Random graphs with a given degree sequence
|
|
|
- Lucinda Hodge
- 10 years ago
- Views:
Transcription
1 Sourav Chatterjee (NYU) Persi Diaconis (Stanford) Allan Sly (Microsoft)
2 Let G be an undirected simple graph on n vertices. Let d 1,..., d n be the degrees of the vertices of G arranged in descending order. The vector d := (d 1,..., d n ) is called the degree sequence of G. Equivalently, one can consider the degree distribution, i.e. the probability measure that puts mass 1/n at each d i. Vast interest in degree distributions of real-world graphs in recent times. One approach: study graphs that are chosen uniformly from the set of all graphs on a given set of vertices with a given degree sequence. What does such a random graph look like? We give a rather precise answer to this question in the dense case, i.e. where the degrees are comparable to the number of vertices.
3 Some remarks Real world graphs are usually sparse; this is a gap between our theory and the practical situation. There is a closely related line of work due to Barvinok & Hartigan, with important similarities and differences (will come back to this later). There is intensive use of statistical methodology in our work, which is otherwise graph-theoretic in nature. Hence suitable for a statistical audience.
4 Towards a precise formulation of the question Let F n be a degree distribution for an n-vertex graph, normalized by n so that it is supported in [0, 1]. Let G n be a (uniformly chosen) random graph with degree distribution F n. Suppose that F n converges to a limit distribution F as n tends to infinity. What is the limit of G n? To answer this question, we need a theory of graph limits.
5 An abstract topological space of graphs Beautiful unifying theory developed by Lovász and coauthors (listed in order of frequency: V. T. Sós, B. Szegedy, C. Borgs, J. Chayes, K. Vesztergombi, A. Schrijver and M. Freedman). Related to earlier works of Aldous, Hoover, Kallenberg. Let G n be a sequence of simple graphs whose number of nodes tends to infinity. For every fixed simple graph H, let hom(h, G) denote the number of homomorphisms of H into G (i.e. edge-preserving maps V (H) V (G), where V (H) and V (G) are the vertex sets). This number is normalized to get the homomorphism density t(h, G) := hom(h, G). V (G) V (H) This gives the probability that a random mapping V (H) V (G) is a homomorphism.
6 Abstract space of graphs contd. Suppose that t(h, G n ) tends to a limit t(h) for every H. Then Lovász & Szegedy proved that there is a natural limit object in the form of a function f W, where W is the space of all measurable functions from [0, 1] 2 into [0, 1] that satisfy f (x, y) = f (y, x) for all x, y. Conversely, every such function arises as the limit of an appropriate graph sequence. This limit object determines all the limits of subgraph densities: if H is a simple graph with k vertices, then t(h, f ) = f (x i, x j ) dx 1 dx k. [0,1] k (i,j) E(H) A sequence of graphs {G n } n 1 is said to converge to f if for every finite simple graph H, lim t(h, G n) = t(h, f ). n
7 Example For any fixed graph H, t(h, G(n, p)) p E(H) almost surely as n. On the other hand, if f is the function that is identically equal to p, then t(h, f ) = p E(H). Thus, the sequence of random graphs G(n, p) converges almost surely to the non-random limit function f (x, y) p as n.
8 Abstract space of graphs contd. The elements of W are sometimes called graphons. A finite simple graph G on n vertices can also be represented as a graphon f G is a natural way: { f G 1 if ( nx, ny ) is an edge in G, (x, y) = 0 otherwise. Note that this allows all simple graphs, irrespective of the number of vertices, to be represented as elements of the single abstract space W. So, what is the topology on this space?
9 The cut metric For any f, g W, Frieze and Kannan defined the cut distance: d (f, g) := sup [f (x, y) g(x, y)]dxdy. S,T [0,1] S T Introduce an equivalence relation on W: say that f g if f (x, y) = g σ (x, y) := g(σx, σy) for some measure preserving bijection σ of [0, 1]. Denote by g the closure in (W, d ) of the orbit {g σ }. The quotient space is denoted by W and τ denotes the natural map g g. Since d is invariant under σ one can define on W the natural distance δ by δ ( f, g) := inf σ d (f, g σ ) = inf σ d (f σ, g) = inf σ 1,σ 2 d (f σ1, g σ2 ) making ( W, δ ) into a metric space.
