Lecture 4: BK inequality 27th August and 6th September, 2007
|
|
|
- Maurice Anderson
- 10 years ago
- Views:
Transcription
1 CSL866: Percolation and Random Graphs IIT Delhi Amitabha Bagchi Scribe: Arindam Pal Lecture 4: BK inequality 27th August and 6th September, Preliminaries The FKG inequality allows us to lower bound the probability of the intersection of two increasing events. However, getting a general upper bound is difficult. So we try to upper bound a different kind of event which is contained in the intersection. Let us try and motivate this through an example. In this lecture unless otherwise stated, all paths mentioned are open paths. Given x, y, u, v Z 2, we define the following events: A : There exists a path between the nodes x and y B : There exists a path between the nodes u and v A B : There exists a path between the nodes x and y and a path between u and v Note that for an outcome that satisfies the event A B, the two paths in question might overlap on some edges (we focus only on edge overlaps not on vertext overlaps). However, we can think of a subset of these outcomes where this is not the case. We use the notation A B to denote this i.e. we define A B as the event where the edges used by the x y path are disjoint from those used by the u v path. It is easy to see that which implies that A B A B, P(A B) P(A B). Let us try to formalize this notation. Given an outcome ω Ω, recall that K(ω) = {e : ω(e) = }. Then, we can say that for increasing events A and B, ω A B, if there exists ω, ω 2 such that,
2 ω A, ω 2 B K(ω ) K(ω 2 ) = K(ω ) K(ω 2 ) K(ω) i.e. the set of open edges of ω can be partitioned into two parts such that the two events involved can be satisfied by assigning one partition each to them and giving them use only of the edges in that partition. Why have we constrained this definition to increasing events? Consider the following non-increasing events: E : There exists an even number of open edges. O : There exists an odd number of open edges. Here, E O =, but E O. Take ω, ω, ω 2 such that K(ω) = 7, K(ω ) = 0 and K(ω 2 ) = BK inequality We will mainly use the BK inequality in the bond percolation setting, but let us state it in slightly more general way. Given a positive integer m, let Γ = m i= {0, } and F be the set of all subsets of Γ. Let P be a product measure on (Γ, F) with density p(i) on the i-th coordinate of vectors on Γ i.e. defining µ i () = p(i) and µ i (0) = p(i), P = m µ i. i= The following result, proved by van den Berg and Kesten in 985, is referred to as the BK inequality Theorem 4. (BK Inequality)For two increasing events A and B, P(A B) P(A) P(B). 2
3 Proof. We begin by taking the probability space (Γ, F, P) and producing two identical copies of it: S = (Γ, F, P ) and S 2 = (Γ 2, F 2, P 2 ). The product space of these two spaces, S is defined as S = S S 2 = (Γ Γ 2, F F 2, P 2 ), where P 2 = P P 2 i.e. if A F, and A 2 F 2, then A 2 = A A 2 F F 2, and P(A 2 ) = P (A )P 2 (A 2 ). We will write x y for a typical point in Γ Γ 2 with x = (x,...,x m ) being a point in Γ and y = (y,...,y m ) Γ 2. Based on the two increasing events A, B in the original space (Γ, F, P), we define the following events in the product space: A is the set of all points x y Γ Γ 2 such that x A. Note that A = A Γ 2. Also, B k is the set of all points x y such that the composite vector (y,...,y k, x k+,...,x m ) B, 0 k m. Let us take an example. Consider the event B = {00, 0,, 0}. In words we can say that B is the event that the second and third component of the outcome vector are both. Then, (0000, ) B 3 because the composite vector for the subscript 3 is 0 which has the required condition. On the other hand (0000, ) is not in B because the composite vector in that case is 000. Note that, B 0 = B Γ 2 i.e. the set of point x y Γ Γ 2 such that x B in the original space Γ. Hence we can now see that P(A B) = P 2 (A B 0) () Similarly, B m = Γ B. And this implies that A B m = A B m since the two events A and B m depend on disjoint sets of points. Using this fact and the fact that P 2 is a product measure we get, P 2 (A B m) = P 2 (A B m) (2) = P 2 ((A Γ 2 ) (Γ B)) (3) = P(A)P(B) (4) In order to complete the proof we relate P 2 (A B 0 ) and P 2(A B m ) in the following way: 3
4 E F Figure : A pictorial depiction of Γ Γ 2. A is the event that there is at least one. B is the same as A. E = (A B 2 )\(A B ), F = (A B ) (A B 2) = A B. Claim 4.2 P 2 (A B k ) P 2(A B k ), for k m. If this claim holds, it follows from () and (2-4) that P(A B) = P 2 (A B 0 ) P 2(A B m ) = P(A)P(B). And this completes the proof of the BK inequality. We have omitted the proof of Claim 4.2 here. But let us try and understand the intuition behind it. Let us take m = 3 i.e. Γ is a sample space with 8 possible outcomes, each a vector with 3 components. Define the event A as follows : At least one of the components is. We define the event B to be identical to A. In Figure we pictorially depict the outcomes corresponding to A B and A B 2. The reader can verify that we find that A B is properly contained in A B 2. We do not claim that this is always true, but it gives us an idea of the direction the proof would take. 4
