High. Thickness. epitaxial Silicon. Carbide Detectors. INFN - Gruppo V 2009



Similar documents
Silicon Drift Detector Product Brochure Update 2013

Solid State Detectors = Semi-Conductor based Detectors

Characteristics of blocking voltage for power 4H-SiC BJTs with mesa edge termination

organismos internacionales

SiC activities at Linköping University

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier

CONTENTS. Preface Energy bands of a crystal (intuitive approach)

Indirect X-ray photon counting image sensor with 27T pixels and 15 electrons RMS accurate threshold

Silicon Sensors for CMS Tracker at High-Luminosity Environment - Challenges in particle detection -

BPW34. Silicon PIN Photodiode VISHAY. Vishay Semiconductors

Nuclear Weapons and Material Security (WMS) Team Program Review WMS2013

Chip Diode Application Note

Technology Developments Towars Silicon Photonics Integration

Bob York. Transistor Basics - MOSFETs

Gamma and X-Ray Detection

Advantages of SiC MOSFETs in Power Applications

PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages

Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1

ISTITUTO NAZIONALE DI FISICA NUCLEARE

Application Note 58 Crystal Considerations with Dallas Real Time Clocks

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

PoS(PhotoDet 2012)068

Semiconductors, diodes, transistors

ST SiC MOSFET Evolution in Power Electronics

Power Dissipation Considerations in High Precision Vishay Sfernice Thin Film Chips Resistors and Arrays (P, PRA etc.) (High Temperature Applications)

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory

Evolution and Prospect of Single-Photon

LM139/LM239/LM339/LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators

FEATURE ARTICLE. Figure 1: Current vs. Forward Voltage Curves for Silicon Schottky Diodes with High, Medium, Low and ZBD Barrier Heights

Solar Photovoltaic (PV) Cells

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication


High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures

Characteristic and use

Digital Integrated Circuit (IC) Layout and Design - Week 3, Lecture 5

Application Notes FREQUENCY LINEAR TUNING VARACTORS FREQUENCY LINEAR TUNING VARACTORS THE DEFINITION OF S (RELATIVE SENSITIVITY)

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Op Amp Circuit Collection

Silicon PIN Photodiode

Silicon drift detector the key to new experiments

Avalanche Photodiodes: A User's Guide

COMPARISON OF WIDE-BANDGAP SEMICONDUCTORS FOR POWER ELECTRONICS APPLICATIONS

Diodes and Transistors

Nanoscale Resolution Options for Optical Localization Techniques. C. Boit TU Berlin Chair of Semiconductor Devices

Low Noise, Matched Dual PNP Transistor MAT03

Supertex inc. HV Channel High Voltage Amplifier Array HV256. Features. General Description. Applications. Typical Application Circuit

5.11 THE JUNCTION FIELD-EFFECT TRANSISTOR (JFET)

Application Note 58 Crystal Considerations for Dallas Real-Time Clocks

K817P/ K827PH/ K847PH. Optocoupler with Phototransistor Output. Vishay Semiconductors. Description. Applications. Features.

How To Make Hard Xray Pixel Detectors For Hard X-Ray Astrophysics

Broadband THz Generation from Photoconductive Antenna

Substrate maturity and readiness in large volume to support mass adoption of ULP FDSOI platforms. SOI Consortium Conference Tokyo 2016

Advanced VLSI Design CMOS Processing Technology

Solid-State Physics: The Theory of Semiconductors (Ch ) SteveSekula, 30 March 2010 (created 29 March 2010)


Types of Epitaxy. Homoepitaxy. Heteroepitaxy

SMA Compound Semiconductors Lecture 2 - Metal-Semiconductor Junctions - Outline Introduction

How to Design and Build a Building Network

To meet the requirements of demanding new

AN3022. Establishing the Minimum Reverse Bias for a PIN Diode in a High-Power Switch. 1. Introduction. Rev. V2

Contamination. Cleanroom. Cleanroom for micro and nano fabrication. Particle Contamination and Yield in Semiconductors.

