Erdős on polynomials



Similar documents
Notes on metric spaces

RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis

SMALL POLYNOMIALS WITH INTEGER COEFFICIENTS

6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.

BANACH AND HILBERT SPACE REVIEW

Discrete Optimization

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

1. Prove that the empty set is a subset of every set.

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok

3. INNER PRODUCT SPACES

Inner Product Spaces

Metric Spaces. Chapter Metrics

MATH 381 HOMEWORK 2 SOLUTIONS

and s n (x) f(x) for all x and s.t. s n is measurable if f is. REAL ANALYSIS Measures. A (positive) measure on a measurable space

Lecture 3: Linear methods for classification

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

How To Prove The Dirichlet Unit Theorem

4. Expanding dynamical systems

4.5 Chebyshev Polynomials

t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).

Two Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering

9 More on differentiation

1 Norms and Vector Spaces

The Heat Equation. Lectures INF2320 p. 1/88

Useful Mathematical Symbols

Largest Fixed-Aspect, Axis-Aligned Rectangle

Solutions for Review Problems

Estimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine Aït-Sahalia

Some stability results of parameter identification in a jump diffusion model

POLYNOMIAL HISTOPOLATION, SUPERCONVERGENT DEGREES OF FREEDOM, AND PSEUDOSPECTRAL DISCRETE HODGE OPERATORS

x a x 2 (1 + x 2 ) n.

3. Regression & Exponential Smoothing

Lebesgue Measure on R n

POLYNOMIAL HISTOPOLATION, SUPERCONVERGENT DEGREES OF FREEDOM, AND PSEUDOSPECTRAL DISCRETE HODGE OPERATORS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

Mathematical Methods of Engineering Analysis

Geometrical Characterization of RN-operators between Locally Convex Vector Spaces

Error estimates for nearly degenerate finite elements

Inequalities of Analysis. Andrejs Treibergs. Fall 2014

Metric Spaces. Chapter 1

Solutions for Math 311 Assignment #1

An Introduction to Partial Differential Equations in the Undergraduate Curriculum

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Lecture 17: Conformal Invariance

The Advantages and Disadvantages of Online Linear Optimization

Monte Carlo Simulation

Lecture 4: BK inequality 27th August and 6th September, 2007

THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties:

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

MATH4427 Notebook 2 Spring MATH4427 Notebook Definitions and Examples Performance Measures for Estimators...

THE REMEZ ALGORITHM FOR TRIGONOMETRIC APPROXIMATION OF PERIODIC FUNCTIONS

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n

FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 2. OPERATORS ON HILBERT SPACES

Solutions to old Exam 1 problems

Efficiency and the Cramér-Rao Inequality

Fixed Point Theorems

Section 4.4 Inner Product Spaces

RESEARCH STATEMENT AMANDA KNECHT

Message-passing sequential detection of multiple change points in networks

Choice under Uncertainty

Pacific Journal of Mathematics

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform

Random graphs with a given degree sequence

Ideal Class Group and Units

Estimated Pre Calculus Pacing Timeline

Duality of linear conic problems

Introduction to Topology

This is the second in a series of two papers investigating the solitary wave solutions of the integrable model wave equation

Fuzzy Differential Systems and the New Concept of Stability

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F

On the Eigenvalues of Integral Operators

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents

NOV /II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane

MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

Chapter 17. Orthogonal Matrices and Symmetries of Space

Hedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15

Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}.

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability

Variance Reduction. Pricing American Options. Monte Carlo Option Pricing. Delta and Common Random Numbers

A General Approach to Variance Estimation under Imputation for Missing Survey Data

(Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties

CHAPTER IV - BROWNIAN MOTION

0.1 Phase Estimation Technique

To discuss this topic fully, let us define some terms used in this and the following sets of supplemental notes.

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

The Ergodic Theorem and randomness

Section Inner Products and Norms

ON SOME ANALOGUE OF THE GENERALIZED ALLOCATION SCHEME

4. How many integers between 2004 and 4002 are perfect squares?

Lecture Notes on Measure Theory and Functional Analysis

Algebraic and Transcendental Numbers

Lecture 7: Finding Lyapunov Functions 1

ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE

1 if 1 x 0 1 if 0 x 1

Transcription:

Erdős on polynomials Vilmos Totik University of Szeged and University of South Florida totik@mail.usf.edu Vilmos Totik (SZTE and USF) Polynomials 1 / *

Erdős on polynomials Vilmos Totik (SZTE and USF) Polynomials 2 / *

Erdős on polynomials Interpolation Vilmos Totik (SZTE and USF) Polynomials 2 / *

Erdős on polynomials Interpolation Discrepancy theorems for zeros Vilmos Totik (SZTE and USF) Polynomials 2 / *

Erdős on polynomials Interpolation Discrepancy theorems for zeros Inequalities Vilmos Totik (SZTE and USF) Polynomials 2 / *

Erdős on polynomials Interpolation Discrepancy theorems for zeros Inequalities Growth of polynomials Vilmos Totik (SZTE and USF) Polynomials 2 / *

Erdős on polynomials Interpolation Discrepancy theorems for zeros Inequalities Growth of polynomials Geometric problems for lemniscates Vilmos Totik (SZTE and USF) Polynomials 2 / *

Erdős on polynomials Interpolation Discrepancy theorems for zeros Inequalities Growth of polynomials Geometric problems for lemniscates Orthogonal polynomials Vilmos Totik (SZTE and USF) Polynomials 2 / *

Erdős on polynomials Interpolation Discrepancy theorems for zeros Inequalities Growth of polynomials Geometric problems for lemniscates Orthogonal polynomials Spacing of zeros Vilmos Totik (SZTE and USF) Polynomials 2 / *

Erdős on polynomials Interpolation Discrepancy theorems for zeros Inequalities Growth of polynomials Geometric problems for lemniscates Orthogonal polynomials Spacing of zeros Geometry of zeros of derivatives Vilmos Totik (SZTE and USF) Polynomials 2 / *

Erdős on polynomials Interpolation Discrepancy theorems for zeros Inequalities Growth of polynomials Geometric problems for lemniscates Orthogonal polynomials Spacing of zeros Geometry of zeros of derivatives Polynomials with integer coefficients Vilmos Totik (SZTE and USF) Polynomials 2 / *

Erdős on polynomials Interpolation (Lubinsky s and Vértesi s surveys) Discrepancy theorems for zeros Inequalities (Erdélyi s survey) Growth of polynomials Geometric problems for lemniscates (Eremenko-Hayman s and Borwein s surveys) Orthogonal polynomials Spacing of zeros Geometry of zeros of derivatives Polynomials with integer coefficients (Borwein s and Erdélyi s surveys) Vilmos Totik (SZTE and USF) Polynomials 3 / *