5 Figure 2: Path crossing B(m) to reach B(m + k) 4.3 Applications of BK inequality 4.3. Example Suppose X is a random variable and P[X > n] = k(α)/n α. Then, lim n P[X > n] = 0. If α, E[X] = n= P[X > n] as n. Let, χ(p) = E p ( C ). Denote by B(n), the boundary of the box B(n). Let x y denote that there is an open path between x and y. Then, we have the following theorem. Theorem 4.3 If χ(p) <, there exists σ(p) > 0 such that, P p [0 B(n)] e nσ(p). Proof. Let the random variable N n be the number of nodes of B(n) to which the origin is connected. For x B(n), define τ p (0, x) = P p [0 x]. Then, E p [N n ] = x B(n) τ p(0, x). It follows that, 0 B(m + k) 5 (0 x) (x B(k, x))
6 In Figure 2, B(k, x) is the box centered at x B(m) of side length 2k. The above relationship holds because a path from the origin to a point on the boundary of B(m + k) must intersect the boundary of B(m) at some point x and from x there will be another path to a point on the boundary of B(k, x). Note that these paths are edge-disjoint. But not all paths of the latter type are of the former type (e.g. when the path ends inside B(m+k)). Hence, the former is a subset of the latter. From this we get, P p [0 B(m + k)] P p [(0 x) (x B(k, x))] = = P p [0 B(k)] P p [0 x] P p [x B(k, x)] τ p (0, x) P p [0 B(k)] = E p [N m ] P p [0 B(k)]. τ p (0, x) The inequality on the second line follows from BK inequality, and the equality on the third line follows from translation invariance. Now we are going to establish the relation between E p [N n ] and χ(p). E p [N n ] = n= = n= x B(n) n= x B(n) = E p ( C ) = χ(p). τ p (0, x) E p [C x ] Since, n= E p[n n ] <, lim n E p [N n ] = 0. Choose an m such that, η = E p [N m ] <. Suppose, n = rm + s, where r 0, 0 s < m. P p [0 B(n)] P p [0 B(rm )] ηp p [0 B((r )m )] 6
7 ... η r P p [0 B(0)] η (+ n ) m = e nσ(p). Here, σ(p) = f(m ) is only a function of p independent of n Example 2 Consider the network G depicted in Figure 3. There are n nodes from s to t. Each node is connected to its two neighbours by log n paralell edges. s... t Figure 3: A multi-edged network Now suppose each edge is removed with probability /2, to give a network G. Problem Prove that the min cut between s and t in G is at most log n/2 with probability Θ( n ǫ ) for some non-negative ǫ. What is the value of ǫ? Solution. We are assuming that all logarithms are in base 2. If the base is different, some coefficients may change. Lets define the following events. A : There exists at least one s t path. A k : There exist at least k edge-disjoint s t paths. Then, A k = A... A (k times). Since A is an increasing event, by BK inequality, P(A k ) P(A) k 7
8 Let the vertices of the graph be numbered as s = v, v 2,..., v n, v n = t (from the left). There exists an s t path if and only if there is at least one edge between each of the nodes v i and v i+ for i n. Let B i denote this event. Then, B i = 2 log n = n, as is the probability that all the log n edges will be removed. 2 log n Now, A = n and the B i s are independent of each other. Therefore, i= i= i= n n ( P(A) = P(B i ) = ) ( = n. n n) We know that for n 2, Hence, P(A) = Setting k = log n/2 we get, By Menger s Theorem, B i ( ) n n 2. P(A k ) P(A) k 2 k. P(A log n/2 ) (2 log n ) /2 = n /2. Size of a minimum s t cut = Maximum number of edge-disjoint s t paths From the above discussion, the probability that the number of edgedisjoint s t paths is at most log n/2 is Θ ( ) n. Hence, the min-cut /2 between s and t in G is at most log n/2 with probability Θ ( ) n, implying ǫ =. /2 2 8
Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh
Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem
ALMOST COMMON PRIORS 1. INTRODUCTION
ALMOST COMMON PRIORS ZIV HELLMAN ABSTRACT. What happens when priors are not common? We introduce a measure for how far a type space is from having a common prior, which we term prior distance. If a type
Proximal mapping via network optimization
L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:
The Goldberg Rao Algorithm for the Maximum Flow Problem
The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }
Every tree contains a large induced subgraph with all degrees odd
Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University
2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete
Triangle deletion. Ernie Croot. February 3, 2010
Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,
6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
Pacific Journal of Mathematics
Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000
SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
Markov random fields and Gibbs measures
Chapter Markov random fields and Gibbs measures 1. Conditional independence Suppose X i is a random element of (X i, B i ), for i = 1, 2, 3, with all X i defined on the same probability space (.F, P).