HA-5104/883. Low Noise, High Performance, Quad Operational Amplifier. Features. Description. Applications. Ordering Information. Pinout.

Dose enhancement near metal electrodes in diamond X- ray detectors. A. Lohstroh*, and D. Alamoudi

Yrd. Doç. Dr. Aytaç Gören

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

OptiMOS Power-Transistor Product Summary

From Space to Earth: CPV Concentrator Photovoltaics. Dr. Gerhard Strobl. Milano, 07 May 2013

Mass production, R&D Failure analysis. Fault site pin-pointing (EM, OBIRCH, FIB, etc. ) Bottleneck Physical science analysis (SEM, TEM, Auger, etc.

ENEE 313, Spr 09 Midterm II Solution

LF442 Dual Low Power JFET Input Operational Amplifier

NBB-402. RoHS Compliant & Pb-Free Product. Typical Applications

Composants actifs ultra rapides pour les composants et interconnexions optiques intégrées

High-resolution imaging 1D and 2D solid-state detector systems

MOS (metal-oxidesemiconductor) 李 2003/12/19

Cree PV Inverter Tops 1kW/kg with All-SiC Design

ESRF Upgrade Phase II: le nuove opportunitá per le linee da magnete curvante

Micro-Power Generation

The Physics of Energy sources Renewable sources of energy. Solar Energy

European bespoke wafer processing & development solutions for : Grinding, CMP, Edge Treatment, Wafer Bonding, Dicing and Cleaning

Small Signal Fast Switching Diode

Lezioni di Tecnologie e Materiali per l Elettronica

Semiconductor Technology

Electronics GRETINA Project

PIN and Limiter Diodes

Evaluation of combined EBIC/FIB methods for solar cell characterization

Silicon Schottky Barrier Diode Bondable Chips and Beam Leads

Silicon PIN Photodiode

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

Solar Cell Parameters and Equivalent Circuit

OptiMOS 3 Power-Transistor

A.Besson, IPHC-Strasbourg

Silicon Carbide market update: From discrete devices to modules

Optocoupler, Phototransistor Output, with Base Connection

Copyright 2000 IEEE. Reprinted from IEEE MTT-S International Microwave Symposium 2000

Direct Attach DA700 LEDs CxxxDA700-Sxx000

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor

High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules

Four quadrant diode front end module for the Virgo Linear Alignment 3/ 30 mw, plus configuration

LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier

Optocoupler, Photodarlington Output, Dual Channel, SOIC-8 Package

Transcription:

INFN - Gruppo V Proposta di nuovo esperimento per il triennio 2007-2009 2009 High Thickness epitaxial Silicon Carbide Detectors Sezioni INFN di Milano - Bologna - Catania

Outline A general introduction on Silicon Carbide SiC detectors: International R&D INFN Research Activity on SiC Radiation Detectors HiTSiC Proposal

A General Introduction on Silicon Carbide

SiC politypes 3C-SiC (E G = 2.2 ev) 4H-SiC (E G = 3.3 ev) 6H-SiC (E G = 3 ev)

Wide Bandgap E G =3.2 ev Room & High temperature operation 4 3 2 1 SiC properties x 10 x 2.5 x 2 Si GaAs 4H-SiC High saturation velocity v S = 200 µm/ns High frequency/speed devices 0 E g (ev) E c (MV/cm) λ th (W/cmK) V s (10 7 cm/s) High Critical Field E C = 2 MV/cm High Voltage devices High thermal conductivity High Power devices

High Performance SiC Electron Devices...a reality

SiC High Performance Electron Devices The highest V B diode Kansai corp. Power MOSFET: 5 kv - 88 mω cm 2 Reverse Voltage [kv] V B = 19 kv Current [ na ] Rockwell International High Power X-Band MESFET f T f=14.5 T GHz, GHz, f MAX f =38 MAX =38 GHz GHz I Dmax I = Dmax 400 400 ma, ma, V DSmax =150V DSmax =150V Gain: Gain: 16 16 db db @ 2 GHz GHz