10 Cut metric and graph limits To any finite graph G, we associate the natural graphon f G and its orbit G = τf G = f G W. One of the key results of the is the following: Theorem (Borgs, Chayes, Lovász, Sós & Vesztergombi) A sequence of graphs {G n } n 1 converges to a limit f W if and only if δ ( G n, f ) 0 as n. Remark: Besides subgraph counts, many other interesting functions are continuous with respect to this topology, e.g. see the survey by Austin & Tao.
11 Scaling limit of degree sequences Suppose that for each n, a degree sequence d n = (d n 1,..., d n n ) is given, where d n 1 d n 2 d n n. Suppose that there is a non-increasing function f on [0, 1] such that 1 n lim d n ( ) i i n n n f = 0, n i=1 and d n 1 /n f (0), d n n /n f (1). The first condition is equivalent to: D n /n f (U) in distribution, where D n is a randomly (uniformly) chosen di n and U is uniformly distributed on [0, 1]. The need to control d n 1 and d n n arises from the need to eliminate outlier vertices that connect to almost all nodes or almost no nodes.
12 The space of scaling limits of degree sequences Let D [0, 1] denote the set of all left-continuous non-increasing functions on [0, 1], endowed with the topology induced by a modified L 1 norm: f 1 := f (0) + f (1) f (x) dx. The set of all possible scaling limits of degree sequences is a subset of D [0, 1]. Let F denote this set. Then F is a closed subset of D [0, 1] under the modified L 1 norm. Moreover, F has non-empty interior, and the interior can be described in an explicit form.
13 The interior of F From previous slide: F is the space of all possible scaling limits of degree sequences, carrying the topology of the modified L 1 norm. Proposition (Chatterjee-Diaconis-Sly) A function f : [0, 1] [0, 1] in D [0, 1] belongs to the interior of F if and only if (i) there are two constants c 1 > 0 and c 2 < 1 such that c 1 f (x) c 2 for all x [0, 1], and (ii) for each x (0, 1], 1 x x min{f (y), x}dy + x 2 f (y)dy > 0. 0
14 Connection with the Erdős-Gallai criterion Suppose d 1 d 2 d n are nonnegative integers. The Erdős-Gallai criterion says that d 1,..., d n is the degree sequence of a simple graph on n vertices if and only if n i=1 d i is even and for each 1 k n, k(k 1) + n i=k+1 min{d i, k} k d i 0. A degree sequence is in the interior of the convex hull of all possible length-n degree sequences if and only if strict inequality holds for all k. The Proposition in the previous slide is a limiting version of the Erdős-Gallai criterion. i=1
15 The main theorem Theorem (Chatterjee-Diaconis-Sly) Let G n be a random graph with given degree sequence d n. Suppose d n converges to a scaling limit f and suppose that f belongs to the interior of F. Then there exists a unique function g : [0, 1] R in D [0, 1] such that the function satisfies, for all x [0, 1], W (x, y) := f (x) = 1 0 eg(x)+g(y) 1 + e g(x)+g(y), W (x, y)dy. The sequence {G n } converges almost surely to the limit graph represented by the function W.
16 A statistical model Given β = (β 1,..., β n ) R n, let P β be the law of the undirected random graph on n vertices defined as follows: for each 1 i j n, put an edge between the vertices i and j with probability p ij := eβ i +β j 1 + e β, i +β j independently of all other edges. We call this the β-model. Then if G is a graph with degree sequence d 1,..., d n, the probability of observing G under P β is e P i β i d i / i<j (1 + eβ i +β j ). This model was considered by Holland & Lienhardt in the directed case, by Park & Newman and Blitzstein & Diaconis in the undirected case. Similar to the Bradley-Terry model for rankings. See Hunter (2004) for extensive references. It is also a simple version of a host of exponential models actively in use for analyzing network data.