Chebyshev polynomials Vilmos Totik (SZTE and USF) Polynomials 4 / *

Chebyshev polynomials P. L. Chebyshev: replace x 4 in [ 1,1] by combination of smaller powers Vilmos Totik (SZTE and USF) Polynomials 4 / *

Chebyshev polynomials P. L. Chebyshev: replace x 4 in [ 1,1] by combination of smaller powers Approximate x n by linear combination of smaller powers Vilmos Totik (SZTE and USF) Polynomials 4 / *

Chebyshev polynomials P. L. Chebyshev: replace x 4 in [ 1,1] by combination of smaller powers Approximate x n by linear combination of smaller powers t n = inf P n(x)=x n + P n [ 1,1] Vilmos Totik (SZTE and USF) Polynomials 4 / *

Chebyshev polynomials P. L. Chebyshev: replace x 4 in [ 1,1] by combination of smaller powers Approximate x n by linear combination of smaller powers t n = inf P n(x)=x n + P n [ 1,1] P n K = sup P n (z) z K Vilmos Totik (SZTE and USF) Polynomials 4 / *

Chebyshev polynomials P. L. Chebyshev: replace x 4 in [ 1,1] by combination of smaller powers Approximate x n by linear combination of smaller powers t n = inf P n(x)=x n + P n [ 1,1] P n K = sup P n (z) z K t n = 2 2 n Vilmos Totik (SZTE and USF) Polynomials 4 / *

Chebyshev polynomials P. L. Chebyshev: replace x 4 in [ 1,1] by combination of smaller powers Approximate x n by linear combination of smaller powers t n = inf P n(x)=x n + P n [ 1,1] P n K = sup P n (z) z K t n = 2 2 n T n (z) = 1 cos(narccosx) 2n 1 Vilmos Totik (SZTE and USF) Polynomials 4 / *

Zeros of the Chebyshev polynomials Uniform spacing of zeros -1 1 Vilmos Totik (SZTE and USF) Polynomials 5 / *

The Erdős-Turán discrepancy theorem Vilmos Totik (SZTE and USF) Polynomials 6 / *

The Erdős-Turán discrepancy theorem Suppose P n (x) = x n + has all its zeros in [ 1,1] Vilmos Totik (SZTE and USF) Polynomials 6 / *

The Erdős-Turán discrepancy theorem Suppose P n (x) = x n + has all its zeros in [ 1,1] Let x j be the zeros Vilmos Totik (SZTE and USF) Polynomials 6 / *

The Erdős-Turán discrepancy theorem Suppose P n (x) = x n + has all its zeros in [ 1,1] Let x j be the zeros P n [ 1,1] A n 2 n Vilmos Totik (SZTE and USF) Polynomials 6 / *

The Erdős-Turán discrepancy theorem Suppose P n (x) = x n + has all its zeros in [ 1,1] Let x j be the zeros P n [ 1,1] A n 2 n Th. (Erdős-Turán, 1940) For any 1 a < b 1 #{x j (a,b)} n arcsinb arcsina π 8 logan n Vilmos Totik (SZTE and USF) Polynomials 6 / *

Equilibrium measures Vilmos Totik (SZTE and USF) Polynomials 7 / *

Equilibrium measures E C compact Vilmos Totik (SZTE and USF) Polynomials 7 / *

Equilibrium measures E C compact µ unit Borel-measure on E, Vilmos Totik (SZTE and USF) Polynomials 7 / *

Equilibrium measures E C compact µ unit Borel-measure on E, its logarithmic energy is 1 I(µ) = log z t dµ(z)dµ(t) Vilmos Totik (SZTE and USF) Polynomials 7 / *

Equilibrium measures E C compact µ unit Borel-measure on E, its logarithmic energy is 1 I(µ) = log z t dµ(z)dµ(t) If this is finite for some µ, then there is a unique minimizing measure µ E, called equilibrium measure of E Vilmos Totik (SZTE and USF) Polynomials 7 / *

Equilibrium measures E C compact µ unit Borel-measure on E, its logarithmic energy is 1 I(µ) = log z t dµ(z)dµ(t) If this is finite for some µ, then there is a unique minimizing measure µ E, called equilibrium measure of E Examples: dµ [ 1,1] (t) = 1 π 1 t 2dt Vilmos Totik (SZTE and USF) Polynomials 7 / *

Equilibrium measures E C compact µ unit Borel-measure on E, its logarithmic energy is 1 I(µ) = log z t dµ(z)dµ(t) If this is finite for some µ, then there is a unique minimizing measure µ E, called equilibrium measure of E Examples: If C 1 is the unit circle, then dµ [ 1,1] (t) = 1 π 1 t 2dt dµ C1 (e it ) = 1 2π dt is the normalized arc measure Vilmos Totik (SZTE and USF) Polynomials 7 / *

Logarithmic capacity With the minimal energy I(K) = inf µ I(µ) Vilmos Totik (SZTE and USF) Polynomials 8 / *

Logarithmic capacity With the minimal energy I(K) = inf µ I(µ) define the logarithmic capacity as cap(k) = e I(K) Vilmos Totik (SZTE and USF) Polynomials 8 / *

Logarithmic capacity With the minimal energy I(K) = inf µ I(µ) define the logarithmic capacity as cap(k) = e I(K) Examples: If K is a disk/circle of radius r then c(k) = r Vilmos Totik (SZTE and USF) Polynomials 8 / *

Logarithmic capacity With the minimal energy I(K) = inf µ I(µ) define the logarithmic capacity as cap(k) = e I(K) Examples: If K is a disk/circle of radius r then c(k) = r cap([ 1,1]) = 1/2 Vilmos Totik (SZTE and USF) Polynomials 8 / *

Logarithmic capacity With the minimal energy I(K) = inf µ I(µ) define the logarithmic capacity as cap(k) = e I(K) Examples: If K is a disk/circle of radius r then c(k) = r cap([ 1,1]) = 1/2 If P n (z) = z n +, then P n K cap(k) n Vilmos Totik (SZTE and USF) Polynomials 8 / *

Transfinite diameter, Chebyshev constants K C compact δ n = sup z 1,...,z n K z i z j i j Vilmos Totik (SZTE and USF) Polynomials 9 / *