Silicon Carbide Technology a continuous progress

Power Device Performance SiC vs. Si 4H-SiC MOSFET 5 kv - 88 mω cm 2 Kansay Co (Japan)- CREE Inc. (USA) 4H-SiC BJT 1.8 kv - 11 mω cm 2 CREE Inc. (USA) 4H-SiC JFET 600 V - 5 mω cm 2 Rockwell (USA)

April 2001: first commercial SiC Diode

2006: SiC Ultrafast Power Schottky Diodes http://www.infineon.com http://www.cree.com

2006: SiC Power MESFET s

12 kva SiC Inverter http://www.kepco.co.jp/english/rd/topics/topics_3.html

June 2006: R&D investments

Conclusions on SiC status SiC knowledge and technology is continuously growing Industrial R&D are running SiC power device gives better performance than Si counterpart High performance SiC diodes & MESFET s on market Material quality is continuously improving

Silicon Carbide Radiation Detectors Motivation International R&D INFN R&D

Wide Bandgap High Schottky / pn barriers Low thermally generated currents No cooling required High temperature Silicon Carbide Properties benefits for radiation detectors 4 3 2 3.2 ev 2 MV/cm 3.8 W/cmK Si GaAs 4H-SiC 200 µm/ns 1 0 High Critical Field High Bias Voltage Reduced Soft Breakdown No guard rings necessity E g (ev) E c (MV/cm) High thermal conductivity Easy T control FEE cooling λ th (W/cmK) V s (10 7 cm/s) High saturation velocity short transit time Fast signals Low trapping probability

SiC Detectors European Research Activity

Westinghouse SiC Detectors CREE Inc. Reactor core SiC detector Dulloo, Ruddy et al., IEEE Trans. Nucl. Science 46, 1999

Naval Research Laboratory Brookhaven National Laboratory CREE Inc.

INFN Research Activity on SiC Radiation Detectors

INFN SiCPOS experiment (2002-2005) Pad detectors Microstrips SiC wafers: Pixel detectors SiC Technology:

Results: Detector Leakage Current Density Schottky contact - Au n - epilayer 5x10 14-70 µm n+ buffer 1 µm n+ substrate - 320 µm ohmic contact - Ti/Pt/Au Current density [ A / cm 2 ] 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 Room Temperature CdTe CdZnTe Silicon 1000 SI LEC GaAs (pn) VPE GaAs (SJ) SiC @ +127 C SiC 10-13 0.1 1 10 100 Mean electric field [ kv / cm ] 10-5 Si / GaAs 1 na/cm 2 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 SiC 1 pa/cm 2

SiC Pixels Detectors Performance RT Leakage Current vs. Bias Pixel Reverse Current 10 fa 1 fa ENC PW 300 K 27 C 400 x 400 µm 2 PIXEL 200 x 200 µm 2 PIXEL Reverse Voltage [ V ] < 10 fa < 1 fa The Front-End Issue! 0.1 fa 2 75 100 The Front-End 150 200Issue! 1 [ fa] τ [ s] [ e r. m..] = 0.065 I peak µ s Number of pixels 8 7 6 5 4 3 0.3 ± 0.1 e - 0.6 ± 0.1 e - 0 0.0 0.2 0.4 0.6 0.8 1.0 Pixel Noise [ electrons r.m.s. ] + 27 C II 10 10 fa fa ENC ENC (τ=20µs) < 1 ee - - rms rms Sub-Electron Noise Detectors (Fano (Fano limited) limited) G. Bertuccio, S. Caccia, R. Casiraghi, C. Lanzieri IEEE Trans. Nucl. Sci., 53 n.4, August 2006, pp. 2421-2427