17 Connection with our problem and a sketch of the proof Suppose G is a random graph with given a degree sequence d. Step 1: If we can find a well-behaved β such that the d is the expected degree sequence under the β-model, then a random graph drawn from the β-model is close to G in the cut metric with high probability. Step 2: If d is away from the boundary of the Erdős-Gallai polytope, then there exists such a β. Step 3: The β-model approximates the graph limit described in our main theorem if n is large. The proofs of all three steps are quite involved. In a sequence of papers produced at the same time as our work, Barvinok & Hartigan established Steps 1 and 3, although in a different language. We work out all three steps. On the other hand, the Barvinok-Hartigan results give finite sample error bounds and very precise asymptotics, while we only have limit theorems.
18 Maximum likelihood estimation in the β-model Suppose a random graph G is generated from the β-model, where β R n is unknown. The ML equations for β are: d i = j i e ˆβ i + ˆβ j 1 + e ˆβ i + ˆβ j, i = 1,..., n, where d 1,..., d n are the degrees in the observed graph G. Theorem (Chatterjee-Diaconis-Sly) Let L := max 1 i n β i. There is a constant C(L) depending only on L such that with probability at least 1 C(L)n 2, there exists a unique solution ˆβ of the ML equations, that satisfies max ˆβ i β i C(L) n 1 log n. 1 i n Thus, all n parameters may be estimated from a sample of size one!
19 Some remarks Similar consistency result for the Bradley-Terry model due to Simons & Yao (1999). Possible to get such a result because there are n(n 1)/2 independent random variables lurking in the background. Question: Is it possible to solve the ML equations quickly and deterministically? Answer: Yes, we have an easy algorithm. The algorithm is actually an important component of the proofs of the graph limit theorem and the consistency theorem.
20 The algorithm Let d 1,..., d n be the degrees in a particular realization of a random graph from a β-model. For 1 i n and x R n, let ϕ i (x) := log d i log j i 1 e x j + e x i. Let ϕ : R n R n be the function whose ith component is ϕ i. Theorem (Chatterjee-Diaconis-Sly) Suppose the ML equations have a solution ˆβ. Then ˆβ is a fixed point of ϕ and may be reached geometrically fast from any point in R n by iterative applications of ϕ. If the ML equations do not have a solution, then the iterates must have a divergent subsequence.
21 Simulation results Plot of ˆβ i versus β i for a graph with 100 vertices, where β 1,..., β n were chosen i.i.d. Unif [ 1, 1].
22 Simulations with a larger graph Plot of ˆβ i versus β i for a graph with 300 vertices, where β 1,..., β n were chosen i.i.d. Unif [ 1, 1]. The increased accuracy for larger n is clearly visible.
THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok
THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE Alexer Barvinok Papers are available at http://www.math.lsa.umich.edu/ barvinok/papers.html This is a joint work with J.A. Hartigan
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem
CSC2420 Fall 2012: Algorithm Design, Analysis and Theory
CSC2420 Fall 2012: Algorithm Design, Analysis and Theory Allan Borodin November 15, 2012; Lecture 10 1 / 27 Randomized online bipartite matching and the adwords problem. We briefly return to online algorithms
