Aktivitäten des IAP im Bereich Fasern und Faserlaser



Similar documents
LIEKKI. Optical Fibers. Features. Applications

Infrared Fiber Lasers

Fiber Optic Specifications

Fiber optic communication

Radiation-Resistant Single-Mode Optical Fibers

Fundamentals of Optical Communications

Limiting factors in fiber optic transmissions

Ti:Sapphire Lasers. Tyler Bowman. April 23, 2015

Introduction to Optical Link Design

FIBER-OPTIC CABLES LWL-KABEL

DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES)

SINGLEMODE OR MULTIMODE FIBER OPTIC PATCHCORDS

Optical fiber basics in a nutshell

Integrated optics Er-Yb amplifier with potassium ion-exchanged glass waveguides

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

Photonic components for signal routing in optical networks on chip

Fiber Optics: Fiber Basics

Optical Fibers Fiber Optic Cables Indoor/Outdoor

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.

Integrated Photonic. Electronic. Optics. Optoelettronics. Integrated Photonic - G. Breglio L1. Quantum Mechanics Materials Science Nano/Bio-photonic

FIBRE OPTICS & LASERS

Corning Specialty Fiber. Product Information Sheets

High Brightness Fiber Coupled Pump Laser Development

OFS AllWave Zero Water Peak (ZWP) single-mode

Un-cooled Multimode Pump Laser Module for Telecom Applications

A More Efficient Way to De-shelve 137 Ba +

Infrared Optical Fiber. Datasheets and Price list. JTIngram Sales and Marketing

Single Mode Fiber Lasers

HIGH POWER FREE SPACE AND FIBER PIGTAILED ISOLATORS

Lecture 3: Fibre Optics

Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing

High power fiber lasers and amplifiers

MINIMIZING PMD IN CABLED FIBERS. Critical for Current and Future Network Applications

OLED display. Ying Cao

Wavelength stabilized high-power diode laser modules

Simulation of Gaussian Pulses Propagation Through Single Mode Optical Fiber Using MATLAB . MATLAB

Fiber Optics. Light switching Light transportation Light distribution. The Quality Connection

Femtosecond Laser Micromachining

Avalanche Photodiodes: A User's Guide

RAY TRACING UNIFIED FIELD TRACING

Efficiency, Dispersion and Straylight Performance Tests of Immersed Gratings for High Resolution Spectroscopy in the Near Infra-red

Group velocity dispersion (GVD) is one of the key characteristics of optical fibers. It is thus important to be able to accurately

Fiber Optics: Engineering from Global to Nanometer Dimensions

Module 13 : Measurements on Fiber Optic Systems

Comparative optical study and 2 m laser performance of the Tm3+ doped oxyde crystals : Y3Al5O12, YAlO3, Gd3Ga5O12, Y2SiO5, SrY4(SiO4)3O

How do single crystals differ from polycrystalline samples? Why would one go to the effort of growing a single crystal?

Surface plasmon nanophotonics: optics below the diffraction limit

Laser Concepts for Industrial Thin Film PV Production

A Guide to Acousto-Optic Modulators

FIBER OPTIC ISOLATORS

ESPECIFICACIÓN DE PRODUCTO

Service Description blizznetdarkfiber

FIBER LASER STRAIN SENSOR DEVICE

Integrated disruptive components for 2 µm fibre LAsers

DOUBLE STAINLESS STEEL TUBE DTS FIBER OPTIC CABLE FTSF-FSUTS(DTS)

1. Introduction. 2. Concept. 3. Assumptions. 5. Conclusions

Fiber Optics. Baldemar Ibarra-Escamilla. Instituto Nacional de Astrofísica, Óptica y Electrónica

Cisco - Calculating the Maximum Attenuation for Optical Fiber Links

High Power Fiber Laser Technology

Defense & Security Symposium 2004, Kigre Er:glass Publication #144. Eye-Safe Erbium Glass Laser Transmitter Study Q-Switched with Cobalt Spinel

Optical Power Meter. Specification & User Manual

Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff

PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER

Functionalized optical fiber tips in fused silica and mid-infrared MIR-fibers for spectroscopy and medical application

Volumes. Goal: Drive optical to high volumes and low costs

100-W, 105-µm, 0.15NA Fiber Coupled Laser Diode Module

Microbend evaluation of selected G652D & G657 fibers and ribbons before cabling

The Conversion Technology Experts. Fiber Optics Basics

Important Types of Lasers

Four Ways To Test Installed Fiber Optic Cables And How The Results Will Differ With Each Method

École Supérieure d'optique

ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems

Quasi-Continuous Wave (CW) UV Laser Xcyte Series

High Power and Low Coherence Fibre-optic Source for Incoherent Photonic Signal Processing

Dispersion in Optical Fibers

How To Read A Fiber Optic Sensor

Real-world applications of intense light matter interaction beyond the scope of classical micromachining.

