Inequalities
3.3 Inequalities - Absolute Value Inequalities Objective: Solve, graph and give interval notation for the solution to inequalities with absolute values. When an inequality has an absolute value we will
x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m =
Slope and Lines The slope of a line is a ratio that measures the incline of the line. As a result, the smaller the incline, the closer the slope is to zero and the steeper the incline, the farther the
Systems of Equations - Substitution
4.2 Systems of Equations - Substitution Objective: Solve systems of equations using substitution. When solving a system by graphing has several limitations. First, it requires the graph to be perfectly
Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.
1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points
Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year.
Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Goal The goal of the summer math program is to help students
EQUATIONS and INEQUALITIES
EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line
Graphing Linear Equations
Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope
Pre-Algebra - Order of Operations
0.3 Pre-Algebra - Order of Operations Objective: Evaluate expressions using the order of operations, including the use of absolute value. When simplifying expressions it is important that we simplify them
Radicals - Rational Exponents
8. Radicals - Rational Exponents Objective: Convert between radical notation and exponential notation and simplify expressions with rational exponents using the properties of exponents. When we simplify
Write the Equation of the Line Review
Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Objective: Students will be assessed on their ability to write the equation of a line in multiple methods. Connections
Quadratics - Build Quadratics From Roots
9.5 Quadratics - Build Quadratics From Roots Objective: Find a quadratic equation that has given roots using reverse factoring and reverse completing the square. Up to this point we have found the solutions
Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross
CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal
What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.
PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of
Writing the Equation of a Line in Slope-Intercept Form
Writing the Equation of a Line in Slope-Intercept Form Slope-Intercept Form y = mx + b Example 1: Give the equation of the line in slope-intercept form a. With y-intercept (0, 2) and slope -9 b. Passing
Algebra Cheat Sheets
Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts
What are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
Rational Expressions - Complex Fractions
7. Rational Epressions - Comple Fractions Objective: Simplify comple fractions by multiplying each term by the least common denominator. Comple fractions have fractions in either the numerator, or denominator,
PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71. Applications. F = mc + b.
PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71 Applications The formula y = mx + b sometimes appears with different symbols. For example, instead of x, we could use the letter C.
Radicals - Rationalize Denominators
8. Radicals - Rationalize Denominators Objective: Rationalize the denominators of radical expressions. It is considered bad practice to have a radical in the denominator of a fraction. When this happens
Unit 5: Coordinate Geometry Practice Test
Unit 5: Coordinate Geometry Practice Test Math 10 Common Name: Block: Please initial this box to indicate you carefully read over your test and checked your work for simple mistakes. What I can do in this
MATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
HIBBING COMMUNITY COLLEGE COURSE OUTLINE
HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,
Big Bend Community College. Beginning Algebra MPC 095. Lab Notebook
Big Bend Community College Beginning Algebra MPC 095 Lab Notebook Beginning Algebra Lab Notebook by Tyler Wallace is licensed under a Creative Commons Attribution 3.0 Unported License. Permissions beyond
Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan
Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan I. Topic: Slope-Intercept Form II. III. Goals and Objectives: A. The student will write an equation of a line given information about its graph.
Factoring - Solve by Factoring
6.7 Factoring - Solve by Factoring Objective: Solve quadratic equation by factoring and using the zero product rule. When solving linear equations such as 2x 5 = 21 we can solve for the variable directly
Answers to Basic Algebra Review
Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract
Lyman Memorial High School. Pre-Calculus Prerequisite Packet. Name:
Lyman Memorial High School Pre-Calculus Prerequisite Packet Name: Dear Pre-Calculus Students, Within this packet you will find mathematical concepts and skills covered in Algebra I, II and Geometry. These
Inequalities - Solve and Graph Inequalities
3.1 Inequalities - Solve and Graph Inequalities Objective: Solve, graph, and give interval notation for the solution to linear inequalities. When we have an equation such as x = 4 we have a specific value
Slope-Intercept Form and Point-Slope Form
Slope-Intercept Form and Point-Slope Form In this section we will be discussing Slope-Intercept Form and the Point-Slope Form of a line. We will also discuss how to graph using the Slope-Intercept Form.
Vocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
Unit 1: Integers and Fractions
Unit 1: Integers and Fractions No Calculators!!! Order Pages (All in CC7 Vol. 1) 3-1 Integers & Absolute Value 191-194, 203-206, 195-198, 207-210 3-2 Add Integers 3-3 Subtract Integers 215-222 3-4 Multiply
Algebra 2 PreAP. Name Period
Algebra 2 PreAP Name Period IMPORTANT INSTRUCTIONS FOR STUDENTS!!! We understand that students come to Algebra II with different strengths and needs. For this reason, students have options for completing
A synonym is a word that has the same or almost the same definition of
Slope-Intercept Form Determining the Rate of Change and y-intercept Learning Goals In this lesson, you will: Graph lines using the slope and y-intercept. Calculate the y-intercept of a line when given
Radicals - Multiply and Divide Radicals
8. Radicals - Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals
Math 113 Review for Exam I
Math 113 Review for Exam I Section 1.1 Cartesian Coordinate System, Slope, & Equation of a Line (1.) Rectangular or Cartesian Coordinate System You should be able to label the quadrants in the rectangular
Homework #1 Solutions
Homework #1 Solutions Problems Section 1.1: 8, 10, 12, 14, 16 Section 1.2: 2, 8, 10, 12, 16, 24, 26 Extra Problems #1 and #2 1.1.8. Find f (5) if f (x) = 10x x 2. Solution: Setting x = 5, f (5) = 10(5)
Solving Linear Equations - Fractions
1.4 Solving Linear Equations - Fractions Objective: Solve linear equations with rational coefficients by multiplying by the least common denominator to clear the fractions. Often when solving linear equations
Mathematics Placement
Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.
REVIEW OF ANALYTIC GEOMETRY
REVIEW OF ANALYTIC GEOMETRY The points in a plane can be identified with ordered pairs of real numbers. We start b drawing two perpendicular coordinate lines that intersect at the origin O on each line.
Rational Expressions - Proportions
.6 Rational Expressions - Proportions Objective: Solve proportions using the cross product and use proportions to solve application problems When two fractions are equal, they are called a proportion.
CHAPTER 1 Linear Equations
CHAPTER 1 Linear Equations 1.1. Lines The rectangular coordinate system is also called the Cartesian plane. It is formed by two real number lines, the horizontal axis or x-axis, and the vertical axis or
Solving Equations Involving Parallel and Perpendicular Lines Examples
Solving Equations Involving Parallel and Perpendicular Lines Examples. The graphs of y = x, y = x, and y = x + are lines that have the same slope. They are parallel lines. Definition of Parallel Lines
a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a
Bellwork a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a c.) Find the slope of the line perpendicular to part b or a May 8 7:30 AM 1 Day 1 I.
IV. ALGEBRAIC CONCEPTS
IV. ALGEBRAIC CONCEPTS Algebra is the language of mathematics. Much of the observable world can be characterized as having patterned regularity where a change in one quantity results in changes in other
Functions - Exponential Functions
0.4 Functions - Exponential Functions Objective: Solve exponential equations by finding a common base. As our study of algebra gets more advanced we begin to study more involved functions. One pair of
Intro to Linear Equations Algebra 6.0
Intro to Linear Equations Algebra 6.0 Linear Equations: y x 7 y x 5 x y Linear Equations generally contain two variables: x and y. In a linear equation, y is called the dependent variable and x is the
Florida Algebra 1 End-of-Course Assessment Item Bank, Polk County School District
Benchmark: MA.912.A.2.3; Describe the concept of a function, use function notation, determine whether a given relation is a function, and link equations to functions. Also assesses MA.912.A.2.13; Solve
Algebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
Florida Math for College Readiness
Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness
Lecture 9: Lines. m = y 2 y 1 x 2 x 1
Lecture 9: Lines If we have two distinct points in the Cartesian plane, there is a unique line which passes through the two points. We can construct it by joining the points with a straight edge and extending
Geometry 1. Unit 3: Perpendicular and Parallel Lines
Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples
Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test
Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action
Number Sense and Operations
Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents
Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper
Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic
Systems of Equations - Three Variables
4.4 Systems of Equations - Three Variables Objective: Solve systems of equations with three variables using addition/elimination. Solving systems of equations with 3 variables is very similar to how we
A vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
Review of Intermediate Algebra Content
Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6
Factoring - Factoring Special Products
6.5 Factoring - Factoring Special Products Objective: Identify and factor special products including a difference of squares, perfect squares, and sum and difference of cubes. When factoring there are
Years after 2000. US Student to Teacher Ratio 0 16.048 1 15.893 2 15.900 3 15.900 4 15.800 5 15.657 6 15.540
To complete this technology assignment, you should already have created a scatter plot for your data on your calculator and/or in Excel. You could do this with any two columns of data, but for demonstration
How To Understand And Solve Algebraic Equations
College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides
Sample Problems. Practice Problems
Lecture Notes Circles - Part page Sample Problems. Find an equation for the circle centered at (; ) with radius r = units.. Graph the equation + + = ( ).. Consider the circle ( ) + ( + ) =. Find all points
Indiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
Overview. Observations. Activities. Chapter 3: Linear Functions Linear Functions: Slope-Intercept Form
Name Date Linear Functions: Slope-Intercept Form Student Worksheet Overview The Overview introduces the topics covered in Observations and Activities. Scroll through the Overview using " (! to review,
The program also provides supplemental modules on topics in geometry and probability and statistics.