Lecture 16 : Relations and Functions DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence
x a x 2 (1 + x 2 ) n.
Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number
arxiv:1112.0829v1 [math.pr] 5 Dec 2011
How Not to Win a Million Dollars: A Counterexample to a Conjecture of L. Breiman Thomas P. Hayes arxiv:1112.0829v1 [math.pr] 5 Dec 2011 Abstract Consider a gambling game in which we are allowed to repeatedly
1 Approximating Set Cover
CS 05: Algorithms (Grad) Feb 2-24, 2005 Approximating Set Cover. Definition An Instance (X, F ) of the set-covering problem consists of a finite set X and a family F of subset of X, such that every elemennt
Principle of Data Reduction
Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then
The Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
1 The Line vs Point Test
6.875 PCP and Hardness of Approximation MIT, Fall 2010 Lecture 5: Low Degree Testing Lecturer: Dana Moshkovitz Scribe: Gregory Minton and Dana Moshkovitz Having seen a probabilistic verifier for linearity
Offline sorting buffers on Line
Offline sorting buffers on Line Rohit Khandekar 1 and Vinayaka Pandit 2 1 University of Waterloo, ON, Canada. email: [email protected] 2 IBM India Research Lab, New Delhi. email: [email protected]
A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries
Acta Math. Univ. Comenianae Vol. LXVI, 2(1997), pp. 285 291 285 A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE E. T. BASKORO, M. MILLER and J. ŠIRÁŇ Abstract. It is well known that Moore digraphs do
Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar
Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples
Definition 11.1. Given a graph G on n vertices, we define the following quantities:
Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define
Approximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding
Lecture 2: Universality
CS 710: Complexity Theory 1/21/2010 Lecture 2: Universality Instructor: Dieter van Melkebeek Scribe: Tyson Williams In this lecture, we introduce the notion of a universal machine, develop efficient universal
(67902) Topics in Theory and Complexity Nov 2, 2006. Lecture 7
(67902) Topics in Theory and Complexity Nov 2, 2006 Lecturer: Irit Dinur Lecture 7 Scribe: Rani Lekach 1 Lecture overview This Lecture consists of two parts In the first part we will refresh the definition
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various
DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS
DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS ASHER M. KACH, KAREN LANGE, AND REED SOLOMON Abstract. We construct two computable presentations of computable torsion-free abelian groups, one of isomorphism
Stationary random graphs on Z with prescribed iid degrees and finite mean connections
Stationary random graphs on Z with prescribed iid degrees and finite mean connections Maria Deijfen Johan Jonasson February 2006 Abstract Let F be a probability distribution with support on the non-negative
Lecture 17 : Equivalence and Order Relations DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion
THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok
THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE Alexer Barvinok Papers are available at http://www.math.lsa.umich.edu/ barvinok/papers.html This is a joint work with J.A. Hartigan
E3: PROBABILITY AND STATISTICS lecture notes
E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................
Fairness in Routing and Load Balancing
Fairness in Routing and Load Balancing Jon Kleinberg Yuval Rabani Éva Tardos Abstract We consider the issue of network routing subject to explicit fairness conditions. The optimization of fairness criteria
Bargaining Solutions in a Social Network
Bargaining Solutions in a Social Network Tanmoy Chakraborty and Michael Kearns Department of Computer and Information Science University of Pennsylvania Abstract. We study the concept of bargaining solutions,
Labeling outerplanar graphs with maximum degree three
Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics
Practice Problems for Homework #6. Normal distribution and Central Limit Theorem.