GaAs-IR-Lumineszenzdioden GaAs Infrared Emitters Lead (Pb) Free Product - RoHS Compliant SFH 415

Novel inkjettable copper ink utilizing processing temperatures under 100 degrees C without the need of inert atmosphere

Development and Commissioning of the Orion Laser Facility

High power laser glass and its application. Lili Hu Shanghai Institute of Optics and Fine Mechanics,CAS, China

Dispersion penalty test 1550 Serial

OPTICAL FIBER CABLES

Oberflächenbearbeitung durch reaktive Ionenstrahlen

Polymer Coated Fiber Cable (PCF)

Finite Difference Time Domain and BPM: Flexible Algorithm Selection Technology

Optical Communications

Lead-Free Universal Solders for Optical and MEMS Packaging

CHAPTER 4 MULTI-WAVELENGTH BRILLOUIN BISMUTH /ERBIUM FIBER LASER. The telecommunications industry has tremendous progress for capacity over the

Attaching the PA-A1-ATM Interface Cables

Incoherent beam combining using stimulated Brillouin scattering in multimode fibers

Optical transmission systems over Plastic Optical Fiber (POF) at high bit rate

The study of structural and optical properties of TiO 2 :Tb thin films

GLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics

Tunable fiber polarizing filter based on a single-hole-infiltrated polarization maintaining photonic crystal fiber

An Overview of Macrobending and Microbending of Optical Fibers

Raman and AFM characterization of carbon nanotube polymer composites Illia Dobryden

NANO SILICON DOTS EMBEDDED SIO 2 /SIO 2 MULTILAYERS FOR PV HIGH EFFICIENCY APPLICATION

Definition and Characterisation of UV Written Structures

Transcription:

Aktivitäten des IAP im Bereich Fasern und Faserlaser V. Romano Institutfür AngewandtePhysik, Universität Bern, Sidlerstr. 5, CH-3012 Bern, Switzerland 1. Das Team 2. Motivation: Grenzen der Standardfaser 3. Rapid Fiber Prototyping und Beispiele Zusammenarbeit mit der Industrie (KTI), SATW, SNSF, NCCR QP 1. The IAP fiber team V. Romano Th. Feurer W. Lüthy L. Di Labio M. Neff C. Pedrido Myrtha Hässig S. Pilz P. Marty L. Petraviciute Rolf Hasler R. Renner-Erny F. Müller

2.1 Standard-Faser 8 Aktivieren des Coresdurch eine seltene Erde (z. B. Er 3+ od.yb 3+ ) -> Faserlaser Sehr gute Dämpfungswerte (ca. 0.2 db / km) 2.2 Limits Kleiner Kerndurchmesser: Hohe Intensitäten; Hohe Energieflussdichten; Kleine extrahierbareenergie; Dispersion: gegeben v.a. durch das Material Limite für traditionelle SM Faser: 100 W (CW) Erhöhung des Coredurchmessers: Strahlung wird multimode (schlechter fokussierbar)

2.3 Damage Threshold of fused Silica for pulsed operation Oberfläche Bulk Fiber mit 8µm core: 4.8mJ/Puls 4.2mJ/Puls 3.4mJ/Puls 1.1mJ/Puls (W. Torruellas et al, Photonics West 2006) 2.4 Breakingthe limits with new fiber concepts: a) photonic bandgap fibers

2.5 New fiber concept: solid core PCF Claddinghas lowerindexthan corebyairfraction Core size canbeupscaled(almost) arbitrarilybyappropriate choice of microstructure (allows singlemode guidance for verylarge cores) 3. New productiontechniques -> Rapid Fiber Manufacturing Sol Gel Granulated silica method (patented bysilitecsa, Boudry)

3.1 Productionof Sol-Gelpreforms Standard technique:mcvd Sol-Gel technique at IAP: TEOS C 8 H 20 O 4 Si RE 3+ Cl 3 Al Cl 3 Ti Cl 3 source material active ion prevents clustering control of refractive index annealing 1000 C collapse tube to rod drawn to fibre 3.2 Tube coatingand collapsing heating

