Percent per Degree Rule of Thumb for Refrigeration Cycle Improvement
|
|
|
- Leonard Johnston
- 10 years ago
- Views:
Transcription
1 7 Percent per Degree Rule of Thumb for Refrigeration Cycle Improvement Steve Doty, PE, CEM ABSTRACT A value of 1-1.5% power reduction per degree Fahrenheit (F) has been used successfully for years to estimate the effects of either lowering condenser temperature or raising evaporator temperature in a mechanical cooling system. This concept shows up in a variety of energy conservation measures, all with the goal of reducing power requirements. Reviewing the underlying science will allow confident use of this rule of thumb and explain the range of values given. The principles involved with this rule of thumb include lift, heat exchanger approach, coefficient of performance, refrigeration cycles, and sources of error. Since the work involves differences, pressure and temperature units do not have to be in absolutes. These terms and a Mollier Diagram (pressure-enthalpy, or p-h) were used to evaluate this rule of thumb. Manufacturer s data is the most accurate source of power reduction from a change in operating conditions because it captures all the various influences in a bottom-line live test. A Mollier (p-h) diagram can be used with before/after system conditions for good results. The rule of thumb can be used for reasonable accuracy, especially when incorporating the baseline lift (system lift before the change is made). Using the traditional 1-1.5% rule of thumb can overstate savings, but is safe at the 1% level. REVIEW OF IMPORTANT TERMS Lift is the difference between the high and low pressure regions a compressor works against. Compressor power is proportional to lift. If all the existing lift is removed, all of the existing work associated with lift is removed. So, 0-100% lift power reduction will follow a 0-100% reduction in lift.
2 8 Energy Engineering Vol. 112, No Note: The compressor has additional power requirements besides lift, such as fluid friction, bearing losses, and motor losses. If all power came from lift, the task would simply be to find the change in lift as a portion of total lift. In a refrigeration cycle, saturated conditions allow interchanging pressure and temperature. For measures that lower condensing temperature or raise evaporating temperature, power reduction can be estimated from temperature difference even though what the compressor really sees is a change in pressure difference. An example of low refrigeration lift is a water-cooled chiller (~40-55F lift). An example of high refrigeration lift is an air-cooled walk-in freezer with a blower coil (~ F lift). Approach is a heat exchanger term that describes how closely the leaving fluid on one side can approach the entering or ambient fluid on the other side of the heat exchanger. Oddly, there are differences in industry definitions of approach what-compared-to-what depends on heat exchanger style but the basic concept is the same. An infinitely large heat exchanger or infinite contact time will produce an approach temperature of zero, but for practical purposes there is always some differential. The value of approach will vary by heat exchanger type, fluid, and sizing. Approaches for liquid heat exchangers are generally lower than for those using air and gas. Turbulent flow (scrubbing at the boundary layer) and higher Reynolds numbers reduce approach; greater surface area or part-load operation reduces approach; longer contact time reduces approach, and fouling increases approach. Examples of using approach to calculate lift: 45F chilled water with 5F approach, and 80F condenser water with 10F approach à (80+10) (45-5) = 50F lift. 55F supply air with a 15F approach, condensing at 95F with a 20F approach à (95+20) (55-15) = 75F lift. (Note the lift advantage using water cooling vs. air cooling for the same 40F heat exchanger leaving fluid temperature).
3 9 Approach values can be derived from manufacturer s data or measured in the field, but will vary depending upon load. This is because heat exchangers become effectively oversized as load decreases. For example, one chiller was found to have a condenser approach of 10F at full load, 7F at 75% load and 4F at 50% load. Coefficient of Performance (COP) is the ratio of output to input energy or power and is unitless since both terms are the same; e.g., Btu output/btu input, and Btus cancel. Applied to refrigeration systems, COP is the ratio of refrigeration output to power input (in same units). This can be measured with the actual machine in service, and can also be derived from the cycle states of a Mollier (p-h) diagram using COP = (h1-h4)/(h2-h1). Compressor power can be derived from COP using kw/ton=3.517/cop. State 1-2 Vapor compression State 2-3 Condenser State 3-4 Liquid expansion State 4-1 Refrigeration effect Chart A compares theoretical results to values of % power reduction predicted by the conventional rule of thumb. The theoretical values consistently fall within the range of 1% and 1.5% power reduction per degree F change. The uncertainty error band becomes larger with larger changes. Estimates of 1.5% per degree F will likely overstate savings. Chart B incorporates baseline lift. The baseline lift is the range of high-to-low refrigeration temperature boundaries, approach included, before a change is made. By first calculating the baseline lift, a single value of % power reduction per degree F is found on the chart. Example: A water cooled chiller system is found making 38F chilled water with 75F condenser water. An efficiency measure would raise water temperature by 7F to 45F. An approach temperature of 3F is assumed for the evaporator and 5F for the condenser. Baseline lift, in temperature terms, is then (75+5) (38-3) = 45F. From Chart B, power reduction would be ~1.1 percent per degree F, or 7.7% power reduction. Chart C shows refrigeration cycle efficiency for equal values of lift at different temperatures not a flat line. Additional error is introduced