Transfinite diameter, Chebyshev constants K C compact δ n = sup z 1,...,z n K z i z j i j Transfinite diameter: δ 1/n(n 1) n δ(k) Vilmos Totik (SZTE and USF) Polynomials 9 / *

Transfinite diameter, Chebyshev constants K C compact δ n = sup z 1,...,z n K z i z j i j Transfinite diameter: δ 1/n(n 1) n δ(k) t n = inf z n + K Vilmos Totik (SZTE and USF) Polynomials 9 / *

Transfinite diameter, Chebyshev constants K C compact δ n = sup z 1,...,z n K z i z j i j Transfinite diameter: δ 1/n(n 1) n δ(k) t n = inf z n + K Chebyshev constant t 1/n n t(k) Vilmos Totik (SZTE and USF) Polynomials 9 / *

Transfinite diameter, Chebyshev constants K C compact δ n = sup z 1,...,z n K z i z j i j Transfinite diameter: δ 1/n(n 1) n δ(k) t n = inf z n + K Chebyshev constant t 1/n n t(k) Fekete, Zygmund, Szegő: cap(k) = δ(k) = t(k) Vilmos Totik (SZTE and USF) Polynomials 9 / *

The Erdős-Turán discrepancy theorem Vilmos Totik (SZTE and USF) Polynomials 10 / *

The Erdős-Turán discrepancy theorem P n (x) = x n +, Vilmos Totik (SZTE and USF) Polynomials 10 / *

The Erdős-Turán discrepancy theorem P n (x) = x n +, P n [ 1,1] A n /2 n Vilmos Totik (SZTE and USF) Polynomials 10 / *

The Erdős-Turán discrepancy theorem P n (x) = x n +, P n [ 1,1] A n /2 n The Erdős-Turán theorem: For any 1 a < b 1 #{x j (a,b)} b 1 n a π 1 x 2dx 8 logan n (1) Vilmos Totik (SZTE and USF) Polynomials 10 / *

The Erdős-Turán discrepancy theorem P n (x) = x n +, P n [ 1,1] A n /2 n The Erdős-Turán theorem: For any 1 a < b 1 #{x j (a,b)} b 1 n a π 1 x 2dx 8 logan n Normalized zero distribution ν n = 1 n j δ x j (1) Vilmos Totik (SZTE and USF) Polynomials 10 / *

The Erdős-Turán discrepancy theorem P n (x) = x n +, P n [ 1,1] A n /2 n The Erdős-Turán theorem: For any 1 a < b 1 #{x j (a,b)} b 1 n a π 1 x 2dx 8 logan n Normalized zero distribution ν n = 1 n j δ x j Equivalent form of (1): with the Chebyshev distribution dµ [ 1,1] (x) = 1 π 1 x 2dx (1) Vilmos Totik (SZTE and USF) Polynomials 10 / *

The Erdős-Turán discrepancy theorem P n (x) = x n +, P n [ 1,1] A n /2 n The Erdős-Turán theorem: For any 1 a < b 1 #{x j (a,b)} b 1 n a π 1 x 2dx 8 logan n Normalized zero distribution ν n = 1 n j δ x j Equivalent form of (1): with the Chebyshev distribution for any I [ 1,1] dµ [ 1,1] (x) = 1 π 1 x 2dx (1) νn (I) µ [ 1,1] (I) 8 logan n Vilmos Totik (SZTE and USF) Polynomials 10 / *

The Erdős-Turán discrepancy theorem P n (x) = x n +, P n [ 1,1] A n /2 n The Erdős-Turán theorem: For any 1 a < b 1 #{x j (a,b)} b 1 n a π 1 x 2dx 8 logan n Normalized zero distribution ν n = 1 n j δ x j Equivalent form of (1): with the Chebyshev distribution for any I [ 1,1] dµ [ 1,1] (x) = 1 π 1 x 2dx (1) νn (I) µ [ 1,1] (I) 8 logan n Vilmos Totik (SZTE and USF) Polynomials 10 / *

A general discrepancy theorem Let K be a finite union of smooth Jordan arcs Vilmos Totik (SZTE and USF) Polynomials 11 / *

A general discrepancy theorem Let K be a finite union of smooth Jordan arcs J Vilmos Totik (SZTE and USF) Polynomials 11 / *

A general discrepancy theorem Let K be a finite union of smooth Jordan arcs J Vilmos Totik (SZTE and USF) Polynomials 11 / *

A general discrepancy theorem Let K be a finite union of smooth Jordan arcs J J* Vilmos Totik (SZTE and USF) Polynomials 12 / *

A general discrepancy theorem Let K be a finite union of smooth Jordan arcs J J* Recall: if P n (z) = z n +, then P n K cap(k) n Vilmos Totik (SZTE and USF) Polynomials 12 / *

A general discrepancy theorem K finite union of smooth Jordan arcs Vilmos Totik (SZTE and USF) Polynomials 13 / *

A general discrepancy theorem K finite union of smooth Jordan arcs P n (z) = z n + Vilmos Totik (SZTE and USF) Polynomials 13 / *

A general discrepancy theorem K finite union of smooth Jordan arcs P n (z) = z n + P n K A n cap(k) n Vilmos Totik (SZTE and USF) Polynomials 13 / *

A general discrepancy theorem K finite union of smooth Jordan arcs P n (z) = z n + P n K A n cap(k) n ν n normalized zero distribution Vilmos Totik (SZTE and USF) Polynomials 13 / *

A general discrepancy theorem K finite union of smooth Jordan arcs P n (z) = z n + P n K A n cap(k) n ν n normalized zero distribution Th. (Andrievskii-Blatt, 1995-2000) For any J K ν n (J ) µ K (J logan ) C. n Vilmos Totik (SZTE and USF) Polynomials 13 / *

A general discrepancy theorem K finite union of smooth Jordan arcs P n (z) = z n + P n K A n cap(k) n ν n normalized zero distribution Th. (Andrievskii-Blatt, 1995-2000) For any J K ν n (J ) µ K (J logan ) C. n In particular, if P n 1/n K cap(k), then ν n µ K Vilmos Totik (SZTE and USF) Polynomials 13 / *

The Jentzsch-Szegő theorem Vilmos Totik (SZTE and USF) Polynomials 14 / *

The Jentzsch-Szegő theorem No such results are true for Jordan curves: Vilmos Totik (SZTE and USF) Polynomials 14 / *

The Jentzsch-Szegő theorem No such results are true for Jordan curves: z n on the unit circle Vilmos Totik (SZTE and USF) Polynomials 14 / *