Ultra Low Noise CMOS Charge Amplifier for SiC Detectors S ID [ A 2 Hz -1 ] 10-19 10-20 10-21 10-22 10-23 10-24 CMOS Preamplifier chip 1 / f 10-25 10 100 1k 10k f [Hz] 100k 1M LF Noise modelling 300µA 100µA 30µA 10µA G. Bertuccio and S. Caccia, E N C [ e- r.m.s. ] 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 5.2 5.2 e e - r.m.s. - r.m.s. 2 4 6 8 10 12 Shaping Time [ µs ] Measured ENC 3.9 3.9 e e - r.m.s. - r.m.s. Invited talk at the 11 th Symposium on Radiation Measurements and Applications, Ann Arbor, Michigan, USA, May 23-25, 2006 Submitted to NIM A, May 2006 ENC [ electrons r.m.s. ] 8 7 6 5 4 7.6 τ = 12 µs 7.6 e e - - // 43 43 µw µw 3.9 3.9 ee - - // 2.3 2.3 mw mw 30µW 100µW 1mW 10mW Preamplifier Power Consumption

Low- Noise Charge Preamplifiers A New state of the Art ENC [e- r.m.s.] Power [ mw/ch ] Technology Reference 3.9 2.6 CMOS 0.35 µm This work 7.6 0.03 CMOS 0.35 µm This work 9 11 CMOS 1.2 µm BNL [1] 14 8 CMOS 0.35µm BNL [2] 15 6 CMOS 0.5 µm LBL [3] 28 0.08 CMOS 0.5 µm Nova [4] 29 - CMOS 1.2 µm Caltech [5]

How our Research Activity and Results are seen worldwide? Invited Talks at International Conferences 2003-2006 G. Bertuccio " Front-end Amplifiers and ASIC s in Sub-micron CMOS and BiCMOS Technologies for Charge Measurements" Nuclear Science Sympsium and Medical Imaging Conference, 19-25 October 2003, Portland, USA. G. Bertuccio, R. Casiraghi, F. Nava, M. Bruzzi "Performance of Silicon Carbide Radiation Detectors " 13th International Workshop on Room Temperature Semiconductor Detectors and Associated Electronics, 19-25 October 2003, Portland, USA. G. Bertuccio "Prospects for Energy Resolving X-ray imaging with Compound Semiconductor Pixel Detectors" 6th International Workshop on Radiation Imaging Detectors, 25-29 July 2004, Glasgow, Scotland. G. Bertuccio et al. "Silicon Carbide for Alpha, Beta, Ion and soft X-ray High Performance Detectors" 5th European Conference on Silicon Carbide and Related Materials, 31 August-4 September 2004, Bologna, Italy. G. Bertuccio, S. Caccia "Challenges in the Readout Electronics for Room Temperature Semiconductor Radiation Detectors " 14th International Workshop on Room Temperature Semiconductor Detectors and Associated Electronics, 19-22 October 2004, Rome, Italy. G. Bertuccio, S. Caccia Ultra Low Noise Front-End and ASIC for X-ray Spectroscopy" 11th Symposium on Radiation Detection and Applications, May 2006, Ann Arbor, USA.

Present Limit of SiC detectors Schottky contact - Au Depth of depletion layer X D X D n - epilayer 5x10 14-70 µm X D V N R d reverse bias dopant concentration n+ buffer 1 µm n+ substrate - 320 µm ohmic contact - Ti/Pt/Au Thick depletion layer N d =5x 10 14, V R =300 V X D = 25 µm ( X D = 70 µm V R = 2.3 kv ) High detection efficiency ( X-rays) High peak/valley ratio (X-rays) Higher signal ( α, e - ) Thick X D requires Low capacitance lower ENC, τ opt Thick Thick // High High purity purity // Defect Defect free free epitaxial layers layers (>100 (>100 µm) µm) Low Low residual residual doping doping N d ( d ( < 10 10 13 13 cm cm -3-3 ))

Challenges and open issues for SiC detectors R&D Increase the epitaxial layer thickness Is it possible to grow 200-300 µm? How to increase the process growth rate? How the crystal defectivity depends on the growth rate? Decrease the residual doping What is the origin of the residual doping? Where does the dopants come from? Is it possible to reach 10 12 cm -3 with the available reactors / processes or new reactor/process must be introduced? Physics of thick-high purity SiC epitaxial detectors How large will be the leakage current (noise!) in thick SiC detectors? What the values of the electron/hole mean drift length at electric fields E<10kV/cm? What will be the radiation resistance of thick SiC detectors?