Practice Problems for Homework #6. Normal distribution and Central Limit Theorem. 1. Read Section 3.4.6 about the Normal distribution and Section 4.7 about the Central Limit Theorem. 2. Solve the practice
8.1 Min Degree Spanning Tree
CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree
Collinear Points in Permutations
Collinear Points in Permutations Joshua N. Cooper Courant Institute of Mathematics New York University, New York, NY József Solymosi Department of Mathematics University of British Columbia, Vancouver,
MATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
4. Expanding dynamical systems
4.1. Metric definition. 4. Expanding dynamical systems Definition 4.1. Let X be a compact metric space. A map f : X X is said to be expanding if there exist ɛ > 0 and L > 1 such that d(f(x), f(y)) Ld(x,
Probability for Estimation (review)
Probability for Estimation (review) In general, we want to develop an estimator for systems of the form: x = f x, u + η(t); y = h x + ω(t); ggggg y, ffff x We will primarily focus on discrete time linear
MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...
MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................
Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs
CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like
1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,
1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It
Math 181 Handout 16. Rich Schwartz. March 9, 2010
Math 8 Handout 6 Rich Schwartz March 9, 200 The purpose of this handout is to describe continued fractions and their connection to hyperbolic geometry. The Gauss Map Given any x (0, ) we define γ(x) =
SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov
Serdica Math. J. 30 (2004), 95 102 SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS Nickolay Khadzhiivanov, Nedyalko Nenov Communicated by V. Drensky Abstract. Let Γ(M) where M V (G) be the set of all vertices
The Ergodic Theorem and randomness
The Ergodic Theorem and randomness Peter Gács Department of Computer Science Boston University March 19, 2008 Peter Gács (Boston University) Ergodic theorem March 19, 2008 1 / 27 Introduction Introduction
Chapter 4 - Lecture 1 Probability Density Functions and Cumul. Distribution Functions
Chapter 4 - Lecture 1 Probability Density Functions and Cumulative Distribution Functions October 21st, 2009 Review Probability distribution function Useful results Relationship between the pdf and the
Homework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
Modeling and Performance Evaluation of Computer Systems Security Operation 1
Modeling and Performance Evaluation of Computer Systems Security Operation 1 D. Guster 2 St.Cloud State University 3 N.K. Krivulin 4 St.Petersburg State University 5 Abstract A model of computer system
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010
CS 598CSC: Combinatorial Optimization Lecture date: /4/010 Instructor: Chandra Chekuri Scribe: David Morrison Gomory-Hu Trees (The work in this section closely follows [3]) Let G = (V, E) be an undirected
No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics
No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results
ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD. 1. Introduction
ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD A.D. SCOTT Abstract. Gallai proved that the vertex set of any graph can be partitioned into two sets, each inducing a subgraph with all degrees even. We prove
All trees contain a large induced subgraph having all degrees 1 (mod k)
All trees contain a large induced subgraph having all degrees 1 (mod k) David M. Berman, A.J. Radcliffe, A.D. Scott, Hong Wang, and Larry Wargo *Department of Mathematics University of New Orleans New
Stochastic Inventory Control
Chapter 3 Stochastic Inventory Control 1 In this chapter, we consider in much greater details certain dynamic inventory control problems of the type already encountered in section 1.3. In addition to the
3.1 Solving Systems Using Tables and Graphs
Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system
A simple criterion on degree sequences of graphs
Discrete Applied Mathematics 156 (2008) 3513 3517 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note A simple criterion on degree
A Turán Type Problem Concerning the Powers of the Degrees of a Graph
A Turán Type Problem Concerning the Powers of the Degrees of a Graph Yair Caro and Raphael Yuster Department of Mathematics University of Haifa-ORANIM, Tivon 36006, Israel. AMS Subject Classification:
PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents
Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents William H. Sandholm January 6, 22 O.. Imitative protocols, mean dynamics, and equilibrium selection In this section, we consider
LECTURE 4. Last time: Lecture outline
LECTURE 4 Last time: Types of convergence Weak Law of Large Numbers Strong Law of Large Numbers Asymptotic Equipartition Property Lecture outline Stochastic processes Markov chains Entropy rate Random
Section 9.5: Equations of Lines and Planes
Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that
SMT 2014 Algebra Test Solutions February 15, 2014
1. Alice and Bob are painting a house. If Alice and Bob do not take any breaks, they will finish painting the house in 20 hours. If, however, Bob stops painting once the house is half-finished, then the
Random graphs with a given degree sequence
Sourav Chatterjee (NYU) Persi Diaconis (Stanford) Allan Sly (Microsoft) Let G be an undirected simple graph on n vertices. Let d 1,..., d n be the degrees of the vertices of G arranged in descending order.
INTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,
Notes on Determinant
ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without
Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}.