The Jentzsch-Szegő theorem No such results are true for Jordan curves: z n on the unit circle Jentsch, 1918: If the radius of convergence of j=0 a jz j is 1, then the zeros of the partial sums n 0 a jz j, n = 1,2,... are dense at the unit circle Vilmos Totik (SZTE and USF) Polynomials 14 / *

The Jentzsch-Szegő theorem No such results are true for Jordan curves: z n on the unit circle Jentsch, 1918: If the radius of convergence of j=0 a jz j is 1, then the zeros of the partial sums n 0 a jz j, n = 1,2,... are dense at the unit circle Szegő, 1922: There is a sequence n 1 < n 2 < such that if z j,n = r j,n e iθ j,n, 1 j n are the zeros of n 0 a jz j, then {θ j,nk } n k 0 is asymptotically uniformly distributed (and r j,nk 1 for most j) Vilmos Totik (SZTE and USF) Polynomials 14 / *

The second discrepancy theorem P n (z) = a n z n + +a 0, C 1 = { z = 1} Vilmos Totik (SZTE and USF) Polynomials 15 / *

The second discrepancy theorem P n (z) = a n z n + +a 0, C 1 = { z = 1} z j = r j e iθ j are the zeros Vilmos Totik (SZTE and USF) Polynomials 15 / *

The second discrepancy theorem P n (z) = a n z n + +a 0, C 1 = { z = 1} z j = r j e iθ j are the zeros Th. (Erdős-Turán, 1950) For any J [0,2π] Vilmos Totik (SZTE and USF) Polynomials 15 / *

The second discrepancy theorem P n (z) = a n z n + +a 0, C 1 = { z = 1} z j = r j e iθ j are the zeros Th. (Erdős-Turán, 1950) For any J [0,2π] #{θ j J} J n 2π 16 log P n C1 / a 0 a n n Vilmos Totik (SZTE and USF) Polynomials 15 / *

The second discrepancy theorem P n (z) = a n z n + +a 0, C 1 = { z = 1} z j = r j e iθ j are the zeros Th. (Erdős-Turán, 1950) For any J [0,2π] #{θ j J} J n 2π 16 log P n C1 / a 0 a n n Note P n C1 j a j Vilmos Totik (SZTE and USF) Polynomials 15 / *

Number of real zeros of a polynomial Vilmos Totik (SZTE and USF) Polynomials 16 / *

Number of real zeros of a polynomial #{θ j J} n J log( 2π 16 j a j / ) a 0 a n, n Vilmos Totik (SZTE and USF) Polynomials 16 / *

Number of real zeros of a polynomial #{θ j J} n J log( 2π 16 j a j / ) a 0 a n, n Consequence: there are at most ( ) 32 nlog a j / a0 a n real zeros of P n j Vilmos Totik (SZTE and USF) Polynomials 16 / *

Number of real zeros of a polynomial #{θ j J} n J log( 2π 16 j a j / ) a 0 a n, n Consequence: there are at most ( ) 32 nlog a j / a0 a n real zeros of P n Better than previous estimates of Bloch, Pólya, Schmidt, basically a theorem of Schur, Szegő j Vilmos Totik (SZTE and USF) Polynomials 16 / *

The Szegő theorem Vilmos Totik (SZTE and USF) Polynomials 17 / *

The Szegő theorem j=0 a jz j, a 0 0 Vilmos Totik (SZTE and USF) Polynomials 17 / *

The Szegő theorem j=0 a jz j, a 0 0 Radius of convergence 1 limsup n a n 1/n = 1 Vilmos Totik (SZTE and USF) Polynomials 17 / *

The Szegő theorem j=0 a jz j, a 0 0 Radius of convergence 1 limsup n a n 1/n = 1 There is a subsequence {n k } with C nk := ( nk j=0 a j a0 a n ) 1/nk 1 Vilmos Totik (SZTE and USF) Polynomials 17 / *

The Szegő theorem j=0 a jz j, a 0 0 Radius of convergence 1 limsup n a n 1/n = 1 There is a subsequence {n k } with C nk := ( nk j=0 a j a0 a n ) 1/nk 1 z j,n = r j,n e iθ j,n are the zeros of n j=0 a jz j Vilmos Totik (SZTE and USF) Polynomials 17 / *

The Szegő theorem j=0 a jz j, a 0 0 Radius of convergence 1 limsup n a n 1/n = 1 There is a subsequence {n k } with C nk := ( nk j=0 a j a0 a n ) 1/nk 1 z j,n = r j,n e iθ j,n are the zeros of n j=0 a jz j #{θ j,nk J} n k J 2π 16 logc nk 0 Vilmos Totik (SZTE and USF) Polynomials 17 / *

General discrepancy theorems Vilmos Totik (SZTE and USF) Polynomials 18 / *

General discrepancy theorems J J* z 0 Vilmos Totik (SZTE and USF) Polynomials 18 / *

General discrepancy theorems J J* z 0 Andrievskii-Blatt, 1995-2000: If Γ is a smooth Jordan curve, z 0 a fixed point inside, P n (z) = z n + +a n, and Vilmos Totik (SZTE and USF) Polynomials 18 / *

General discrepancy theorems J J* z 0 Andrievskii-Blatt, 1995-2000: If Γ is a smooth Jordan curve, z 0 a fixed point inside, P n (z) = z n + +a n, and B n = P n Γ / cap(γ) n P n (z 0 ), then for all J Γ Vilmos Totik (SZTE and USF) Polynomials 18 / *

General discrepancy theorems J J* z 0 Andrievskii-Blatt, 1995-2000: If Γ is a smooth Jordan curve, z 0 a fixed point inside, P n (z) = z n + +a n, and B n = P n Γ / cap(γ) n P n (z 0 ), then for all J Γ #{z j J } µ Γ (J) n C logbn 0 n Vilmos Totik (SZTE and USF) Polynomials 18 / *

It is true for a family of Jordan curves Vilmos Totik (SZTE and USF) Polynomials 18 / * General discrepancy theorems J J* z 0 Andrievskii-Blatt, 1995-2000: If Γ is a smooth Jordan curve, z 0 a fixed point inside, P n (z) = z n + +a n, and B n = P n Γ / cap(γ) n P n (z 0 ), then for all J Γ #{z j J } µ Γ (J) n C logbn 0 n

Orthogonal polynomials ρ a measure with compact support Vilmos Totik (SZTE and USF) Polynomials 19 / *

Orthogonal polynomials ρ a measure with compact support p n (z) = γ n z n + orthonormal polynomials with respect to ρ: { 0 if n m p n p m dρ = 1 if n = m Vilmos Totik (SZTE and USF) Polynomials 19 / *