INFN - Gruppo V Proposta di nuovo esperimento per il triennio 2007-2009 2009 High Thickness epitaxial Silicon Carbide Detectors Research group Collaborations Research Activity & Milestones

Research Team G. Bertuccio (RN), S. Caccia, E. Gatti, S. Riboldi, S. Masci, M. Sampietro INFN - Milano and Politecnico di Milano (Giuseppe.Bertuccio@polimi.it) F. Nava, M. Bagni, T. Corazzari, P. Errani INFN Bologna and University of Modena (nava.filippo@unimo.it) G. Foti, D. Puglisi INFN and University of Catania (Gaetano.Foti@ct.infn.it) Industrial & other collaborations

HiTSiC: overcoming SiC R&D limits Limits of previous SiC detectors R&D Wafer supplier: CREE Inc. (USA) Not the best SiC wafers available Not possibility to change epi-growth specification Epitaxy from IKZ (Germany): low epi-specification control Overcoming limits by means of National wafer supplier: LPE-ETC R&D on SiC epitaxial growth at LPE-ETC Strong feedback with LPE-ETC

LPE-ETC: R&D Industrial collaboration http://www.lpe-epi.com/

LPE-ETC: Epitaxial Reactors & Processes http://www.lpe-epi.com/

LPE-ETC collaboration Growth rate (µm/hr) 120 100 80 60 T dep =1650 C C/Si=1.0 HCl 40 T dep =1550 C 20 No HCl C/Si=1.5 Silicon precipitates 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Si/H 2 % http://www.lpe-epi.com/

SELEX: R&D Industrial collaboration http://www.selex-si.com/

A Complete SiC Detectors R&D in Italy Strong Points Availability of the highest material quality High Thickness Epitaxial Layers (50-300 µm) Lowest residual doping (10 13 cm -3 ) Device to Material Feedback Material Wafer Production Characterisation Detector/FEE design & fabrication Detector/FEE characterisation Current [ A ] 10-6 t=127 C 10-10 t=47 C t=24 C t=67 C t=107 C t=87 C 10-14 0.0 0.2 0.4 0.6 0.8 1.0 Forward Voltage [ V ] 13.9 17.7 kev 241 Am Counts 10 3 3.3 kev 11.8 6.4 9.7 10 2 20.8 26.3 RMS (nm) 0.5 0.4 0.3 0.2 HCl process STD process 5 x 5 µm 10 1 0 5 10 15 20 25 Energy [ kev ] INFN Milano & Bologna 0.1 0 20 40 60 80 100 120 Growth rate (µm/h) INFN Catania & IMM Feedback

HiTSiC Research Activity INFN INFN Milano Milano INFN INFN Catania Catania TASKS INFN INFN Bologna Bologna DETECTOR DESIGN DETECTOR DESIGN FRONT END ELECRONICS DESIGN FRONT END ELECRONICS DESIGN DETECTOR ELECTRICAL CHAR. DETECTOR ELECTRICAL CHAR. X-RAY SPECTROSCOPIC CHAR. X-RAY SPECTROSCOPIC CHAR. SiC GROWTH SiC GROWTH SiC MATERIAL SiC MATERIAL CHARACTERIZATION CHARACTERIZATION (DLTS RBS-Channeling, Low (DLTS RBS-Channeling, Low Temperature PL) Temperature PL) JUNCTION DEVELOPMENT. JUNCTION DEVELOPMENT. DETECTOR CHARACTERIZATION DETECTOR (α, β). CHARACTERIZATION (α, β). RADIATION RESISTANCE RADIATION RESISTANCE MILESTONES TECHNOLOGICAL: - Growth of SiC wafers with High Thickness / High Purity / Low defect density - Ultra Thin Ultra Low leakage Schottky Junction - High Yield Large Area Detector Fabrication SCIENTIFIC & APPLIED: - High Resolution Wide Temperature Detectors - SiC Crystal knowledge (imputities/deep&shallow levels/traps/defects) - Custom Ultra-low Noise Front-End Electronics