1. Prove that the empty set is a subset of every set.
1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: [email protected] Proof: For any element x of the empty set, x is also an element of every set since
Cycles and clique-minors in expanders
Cycles and clique-minors in expanders Benny Sudakov UCLA and Princeton University Expanders Definition: The vertex boundary of a subset X of a graph G: X = { all vertices in G\X with at least one neighbor
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,
Metric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
Metric Spaces. Chapter 1
Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence
The Advantages and Disadvantages of Online Linear Optimization
LINEAR PROGRAMMING WITH ONLINE LEARNING TATSIANA LEVINA, YURI LEVIN, JEFF MCGILL, AND MIKHAIL NEDIAK SCHOOL OF BUSINESS, QUEEN S UNIVERSITY, 143 UNION ST., KINGSTON, ON, K7L 3N6, CANADA E-MAIL:{TLEVIN,YLEVIN,JMCGILL,MNEDIAK}@BUSINESS.QUEENSU.CA
1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
Adaptive Online Gradient Descent
Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650
Stationary random graphs on Z with prescribed iid degrees and finite mean connections
Stationary random graphs on Z with prescribed iid degrees and finite mean connections Maria Deijfen Johan Jonasson February 2006 Abstract Let F be a probability distribution with support on the non-negative
Metric Spaces Joseph Muscat 2003 (Last revised May 2009)
1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of
(67902) Topics in Theory and Complexity Nov 2, 2006. Lecture 7
(67902) Topics in Theory and Complexity Nov 2, 2006 Lecturer: Irit Dinur Lecture 7 Scribe: Rani Lekach 1 Lecture overview This Lecture consists of two parts In the first part we will refresh the definition
Social Media Mining. Graph Essentials
Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures
2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD. 1. Introduction
ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD A.D. SCOTT Abstract. Gallai proved that the vertex set of any graph can be partitioned into two sets, each inducing a subgraph with all degrees even. We prove
Adaptive Linear Programming Decoding
Adaptive Linear Programming Decoding Mohammad H. Taghavi and Paul H. Siegel ECE Department, University of California, San Diego Email: (mtaghavi, psiegel)@ucsd.edu ISIT 2006, Seattle, USA, July 9 14, 2006
No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics
No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results
Lecture 4: BK inequality 27th August and 6th September, 2007
CSL866: Percolation and Random Graphs IIT Delhi Amitabha Bagchi Scribe: Arindam Pal Lecture 4: BK inequality 27th August and 6th September, 2007 4. Preliminaries The FKG inequality allows us to lower bound
MA651 Topology. Lecture 6. Separation Axioms.
MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples
Large induced subgraphs with all degrees odd
Large induced subgraphs with all degrees odd A.D. Scott Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, England Abstract: We prove that every connected graph of order
The mean field traveling salesman and related problems
Acta Math., 04 (00), 9 50 DOI: 0.007/s5-00-0046-7 c 00 by Institut Mittag-Leffler. All rights reserved The mean field traveling salesman and related problems by Johan Wästlund Chalmers University of Technology
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.
Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of
ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION. E. I. Pancheva, A. Gacovska-Barandovska
Pliska Stud. Math. Bulgar. 22 (2015), STUDIA MATHEMATICA BULGARICA ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION E. I. Pancheva, A. Gacovska-Barandovska Smirnov (1949) derived four
17.3.1 Follow the Perturbed Leader
CS787: Advanced Algorithms Topic: Online Learning Presenters: David He, Chris Hopman 17.3.1 Follow the Perturbed Leader 17.3.1.1 Prediction Problem Recall the prediction problem that we discussed in class.
A Network Flow Approach in Cloud Computing
1 A Network Flow Approach in Cloud Computing Soheil Feizi, Amy Zhang, Muriel Médard RLE at MIT Abstract In this paper, by using network flow principles, we propose algorithms to address various challenges
Ph.D. Thesis. Judit Nagy-György. Supervisor: Péter Hajnal Associate Professor
Online algorithms for combinatorial problems Ph.D. Thesis by Judit Nagy-György Supervisor: Péter Hajnal Associate Professor Doctoral School in Mathematics and Computer Science University of Szeged Bolyai
4. Expanding dynamical systems
4.1. Metric definition. 4. Expanding dynamical systems Definition 4.1. Let X be a compact metric space. A map f : X X is said to be expanding if there exist ɛ > 0 and L > 1 such that d(f(x), f(y)) Ld(x,
On an anti-ramsey type result
On an anti-ramsey type result Noga Alon, Hanno Lefmann and Vojtĕch Rödl Abstract We consider anti-ramsey type results. For a given coloring of the k-element subsets of an n-element set X, where two k-element
SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand
Notes V General Equilibrium: Positive Theory In this lecture we go on considering a general equilibrium model of a private ownership economy. In contrast to the Notes IV, we focus on positive issues such
Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling
Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph
Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs
CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like
On the Relationship between Classes P and NP
Journal of Computer Science 8 (7): 1036-1040, 2012 ISSN 1549-3636 2012 Science Publications On the Relationship between Classes P and NP Anatoly D. Plotnikov Department of Computer Systems and Networks,
Duality of linear conic problems
Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let
Copyright c 2009 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochastic process X = {X n : n 0}, a random time τ is a discrete random variable on the same probability space as
GRAPH THEORY LECTURE 4: TREES
GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection
SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov
Serdica Math. J. 30 (2004), 95 102 SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS Nickolay Khadzhiivanov, Nedyalko Nenov Communicated by V. Drensky Abstract. Let Γ(M) where M V (G) be the set of all vertices
DATA ANALYSIS II. Matrix Algorithms
DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where
Notes on metric spaces
Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.