Orthogonal polynomials ρ a measure with compact support p n (z) = γ n z n + orthonormal polynomials with respect to ρ: { 0 if n m p n p m dρ = 1 if n = m Erdős-Turán were among the first to get results for general weights Vilmos Totik (SZTE and USF) Polynomials 19 / *

Orthogonal polynomials ρ a measure with compact support p n (z) = γ n z n + orthonormal polynomials with respect to ρ: { 0 if n m p n p m dρ = 1 if n = m Erdős-Turán were among the first to get results for general weights Th. (Erdős-Turán, 1940) If the support of ρ is [ 1,1], dρ(x) = w(x)dx and w > 0 almost everywhere, Vilmos Totik (SZTE and USF) Polynomials 19 / *

Orthogonal polynomials ρ a measure with compact support p n (z) = γ n z n + orthonormal polynomials with respect to ρ: { 0 if n m p n p m dρ = 1 if n = m Erdős-Turán were among the first to get results for general weights Th. (Erdős-Turán, 1940) If the support of ρ is [ 1,1], dρ(x) = w(x)dx and w > 0 almost everywhere, then the asymptotic zero distribution of p n is the Chebyshev distribution Vilmos Totik (SZTE and USF) Polynomials 19 / *

Orthogonal polynomials ρ a measure with compact support p n (z) = γ n z n + orthonormal polynomials with respect to ρ: { 0 if n m p n p m dρ = 1 if n = m Erdős-Turán were among the first to get results for general weights Th. (Erdős-Turán, 1940) If the support of ρ is [ 1,1], dρ(x) = w(x)dx and w > 0 almost everywhere, then the asymptotic zero distribution of p n is the Chebyshev distribution p n (z) 1/n z + z 2 1, z [ 1,1] Vilmos Totik (SZTE and USF) Polynomials 19 / *

Orthogonal polynomials w > 0 almost everywhere on [ 1, 1] implies classical behavior Vilmos Totik (SZTE and USF) Polynomials 20 / *

Orthogonal polynomials w > 0 almost everywhere on [ 1, 1] implies classical behavior Rakhmanov, 1982: actually p n+1 (z) p n (z) z + z 2 1 Vilmos Totik (SZTE and USF) Polynomials 20 / *

Orthogonal polynomials w > 0 almost everywhere on [ 1, 1] implies classical behavior Rakhmanov, 1982: actually p n+1 (z) p n (z) z + z 2 1 Widom, 1967: If the support is not connected, then such external behavior is not possible Vilmos Totik (SZTE and USF) Polynomials 20 / *

Orthogonal polynomials w > 0 almost everywhere on [ 1, 1] implies classical behavior Rakhmanov, 1982: actually p n+1 (z) p n (z) z + z 2 1 Widom, 1967: If the support is not connected, then such external behavior is not possible Assume S = supp(ρ) has connected complement and empty interior (e.g. S R) Vilmos Totik (SZTE and USF) Polynomials 20 / *

Orthogonal polynomials w > 0 almost everywhere on [ 1, 1] implies classical behavior Rakhmanov, 1982: actually p n+1 (z) p n (z) z + z 2 1 Widom, 1967: If the support is not connected, then such external behavior is not possible Assume S = supp(ρ) has connected complement and empty interior (e.g. S R) Always 1 cap(s) liminfγ1/n n Vilmos Totik (SZTE and USF) Polynomials 20 / *

Regular behavior Vilmos Totik (SZTE and USF) Polynomials 21 / *

Regular behavior The following are equivalent (Stahl-T., 1991, Ullman, Erdős, Widom,...): Vilmos Totik (SZTE and USF) Polynomials 21 / *

Regular behavior The following are equivalent (Stahl-T., 1991, Ullman, Erdős, Widom,...): The asymptotic zero distribution of p n is the equilibrium distribution µ S of the support S Vilmos Totik (SZTE and USF) Polynomials 21 / *

Regular behavior The following are equivalent (Stahl-T., 1991, Ullman, Erdős, Widom,...): The asymptotic zero distribution of p n is the equilibrium distribution µ S of the support S p n (z) 1/n G S (z) z S Vilmos Totik (SZTE and USF) Polynomials 21 / *

Regular behavior The following are equivalent (Stahl-T., 1991, Ullman, Erdős, Widom,...): The asymptotic zero distribution of p n is the equilibrium distribution µ S of the support S p n (z) 1/n G S (z) z S γ 1/n n 1/cap(S) Vilmos Totik (SZTE and USF) Polynomials 21 / *

Regular behavior The following are equivalent (Stahl-T., 1991, Ullman, Erdős, Widom,...): The asymptotic zero distribution of p n is the equilibrium distribution µ S of the support S p n (z) 1/n G S (z) z S γ 1/n n 1/cap(S) sup P n 1/n P n S P n 1/n L q (ρ) 1, q > 0 Vilmos Totik (SZTE and USF) Polynomials 21 / *

Regular behavior The following are equivalent (Stahl-T., 1991, Ullman, Erdős, Widom,...): The asymptotic zero distribution of p n is the equilibrium distribution µ S of the support S p n (z) 1/n G S (z) z S γ 1/n n 1/cap(S) sup P n In this case we say ρ Reg 1/n P n S P n 1/n L q (ρ) 1, q > 0 Vilmos Totik (SZTE and USF) Polynomials 21 / *

Regular behavior Vilmos Totik (SZTE and USF) Polynomials 22 / *

Regular behavior ρ Reg the measure is not too thin on any part of its support Vilmos Totik (SZTE and USF) Polynomials 22 / *

Regular behavior ρ Reg the measure is not too thin on any part of its support orthogonal polynomials behave non-pathologically Vilmos Totik (SZTE and USF) Polynomials 22 / *

Regular behavior ρ Reg the measure is not too thin on any part of its support orthogonal polynomials behave non-pathologically ρ Reg is a very weak assumption on the measure Vilmos Totik (SZTE and USF) Polynomials 22 / *

Regular behavior ρ Reg the measure is not too thin on any part of its support orthogonal polynomials behave non-pathologically ρ Reg is a very weak assumption on the measure Erdős-Turán criterion for regularity on [ 1, 1]: dρ(z) = w(z)dz with w(z) > 0 a.e. Vilmos Totik (SZTE and USF) Polynomials 22 / *

Regular behavior ρ Reg the measure is not too thin on any part of its support orthogonal polynomials behave non-pathologically ρ Reg is a very weak assumption on the measure Erdős-Turán criterion for regularity on [ 1, 1]: dρ(z) = w(z)dz with w(z) > 0 a.e. General Erdős-Turán criterion for regularity: dρ(z) = w(z)dµ S (z) with w(z) > 0 µ S -a.e. Vilmos Totik (SZTE and USF) Polynomials 22 / *