Walrasian Demand Econ 2100 Fall 2015 Lecture 5, September 16 Outline 1 Walrasian Demand 2 Properties of Walrasian Demand 3 An Optimization Recipe 4 First and Second Order Conditions Definition Walrasian
Message-passing sequential detection of multiple change points in networks
Message-passing sequential detection of multiple change points in networks Long Nguyen, Arash Amini Ram Rajagopal University of Michigan Stanford University ISIT, Boston, July 2012 Nguyen/Amini/Rajagopal
Scheduling Real-time Tasks: Algorithms and Complexity
Scheduling Real-time Tasks: Algorithms and Complexity Sanjoy Baruah The University of North Carolina at Chapel Hill Email: [email protected] Joël Goossens Université Libre de Bruxelles Email: [email protected]
Smooth functions statistics
Smooth functions statistics V. I. rnold To describe the topological structure of a real smooth function one associates to it the graph, formed by the topological variety, whose points are the connected
On Integer Additive Set-Indexers of Graphs
On Integer Additive Set-Indexers of Graphs arxiv:1312.7672v4 [math.co] 2 Mar 2014 N K Sudev and K A Germina Abstract A set-indexer of a graph G is an injective set-valued function f : V (G) 2 X such that
Conductance, the Normalized Laplacian, and Cheeger s Inequality
Spectral Graph Theory Lecture 6 Conductance, the Normalized Laplacian, and Cheeger s Inequality Daniel A. Spielman September 21, 2015 Disclaimer These notes are not necessarily an accurate representation
Probability Theory. Florian Herzog. A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T..
Probability Theory A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T.. Florian Herzog 2013 Probability space Probability space A probability space W is a unique triple W = {Ω, F,
A Practical Scheme for Wireless Network Operation
A Practical Scheme for Wireless Network Operation Radhika Gowaikar, Amir F. Dana, Babak Hassibi, Michelle Effros June 21, 2004 Abstract In many problems in wireline networks, it is known that achieving
Maximum Likelihood Estimation
Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
PERCOLATION AND RANDOM GRAPHS
1 PERCOLATION AND RANDOM GRAPHS Remco van der Hofstad Department of Mathematics and Computer Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands. Abstract In this
Gambling Systems and Multiplication-Invariant Measures
Gambling Systems and Multiplication-Invariant Measures by Jeffrey S. Rosenthal* and Peter O. Schwartz** (May 28, 997.. Introduction. This short paper describes a surprising connection between two previously
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability
CS 7 Discrete Mathematics and Probability Theory Fall 29 Satish Rao, David Tse Note 8 A Brief Introduction to Continuous Probability Up to now we have focused exclusively on discrete probability spaces
Chapter 3. Distribution Problems. 3.1 The idea of a distribution. 3.1.1 The twenty-fold way
Chapter 3 Distribution Problems 3.1 The idea of a distribution Many of the problems we solved in Chapter 1 may be thought of as problems of distributing objects (such as pieces of fruit or ping-pong balls)
Mathematical Induction. Lecture 10-11
Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach
A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS
A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS Eusebio GÓMEZ, Miguel A. GÓMEZ-VILLEGAS and J. Miguel MARÍN Abstract In this paper it is taken up a revision and characterization of the class of
The Exponential Distribution
21 The Exponential Distribution From Discrete-Time to Continuous-Time: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding
Lecture 10: Depicting Sampling Distributions of a Sample Proportion
Lecture 10: Depicting Sampling Distributions of a Sample Proportion Chapter 5: Probability and Sampling Distributions 2/10/12 Lecture 10 1 Sample Proportion 1 is assigned to population members having a
CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
BOUNDARY EDGE DOMINATION IN GRAPHS
BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 0-4874, ISSN (o) 0-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 5(015), 197-04 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA
A threshold for the Maker-Breaker clique game
A threshold for the Maker-Breaker clique game Tobias Müller Miloš Stojaković October 7, 01 Abstract We study the Maker-Breaker k-clique game played on the edge set of the random graph G(n, p. In this game,
AN ALGORITHM FOR DETERMINING WHETHER A GIVEN BINARY MATROID IS GRAPHIC
AN ALGORITHM FOR DETERMINING WHETHER A GIVEN BINARY MATROID IS GRAPHIC W. T. TUTTE. Introduction. In a recent series of papers [l-4] on graphs and matroids I used definitions equivalent to the following.
The positive minimum degree game on sparse graphs
The positive minimum degree game on sparse graphs József Balogh Department of Mathematical Sciences University of Illinois, USA [email protected] András Pluhár Department of Computer Science University