Differentiating under an integral sign
CALIFORNIA INSTITUTE OF TECHNOLOGY Ma 2b KC Border Introduction to Probability and Statistics February 213 Differentiating under an integral sign In the derivation of Maximum Likelihood Estimators, or
Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis
Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.0, [email protected] Chapter 06: Network analysis Version: April 8, 04 / 3 Contents Chapter
A Turán Type Problem Concerning the Powers of the Degrees of a Graph
A Turán Type Problem Concerning the Powers of the Degrees of a Graph Yair Caro and Raphael Yuster Department of Mathematics University of Haifa-ORANIM, Tivon 36006, Israel. AMS Subject Classification:
Algorithm Design and Analysis
Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;
Let H and J be as in the above lemma. The result of the lemma shows that the integral
Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;
Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh
Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem
Monte Carlo Methods in Finance
Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction
Mean Ramsey-Turán numbers
Mean Ramsey-Turán numbers Raphael Yuster Department of Mathematics University of Haifa at Oranim Tivon 36006, Israel Abstract A ρ-mean coloring of a graph is a coloring of the edges such that the average
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
Message-passing sequential detection of multiple change points in networks
Message-passing sequential detection of multiple change points in networks Long Nguyen, Arash Amini Ram Rajagopal University of Michigan Stanford University ISIT, Boston, July 2012 Nguyen/Amini/Rajagopal
The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].
Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real
Induced subgraphs of Ramsey graphs with many distinct degrees
Journal of Combinatorial Theory, Series B 97 (2007) 62 69 www.elsevier.com/locate/jctb Induced subgraphs of Ramsey graphs with many distinct degrees Boris Bukh a, Benny Sudakov a,b a Department of Mathematics,
Convex analysis and profit/cost/support functions
CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m
LECTURE 4. Last time: Lecture outline
LECTURE 4 Last time: Types of convergence Weak Law of Large Numbers Strong Law of Large Numbers Asymptotic Equipartition Property Lecture outline Stochastic processes Markov chains Entropy rate Random
1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification)
Some N P problems Computer scientists have studied many N P problems, that is, problems that can be solved nondeterministically in polynomial time. Traditionally complexity question are studied as languages:
Tail inequalities for order statistics of log-concave vectors and applications
Tail inequalities for order statistics of log-concave vectors and applications Rafał Latała Based in part on a joint work with R.Adamczak, A.E.Litvak, A.Pajor and N.Tomczak-Jaegermann Banff, May 2011 Basic
On Integer Additive Set-Indexers of Graphs
On Integer Additive Set-Indexers of Graphs arxiv:1312.7672v4 [math.co] 2 Mar 2014 N K Sudev and K A Germina Abstract A set-indexer of a graph G is an injective set-valued function f : V (G) 2 X such that
On three zero-sum Ramsey-type problems
On three zero-sum Ramsey-type problems Noga Alon Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv, Israel and Yair Caro Department of Mathematics
THE SCHEDULING OF MAINTENANCE SERVICE
THE SCHEDULING OF MAINTENANCE SERVICE Shoshana Anily Celia A. Glass Refael Hassin Abstract We study a discrete problem of scheduling activities of several types under the constraint that at most a single
Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x
Lecture 4. LaSalle s Invariance Principle We begin with a motivating eample. Eample 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum Dynamics of a pendulum with friction can be written
9 More on differentiation
Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......