Regular behavior ρ Reg the measure is not too thin on any part of its support orthogonal polynomials behave non-pathologically ρ Reg is a very weak assumption on the measure Erdős-Turán criterion for regularity on [ 1, 1]: dρ(z) = w(z)dz with w(z) > 0 a.e. General Erdős-Turán criterion for regularity: dρ(z) = w(z)dµ S (z) with w(z) > 0 µ S -a.e. Many weaker criteria exist Vilmos Totik (SZTE and USF) Polynomials 22 / *

Regular behavior ρ Reg the measure is not too thin on any part of its support orthogonal polynomials behave non-pathologically ρ Reg is a very weak assumption on the measure Erdős-Turán criterion for regularity on [ 1, 1]: dρ(z) = w(z)dz with w(z) > 0 a.e. General Erdős-Turán criterion for regularity: dρ(z) = w(z)dµ S (z) with w(z) > 0 µ S -a.e. Many weaker criteria exist No necessary and sufficient condition is known Vilmos Totik (SZTE and USF) Polynomials 22 / *

Regular behavior ρ Reg the measure is not too thin on any part of its support orthogonal polynomials behave non-pathologically ρ Reg is a very weak assumption on the measure Erdős-Turán criterion for regularity on [ 1, 1]: dρ(z) = w(z)dz with w(z) > 0 a.e. General Erdős-Turán criterion for regularity: dρ(z) = w(z)dµ S (z) with w(z) > 0 µ S -a.e. Many weaker criteria exist No necessary and sufficient condition is known Erdős conjectured: if S = [ 1,1] and dρ(x) = w(x)dx with a bounded w, then ρ Reg Vilmos Totik (SZTE and USF) Polynomials 22 / *

Regular behavior ρ Reg the measure is not too thin on any part of its support orthogonal polynomials behave non-pathologically ρ Reg is a very weak assumption on the measure Erdős-Turán criterion for regularity on [ 1, 1]: dρ(z) = w(z)dz with w(z) > 0 a.e. General Erdős-Turán criterion for regularity: dρ(z) = w(z)dµ S (z) with w(z) > 0 µ S -a.e. Many weaker criteria exist No necessary and sufficient condition is known Erdős conjectured: if S = [ 1,1] and dρ(x) = w(x)dx with a bounded w, then ρ Reg if and only if cap(e ǫ ) 1/2 as ǫ 0 where E ǫ is any set obtained from {x w(x) > 0} by removing a subset of measure < ǫ. Vilmos Totik (SZTE and USF) Polynomials 22 / *

Regular behavior ρ Reg the measure is not too thin on any part of its support orthogonal polynomials behave non-pathologically ρ Reg is a very weak assumption on the measure Erdős-Turán criterion for regularity on [ 1, 1]: dρ(z) = w(z)dz with w(z) > 0 a.e. General Erdős-Turán criterion for regularity: dρ(z) = w(z)dµ S (z) with w(z) > 0 µ S -a.e. Many weaker criteria exist No necessary and sufficient condition is known Erdős conjectured: if S = [ 1,1] and dρ(x) = w(x)dx with a bounded w, then ρ Reg if and only if cap(e ǫ ) 1/2 as ǫ 0 where E ǫ is any set obtained from {x w(x) > 0} by removing a subset of measure < ǫ. Sufficiency follows from some strong regularity criteria Vilmos Totik (SZTE and USF) Polynomials 22 / *

Spacing of zeros Vilmos Totik (SZTE and USF) Polynomials 23 / *

Spacing of zeros dρ(x) = w(x)dx a measure on [ 1,1], Vilmos Totik (SZTE and USF) Polynomials 23 / *

Spacing of zeros dρ(x) = w(x)dx a measure on [ 1,1], p n orthogonal polynomials, Vilmos Totik (SZTE and USF) Polynomials 23 / *

Spacing of zeros dρ(x) = w(x)dx a measure on [ 1,1], p n orthogonal polynomials, x j,n = cosθ j,n are the zeros Vilmos Totik (SZTE and USF) Polynomials 23 / *

Spacing of zeros dρ(x) = w(x)dx a measure on [ 1,1], p n orthogonal polynomials, x j,n = cosθ j,n are the zeros Rough spacing: θ j 1 θ j 1 n, i.e. c 1 n θ j 1 θ j c 2 n Vilmos Totik (SZTE and USF) Polynomials 23 / *

Spacing of zeros dρ(x) = w(x)dx a measure on [ 1,1], p n orthogonal polynomials, x j,n = cosθ j,n are the zeros Rough spacing: θ j 1 θ j 1 n, i.e. c 1 n θ j 1 θ j c 2 n Fine spacing: θ j 1 θ j π n, i.e. n(θ j 1 θ j ) π n Vilmos Totik (SZTE and USF) Polynomials 23 / *

Spacing of zeros dρ(x) = w(x)dx a measure on [ 1,1], p n orthogonal polynomials, x j,n = cosθ j,n are the zeros Rough spacing: θ j 1 θ j 1 n, i.e. c 1 n θ j 1 θ j c 2 n Fine spacing: θ j 1 θ j π n, i.e. n(θ j 1 θ j ) π n Classical (Jacobi) polynomials obey fine spacing inside the interval of orthogonality Vilmos Totik (SZTE and USF) Polynomials 23 / *

Spacing of zeros dρ(x) = w(x)dx a measure on [ 1,1], p n orthogonal polynomials, x j,n = cosθ j,n are the zeros Rough spacing: θ j 1 θ j 1 n, i.e. c 1 n θ j 1 θ j c 2 n Fine spacing: θ j 1 θ j π n, i.e. n(θ j 1 θ j ) π n Classical (Jacobi) polynomials obey fine spacing inside the interval of orthogonality Vilmos Totik (SZTE and USF) Polynomials 23 / *

Rough spacing of zeros Erdős and Turán had many results in 1930-40 s on rough spacing Vilmos Totik (SZTE and USF) Polynomials 24 / *

Rough spacing of zeros Erdős and Turán had many results in 1930-40 s on rough spacing Mastroianni-T., 2005: rough spacing ρ doubling Vilmos Totik (SZTE and USF) Polynomials 24 / *