3.3 Yb 3+ -dopedsol-gelfiber Coating of tube with highly viscous sol (3 x 2.7 µm ) Vitrification after each step Drawing at high temperature Lifetime 764 ± 4 μs (20 cm, 908 nm) Losses 0.28 dbm -1 @ 632.8 nm Losses 0.03 dbm -1 @ laser wavelength Numerical aperture: 0.099 Diameter fiber 180 μm Diameter core 8.5 μm Transmission T [%] 70 65 60 55 915 nm 50 974 nm 45 860 880 900 920 940 960 980 1000 Wavelength l [nm] 2500 2000 1500 Pump 1000 908 nm Intensity I [a.u.] 500 0 900 950 1000 1050 1100 Wavelength l [nm] Laser emission at 1080 nm and 1088 nm Fiber length 65 cm 64 % slope eff. 3.4 Manufacturing of Granulated Silica Preforms Nd 2 O 3 SiO 2 100 µm 800 µm Al 2 O 3 800 µm

3.4 a) Fiber Laser set-up Filters Mirror T 808nm =1.3 % T 1064nm = 2.3 % Mirror T 808nm =94.11 % T 1064nm = 0.31 % 3.5 Broadband light source NIR fluorescence spectra of the single-core multiply doped fibre when pumped with the Ti:sapphire laser at 804 nm (dashed curve) and the single-mode single stripe laser diode at 811 nm (solid curve). An oxide mixture of Nd 3+ (0.1 at. %), Ho 3+ (0.3 at. %), Er 3+ (0.1 at. %), Tm 3+ (0.3 at. %), Yb 3+ (0.2 at. %), Al 3+ (7 at. %), and silica is used to fabricate a single-core fibre L. Di Labio, 2008

3.6 Sand Technology for PCF Depending on size, sand-based preforms are: Vitrified and drawn directly in one step Vitrified and drawn in two steps First vitrified plus stretched and then drawn (two steps) 3.7 Large corepcf Microstructured fibers can take profit of the method: stack and draw + filling interstitials with granulated silica Mixed technique : capillaries from tubes, interstitials filled with granulated silica Pure silica tubes and core rod Theory: 5 hexagonal rings 1 central defect Core diameter: 23 um Granulated SiO 2

3.8 Fromthepreformto the fiber First trials (2005 / 2006): 3.9 Success at last: Large core PCF Fiber diameter: 180mm Core diameter (d): 24.8 mm Hole diameter: 7.4 mm Pitch: 16.1 mm d/pitch: 0.46 Single-mode @ 1064 nm Multi-mode @ 808 nm Attenuation [db/km] 180mm Attenuation [db/km] 250.00 200.00 150.00 100.00 50.00 0.00 500 700 900 1100 1300 1500 1700 1900 Wavelength [nm]

3.10 Polarization maintainingpcf Fiber diam.: Core: Hole diameter: 125.0 mm ~4 mm x 6 mm 1.5 mm Losses [/db/km] Losses 100 90 80 70 60 50 40 30 20 10 0 450 500 550 600 650 700 750 800 Wavelength [/nm] Flat spectrum in vis. Polarization maintaining (almost) singlemode in complete range 3.11 Next steps: MOPA with large core fibers All fiber MOPA (Master Oscillator / Power Amplifier) MO (Master Oscillator) PA (Power Amplifier) Temporal pulse shaping adapted to application is done here at low power and based on reliable and well known technology High peak power (>kw) is generated in the amplifier based on Rare Earth doped Photonic Crystal Fiber Technology. One high power design will try to cover as many pulse length and repetition rate regimes as possible.

3.12 Femtosecond Yb 3+ Fiber laser < 100 fs 50 MHz Verst: 23dB 0.5 W IAP 2007, F. Müller 3.13 Wellenlängennormale Realisation von Wellenlängennormalen mittels Gas gefüllten Hollow Core Photonic Crystal Fiber(HCPCF). Struktur einer Hollow Core Photonic Crystal Fiber (HCPCF). Anwendungsgebiete: -Metrologie -Telekommunikation P. Marty, 2008

Conclusions Team: 13 people involved at IAP (growing) Rapid Fiber Prototypingfor implementation of new fiber concepts Several PCFs have already been drawn Next steps: applications Hollow core fibers (Photonic Bandgap Fibers)