4 10 Energy Engineering Vol. 112, No when the rule of thumb is applied equally to measures affecting the low and high temperature regions of the cycle. Refrigeration efficiency is affected somewhat more at lower pressures and will respond differently to a lift change the explanation is beyond the scope of this article but part of it is visible in non-parallel lines shown in Chart C. SOURCES OF ERROR Not incorporating baseline lift. This is the dilemma of working in percentages and is a watch-out for any/all rules of thumb using percentages. For lift-related power, the same one degree F change will make a 10% impact for an original lift of 10F, but only a 1% impact if the original lift is 100F. Not incorporating heat exchanger approach will understate lift. 55F supply air and 95F ambient temperature is incorrectly identified as 40F lift. If both air-cooled heat exchangers have a 20F approach, the true lift would be (95+20) (55-20) = 80F lift. For this example, the error in savings would be ~14% (From Chart B, 1.08% reduction vs. 1.22%). Refrigerant used the Mollier (p-h) diagrams used were for R-717 (ammonia). Different working fluids have different properties. Range of load. At part load, some things get better, some get worse. Seasonally, it s a mix. Machinery type. This affects actual energy use at the meter. Machine losses are not considered in a Mollier (p-h) diagram. SUMMARY The refrigeration rule of thumb 1-1.5% power reduction per degree F of change is useful if taken with a grain of salt. The range given is a catch-all for a number of variables. The most influential variable is lift which is responsible for the majority of refrigeration energy input. Actual machine test data is best for evaluating different conditions. Direct use of the 1-1.5% rule of thumb can overstate savings, so adhering to 1% is suggested. By incorporating baseline lift, a single value of percent
5 11 power change per degree F is available. Other than actual machine testing, each method has unknowns. Experience and good judgment are needed to determine if savings de-rates are appropriate when using any rule of thumb. Chart A Chart A: Rule of Thumb Error Band % Compressor Power Reduction vs. degree F Lift Reduction (No Regard for Baseline Lift) Dotted lines shows actual vs. estimated savings using the 1-1.5% rule of thumb without regard to baseline lift. Uncertainty increases with the size of the change in lift. Mollier (p-h) diagram prediction for power based on COP = (h1-h4) / (h2-h1) Rule of thumb prediction = degrees F change in lift * assumed % per degree F (1% or 1.5%) % power reduction = (P1-P2) / P1
6 12 Energy Engineering Vol. 112, No Chart B Chart B: Modified Rule of Thumb for Single Value of % Compressor Power Reduction power degree F, by Referencing Baseline Lift By first determining baseline lift, the % power per degree F value can be taken directly. Baseline lift = T high T low temperature boundaries of the refrigeration system, including approach values. Mollier (p-h) diagram prediction for power based on COP = (h1-h4) / (h2-h1) % power reduction = (P1-P2) / P1
7 13 Chart C Chart C: Coefficient of Performance vs. Median Cycle Temperature Refrigeration cycle power requirements are more sensitive on the low temperature side than the high temperature side. Measures affecting the low side will have greater benefit, per degree F change, than on the high side. Median temperature = [(Condenser HX fluid + approach) + (Evaporator HX fluid approach)] / 2 (COP) = (h1-h4) / (h2-h1)
COMMERCIAL HVAC EQUIPMENT. Condensers and Cooling Towers
COMMERCIAL HVAC EQUIPMENT Condensers and Cooling Towers Technical Development Programs (TDP) are modules of technical training on HVAC theory, system design, equipment selection and application topics.
High Altitude HVAC. Silvertip Integrated Engineering Consultants [email protected] www.silvertipconsultants.com
Presentation to: Rocky Mountain ASHRAE 2013 Tech Conference April 19, 2013 High Altitude HVAC Design Considerations by: Michael D. Haughey, PE, HBDP, CEM, LEED TM AP 2013 Silvertip Integrated Engineering
UNDERSTANDING REFRIGERANT TABLES
Refrigeration Service Engineers Society 1666 Rand Road Des Plaines, Illinois 60016 UNDERSTANDING REFRIGERANT TABLES INTRODUCTION A Mollier diagram is a graphical representation of the properties of a refrigerant,
SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS
SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS UNIT OBJECTIVES After studying this unit, the reader should be able to explain the purpose of the condenser in a refrigeration system. describe differences
HVAC and REFRIGERATION
This is a preview. Some pages have been omitted. PE principles and practice prracticce of engineering mechanical: HVAC and REFRIGERATION sample questions + solutions Copyright 2011 by NCEES. All rights
Ground Source Heat Pumps The Fundamentals. Southington, Connecticut 860 628 4622 John F. Sima III P.E.