Rough spacing of zeros Erdős and Turán had many results in 1930-40 s on rough spacing Mastroianni-T., 2005: rough spacing ρ doubling ρ is doubling if ρ(2i) Cρ(I) for I [ 1,1] Vilmos Totik (SZTE and USF) Polynomials 24 / *

Fine zero spacing Vilmos Totik (SZTE and USF) Polynomials 25 / *

Fine zero spacing Th. (Erdős-Turán, 1940) If w > 0 continuous on [ 1,1], then θ j 1 θ j π n θ j [ǫ,π ǫ] (2) Vilmos Totik (SZTE and USF) Polynomials 25 / *

Fine zero spacing Th. (Erdős-Turán, 1940) If w > 0 continuous on [ 1,1], then θ j 1 θ j π n θ j [ǫ,π ǫ] (2) No longer true if w can vanish! Vilmos Totik (SZTE and USF) Polynomials 25 / *

Fine zero spacing Th. (Erdős-Turán, 1940) If w > 0 continuous on [ 1,1], then θ j 1 θ j π n θ j [ǫ,π ǫ] (2) No longer true if w can vanish! A form of universality in random matrix theory asymptotics for the kernel n p k (z +a/n)p k (z +b/n) a,b C k=0 Vilmos Totik (SZTE and USF) Polynomials 25 / *

Fine zero spacing Th. (Erdős-Turán, 1940) If w > 0 continuous on [ 1,1], then θ j 1 θ j π n θ j [ǫ,π ǫ] (2) No longer true if w can vanish! A form of universality in random matrix theory asymptotics for the kernel n p k (z +a/n)p k (z +b/n) a,b C k=0 Lubinsky, 2009: universality is true under the ρ Reg global condition and under local continuity and positivity condition Vilmos Totik (SZTE and USF) Polynomials 25 / *

Fine zero spacing Th. (Erdős-Turán, 1940) If w > 0 continuous on [ 1,1], then θ j 1 θ j π n θ j [ǫ,π ǫ] (2) No longer true if w can vanish! A form of universality in random matrix theory asymptotics for the kernel n p k (z +a/n)p k (z +b/n) a,b C k=0 Lubinsky, 2009: universality is true under the ρ Reg global condition and under local continuity and positivity condition Levin-Lubinsky: under these conditions (2) is true Vilmos Totik (SZTE and USF) Polynomials 25 / *

Universality fine zero spacing Vilmos Totik (SZTE and USF) Polynomials 26 / *

Universality fine zero spacing S the support of ρ, µ S the equilibrium measures of S Vilmos Totik (SZTE and USF) Polynomials 26 / *

Universality fine zero spacing S the support of ρ, µ S the equilibrium measures of S If I S is an interval, then dµ S (t) = ω S (t)dt Vilmos Totik (SZTE and USF) Polynomials 26 / *

Universality fine zero spacing S the support of ρ, µ S the equilibrium measures of S If I S is an interval, then dµ S (t) = ω S (t)dt Example: ω [ 1,1] (t) = 1 π 1 t 2 Vilmos Totik (SZTE and USF) Polynomials 26 / *

Universality fine zero spacing S the support of ρ, µ S the equilibrium measures of S If I S is an interval, then dµ S (t) = ω S (t)dt Example: ω [ 1,1] (t) = 1 π 1 t 2 Simon, T., 2010: ρ Reg and continuity and positivity of w(t) := dρ(t)/dt at an x Int(S) imply nω S (x)(x j+1 x j ) 1, x j x (3) Vilmos Totik (SZTE and USF) Polynomials 26 / *

Universality fine zero spacing S the support of ρ, µ S the equilibrium measures of S If I S is an interval, then dµ S (t) = ω S (t)dt Example: ω [ 1,1] (t) = 1 π 1 t 2 Simon, T., 2010: ρ Reg and continuity and positivity of w(t) := dρ(t)/dt at an x Int(S) imply nω S (x)(x j+1 x j ) 1, x j x (3) If log1/w L 1 (I), then (3) is true at almost all x I. Vilmos Totik (SZTE and USF) Polynomials 26 / *

Universality fine zero spacing S the support of ρ, µ S the equilibrium measures of S If I S is an interval, then dµ S (t) = ω S (t)dt Example: ω [ 1,1] (t) = 1 π 1 t 2 Simon, T., 2010: ρ Reg and continuity and positivity of w(t) := dρ(t)/dt at an x Int(S) imply nω S (x)(x j+1 x j ) 1, x j x (3) If log1/w L 1 (I), then (3) is true at almost all x I. Is (3)/universality true (say on [ 1, 1]) a.e. solely under the Erdős-Turán condition w > 0 a.e.? Vilmos Totik (SZTE and USF) Polynomials 26 / *

Critical points of polynomials Vilmos Totik (SZTE and USF) Polynomials 27 / *

Critical points of polynomials P n polynomial of degree n Vilmos Totik (SZTE and USF) Polynomials 27 / *

Critical points of polynomials P n polynomial of degree n z 1,...,z n zeros of P n, ξ 1,...,ξ n 1 zeros of P n Vilmos Totik (SZTE and USF) Polynomials 27 / *

Critical points of polynomials P n polynomial of degree n z 1,...,z n zeros of P n, ξ 1,...,ξ n 1 zeros of P n Gauss-Lucas, 1800 s: every ξ j is in the convex hull of {z 1,...,z n } Vilmos Totik (SZTE and USF) Polynomials 27 / *

Critical points of polynomials P n polynomial of degree n z 1,...,z n zeros of P n, ξ 1,...,ξ n 1 zeros of P n Gauss-Lucas, 1800 s: every ξ j is in the convex hull of {z 1,...,z n } Erdős-Niven, 1948: Vilmos Totik (SZTE and USF) Polynomials 27 / *

Critical points of polynomials P n polynomial of degree n z 1,...,z n zeros of P n, ξ 1,...,ξ n 1 zeros of P n Gauss-Lucas, 1800 s: every ξ j is in the convex hull of {z 1,...,z n } Erdős-Niven, 1948: 1 n 1 Iξ j 1 n 1 n 1 n Iz k 1 Vilmos Totik (SZTE and USF) Polynomials 27 / *

Critical points of polynomials P n polynomial of degree n z 1,...,z n zeros of P n, ξ 1,...,ξ n 1 zeros of P n Gauss-Lucas, 1800 s: every ξ j is in the convex hull of {z 1,...,z n } Erdős-Niven, 1948: 1 n 1 Iξ j 1 n 1 n 1 n Iz k 1 1 n 1 ξ j 1 n 1 n 1 n z k 1 Vilmos Totik (SZTE and USF) Polynomials 27 / *