Protein Protein Interaction Networks
Functional Pattern Mining from Genome Scale Protein Protein Interaction Networks Young-Rae Cho, Ph.D. Assistant Professor Department of Computer Science Baylor University it My Definition of Bioinformatics
Exponential time algorithms for graph coloring
Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].
Variational approach to restore point-like and curve-like singularities in imaging
Variational approach to restore point-like and curve-like singularities in imaging Daniele Graziani joint work with Gilles Aubert and Laure Blanc-Féraud Roma 12/06/2012 Daniele Graziani (Roma) 12/06/2012
A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang
A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of Rou-Huai Wang 1. Introduction In this note we consider semistable
THE BANACH CONTRACTION PRINCIPLE. Contents
THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,
2DI36 Statistics. 2DI36 Part II (Chapter 7 of MR)
2DI36 Statistics 2DI36 Part II (Chapter 7 of MR) What Have we Done so Far? Last time we introduced the concept of a dataset and seen how we can represent it in various ways But, how did this dataset came
LOGNORMAL MODEL FOR STOCK PRICES
LOGNORMAL MODEL FOR STOCK PRICES MICHAEL J. SHARPE MATHEMATICS DEPARTMENT, UCSD 1. INTRODUCTION What follows is a simple but important model that will be the basis for a later study of stock prices as
Graphs without proper subgraphs of minimum degree 3 and short cycles
Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract
n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...
6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence
Class One: Degree Sequences
Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of
Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
BANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
The Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
Polytope Examples (PolyComp Fukuda) Matching Polytope 1
Polytope Examples (PolyComp Fukuda) Matching Polytope 1 Matching Polytope Let G = (V,E) be a graph. A matching in G is a subset of edges M E such that every vertex meets at most one member of M. A matching
Mathematical Methods of Engineering Analysis
Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three
3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
A scalable multilevel algorithm for graph clustering and community structure detection
A scalable multilevel algorithm for graph clustering and community structure detection Hristo N. Djidjev 1 Los Alamos National Laboratory, Los Alamos, NM 87545 Abstract. One of the most useful measures
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method
Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming
5 Directed acyclic graphs
5 Directed acyclic graphs (5.1) Introduction In many statistical studies we have prior knowledge about a temporal or causal ordering of the variables. In this chapter we will use directed graphs to incorporate
Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.
Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.
Quasi-static evolution and congested transport
Quasi-static evolution and congested transport Inwon Kim Joint with Damon Alexander, Katy Craig and Yao Yao UCLA, UW Madison Hard congestion in crowd motion The following crowd motion model is proposed
CHAPTER 9. Integer Programming
CHAPTER 9 Integer Programming An integer linear program (ILP) is, by definition, a linear program with the additional constraint that all variables take integer values: (9.1) max c T x s t Ax b and x integral
A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails
12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint
Master s Theory Exam Spring 2006
Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete
Scheduling a sequence of tasks with general completion costs
Scheduling a sequence of tasks with general completion costs Francis Sourd CNRS-LIP6 4, place Jussieu 75252 Paris Cedex 05, France [email protected] Abstract Scheduling a sequence of tasks in the acceptation
COUNTING INDEPENDENT SETS IN SOME CLASSES OF (ALMOST) REGULAR GRAPHS
COUNTING INDEPENDENT SETS IN SOME CLASSES OF (ALMOST) REGULAR GRAPHS Alexander Burstein Department of Mathematics Howard University Washington, DC 259, USA [email protected] Sergey Kitaev Mathematics
Chapter ML:XI (continued)
Chapter ML:XI (continued) XI. Cluster Analysis Data Mining Overview Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained
Mean Value Coordinates
Mean Value Coordinates Michael S. Floater Abstract: We derive a generalization of barycentric coordinates which allows a vertex in a planar triangulation to be expressed as a convex combination of its