Algebra 1 Course Overview Students develop algebraic fluency by learning the skills needed to solve equations and perform important manipulations with numbers, variables, equations, and inequalities. Students
COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2
COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level This study guide is for students trying to test into College Algebra. There are three levels of math study guides. 1. If x and y 1, what
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,
MTH124: Honors Algebra I
MTH124: Honors Algebra I This course prepares students for more advanced courses while they develop algebraic fluency, learn the skills needed to solve equations, and perform manipulations with numbers,
Higher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
Rational Expressions - Least Common Denominators
7.3 Rational Expressions - Least Common Denominators Objective: Idenfity the least common denominator and build up denominators to match this common denominator. As with fractions, the least common denominator
Assessment Anchors and Eligible Content
M07.A-N The Number System M07.A-N.1 M07.A-N.1.1 DESCRIPTOR Assessment Anchors and Eligible Content Aligned to the Grade 7 Pennsylvania Core Standards Reporting Category Apply and extend previous understandings
1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved.
1.6 A LIBRARY OF PARENT FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal
Students will be able to simplify and evaluate numerical and variable expressions using appropriate properties and order of operations.
Outcome 1: (Introduction to Algebra) Skills/Content 1. Simplify numerical expressions: a). Use order of operations b). Use exponents Students will be able to simplify and evaluate numerical and variable
Parallel and Perpendicular Lines
Trinity University Digital Commons @ Trinity Understanding by Design: Complete Collection Understanding by Design Summer 6-12-2014 Parallel and Perpendicular Lines Danielle R. Kendrick Trinity University,
CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide
Curriculum Map/Pacing Guide page 1 of 14 Quarter I start (CP & HN) 170 96 Unit 1: Number Sense and Operations 24 11 Totals Always Include 2 blocks for Review & Test Operating with Real Numbers: How are
Procedure for Graphing Polynomial Functions
Procedure for Graphing Polynomial Functions P(x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 To graph P(x): As an example, we will examine the following polynomial function: P(x) = 2x 3 3x 2 23x + 12 1. Determine
TSI College Level Math Practice Test
TSI College Level Math Practice Test Tutorial Services Mission del Paso Campus. Factor the Following Polynomials 4 a. 6 8 b. c. 7 d. ab + a + b + 6 e. 9 f. 6 9. Perform the indicated operation a. ( +7y)
Worksheet A5: Slope Intercept Form
Name Date Worksheet A5: Slope Intercept Form Find the Slope of each line below 1 3 Y - - - - - - - - - - Graph the lines containing the point below, then find their slopes from counting on the graph!.
Review of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools
EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM
. Equations of Lines in Slope-Intercept and Standard Form ( ) 8 In this Slope-Intercept Form Standard Form section Using Slope-Intercept Form for Graphing Writing the Equation for a Line Applications (0,
Lesson 1: Introducing Circles
IRLES N VOLUME Lesson 1: Introducing ircles ommon ore Georgia Performance Standards M9 12.G..1 M9 12.G..2 Essential Questions 1. Why are all circles similar? 2. What are the relationships among inscribed
Make sure you look at the reminders or examples before each set of problems to jog your memory! Solve
Name Date Make sure you look at the reminders or examples before each set of problems to jog your memory! I. Solving Linear Equations 1. Eliminate parentheses. Combine like terms 3. Eliminate terms by
Click on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is
Factoring - Greatest Common Factor
6.1 Factoring - Greatest Common Factor Objective: Find the greatest common factor of a polynomial and factor it out of the expression. The opposite of multiplying polynomials together is factoring polynomials.
Factoring - Grouping
6.2 Factoring - Grouping Objective: Factor polynomials with four terms using grouping. The first thing we will always do when factoring is try to factor out a GCF. This GCF is often a monomial like in
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