Critical points of polynomials P n polynomial of degree n z 1,...,z n zeros of P n, ξ 1,...,ξ n 1 zeros of P n Gauss-Lucas, 1800 s: every ξ j is in the convex hull of {z 1,...,z n } Erdős-Niven, 1948: 1 n 1 Iξ j 1 n 1 n 1 n Iz k 1 de Bruijn-Springer: 1 n 1 ξ j 1 n 1 n 1 1 n 1 ξ j m 1 n 1 n 1 n z k 1 n z k m 1 Vilmos Totik (SZTE and USF) Polynomials 27 / *

Conjectures on majorization Vilmos Totik (SZTE and USF) Polynomials 28 / *

Conjectures on majorization de Bruijn-Springer conjecture (1948): if ϕ : C R + is convex, then 1 n 1 ϕ(ξ j ) 1 n 1 n 1 n ϕ(z k ) 1 Vilmos Totik (SZTE and USF) Polynomials 28 / *

Conjectures on majorization de Bruijn-Springer conjecture (1948): if ϕ : C R + is convex, then 1 n 1 ϕ(ξ j ) 1 n 1 n 1 n ϕ(z k ) 1 Very strong property, ( theory of majorization ; Weyl, Birkhoff, Hardy-Littlewood-Pólya) Vilmos Totik (SZTE and USF) Polynomials 28 / *

Conjectures on majorization de Bruijn-Springer conjecture (1948): if ϕ : C R + is convex, then 1 n 1 ϕ(ξ j ) 1 n 1 n 1 n ϕ(z k ) 1 Very strong property, ( theory of majorization ; Weyl, Birkhoff, Hardy-Littlewood-Pólya) Many other conjectures (by Schoenberg, Katroprinakis,...) on the relation of the z k s and ξ j s Vilmos Totik (SZTE and USF) Polynomials 28 / *

The Malamud-Pereira theorem An (n 1) n A = (a ij ) matrix is doubly stochastic if Vilmos Totik (SZTE and USF) Polynomials 29 / *

The Malamud-Pereira theorem An (n 1) n A = (a ij ) matrix is doubly stochastic if a ij 0, Vilmos Totik (SZTE and USF) Polynomials 29 / *

The Malamud-Pereira theorem An (n 1) n A = (a ij ) matrix is doubly stochastic if a ij 0, each row-sum equals 1 Vilmos Totik (SZTE and USF) Polynomials 29 / *

The Malamud-Pereira theorem An (n 1) n A = (a ij ) matrix is doubly stochastic if a ij 0, each row-sum equals 1 each column-sum equals (n 1)/n Vilmos Totik (SZTE and USF) Polynomials 29 / *

The Malamud-Pereira theorem An (n 1) n A = (a ij ) matrix is doubly stochastic if Let a ij 0, each row-sum equals 1 each column-sum equals (n 1)/n Z = z 1. z n Ξ = ξ 1. ξ n 1 Vilmos Totik (SZTE and USF) Polynomials 29 / *

The Malamud-Pereira theorem An (n 1) n A = (a ij ) matrix is doubly stochastic if Let a ij 0, each row-sum equals 1 each column-sum equals (n 1)/n Z = z 1. z n Ξ = ξ 1. ξ n 1 Th. (Malamud, Pereira, 2003) There is a doubly stochastic matrix A such that Ξ = AZ Vilmos Totik (SZTE and USF) Polynomials 29 / *

Gauss-Lucas, de Brjuin-Springer etc. are all immediate consequences: Vilmos Totik (SZTE and USF) Polynomials 30 / *

Gauss-Lucas, de Brjuin-Springer etc. are all immediate consequences: ξ j = k a jkz k Vilmos Totik (SZTE and USF) Polynomials 30 / *

Gauss-Lucas, de Brjuin-Springer etc. are all immediate consequences: ξ j = k a jkz k 1 n 1 j ϕ(ξ j ) 1 n 1 a jk ϕ(z k ) j k Vilmos Totik (SZTE and USF) Polynomials 30 / *

Gauss-Lucas, de Brjuin-Springer etc. are all immediate consequences: ξ j = k a jkz k 1 n 1 j = 1 n 1 ϕ(ξ j ) 1 n 1 ϕ(z k ) j k a jk ϕ(z k ) j k a jk = 1 ϕ(z k ) n k Vilmos Totik (SZTE and USF) Polynomials 30 / *

Gauss-Lucas, de Brjuin-Springer etc. are all immediate consequences: ξ j = k a jkz k 1 n 1 j = 1 n 1 ϕ(ξ j ) 1 n 1 ϕ(z k ) j k a jk ϕ(z k ) j k a jk = 1 ϕ(z k ) n k Examples: 1) 1 n 1 Rξ j m 1 n 1 n 1 n Rz k m 1 Vilmos Totik (SZTE and USF) Polynomials 30 / *

Gauss-Lucas, de Brjuin-Springer etc. are all immediate consequences: ξ j = k a jkz k 1 n 1 j = 1 n 1 ϕ(ξ j ) 1 n 1 ϕ(z k ) j k a jk ϕ(z k ) j k a jk = 1 ϕ(z k ) n k Examples: 1) 1 n 1 Rξ j m 1 n 1 n 1 n Rz k m 1 2) If all zeros lie in the upper-half plane, then Vilmos Totik (SZTE and USF) Polynomials 30 / *

Gauss-Lucas, de Brjuin-Springer etc. are all immediate consequences: ξ j = k a jkz k 1 n 1 j = 1 n 1 ϕ(ξ j ) 1 n 1 ϕ(z k ) j k a jk ϕ(z k ) j k a jk = 1 ϕ(z k ) n k Examples: 1) 1 n 1 Rξ j m 1 n 1 n 1 n Rz k m 1 2) If all zeros lie in the upper-half plane, then ( n ) 1/n Iz k 1 ( n 1 1 Iξ j ) 1/(n 1) Vilmos Totik (SZTE and USF) Polynomials 30 / *

Gauss-Lucas, de Brjuin-Springer etc. are all immediate consequences: ξ j = k a jkz k 1 n 1 j = 1 n 1 ϕ(ξ j ) 1 n 1 ϕ(z k ) j k a jk ϕ(z k ) j k a jk = 1 ϕ(z k ) n k Examples: 1) 1 n 1 Rξ j m 1 n 1 n 1 n Rz k m 1 2) If all zeros lie in the upper-half plane, then ( n ) 1/n Iz k 1 ( n 1 1 Iξ j ) 1/(n 1) Vilmos Totik (SZTE and USF) Polynomials 30 / *