Ground Source Heat Pumps The Fundamentals Southington, Connecticut 860 628 4622 John F. Sima III P.E. Winter/Spring 2010 Ground Source Heat Pumps The Fundamentals TOPICS: Heat Pump Terminology Basic Physics
How does solar air conditioning work?
How does solar air conditioning work? In a conventional air conditioning system; The working fluid arrives at the compressor as a cool, low-pressure gas. The compressor is powered by electricity to squeeze
How To Save Energy With High Pressure Control
Energy savings in commercial refrigeration equipment : High Pressure Control July 2011/White paper by Christophe Borlein AFF and IIF-IIR member Make the most of your energy Summary Executive summary I
How To Design A Refrigeration System
AIRAH Refrigeration (in HVAC) Back to Basics For the First Time Terms of Reference What this session is NOT about Detailed Refrigeration Design Detailed analysis of various Refrigants properties Comparison
Optimization of Water - Cooled Chiller Cooling Tower Combinations
Optimization of Water - Cooled Chiller Cooling Tower Combinations by: James W. Furlong & Frank T. Morrison Baltimore Aircoil Company The warm water leaving the chilled water coils is pumped to the evaporator
HOT & COLD. Basic Thermodynamics and Large Building Heating and Cooling
HOT & COLD Basic Thermodynamics and Large Building Heating and Cooling What is Thermodynamics? It s the study of energy conversion using heat and other forms of energy based on temperature, volume, and
ASHRAE Boston Chapter Meeting Designing AC Refrigeration Systems Lessons Learned February 11, 2014
ASHRAE Boston Chapter Meeting Designing AC Refrigeration Systems Lessons Learned February 11, 2014 Explanation of the refrigeration cycle. Compressors. Benefits and operating characteristics. -Reciprocating
Characteristics of Evaporators
Characteristics of Evaporators Roger D. Holder, CM, MSME 10-28-2003 Heat or Energy In this paper, we will discuss the characteristics of an evaporator coil. The variance of the operational condenses of
The Second Law of Thermodynamics
Objectives MAE 320 - Chapter 6 The Second Law of Thermodynamics The content and the pictures are from the text book: Çengel, Y. A. and Boles, M. A., Thermodynamics: An Engineering Approach, McGraw-Hill,
Large Energy Savings Per Installation VFDs for Large Chillers
This article was published in ASHRAE Journal, June 2010. Copyright 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Reprinted here by permission from ASHRAE at www.tiaxllc.com.
Creating Efficient HVAC Systems
Creating Efficient HVAC Systems Heating and Cooling Fundamentals for Commercial Buildings Heating, ventilating, and air conditioning (HVAC) systems account for nearly half of the energy used in a typical
Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1
Lesson Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications Version ME, IIT Kharagpur The objectives of this lecture are to discuss. Performance aspects of SSS cycle and
Rusty Walker, Corporate Trainer Hill PHOENIX
Refrigeration 101 Rusty Walker, Corporate Trainer Hill PHOENIX Compressor Basic Refrigeration Cycle Evaporator Condenser / Receiver Expansion Device Vapor Compression Cycle Cooling by the removal of heat
In the compression-refrigeration loop (air conditioning), which is likely to be warmer? 1. Condenser coil 2. Evaporator coil
In the compression-refrigeration loop (air conditioning), which is likely to be warmer? 1. Condenser coil 2. Evaporator coil Answer: (1) Condenser coil See the video. A.R.E. Building Systems Study Guide
AIR CONDITION & REFRIGERATION INSTALLATION & REPAIR
AIR CONDITION & REFRIGERATION INSTALLATION & REPAIR SERVICE CAPACITY (Value) : Rs. 15,40,000/- MONTH AND YEAR : July, 2014 OF PREPARATION PREPARED BY : Sh. Sunil Arora Investigator (Mechanical) 1. INTRODUCTION
Theoretical Study on Separate Sensible and Latent Cooling Air-Conditioning System
Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2008 Theoretical Study on Separate Sensible and Latent Cooling Air-Conditioning
White Paper #10. Energy Efficiency in Computer Data Centers
s.doty 06-2015 White Paper #10 Energy Efficiency in Computer Data Centers Computer Data Centers use a lot of electricity in a small space, commonly ten times or more energy per SF compared to a regular
Refrigeration Basics 101. By: Eric Nelson
Refrigeration Basics 101 By: Eric Nelson Basics Refrigeration is the removal of heat from a material or space, so that it s temperature is lower than that of it s surroundings. When refrigerant absorbs
Cooling Systems 2/18/2014. Cooling Water Systems. Jim Lukanich, CWT ChemCal, Inc. Grapevine, TX
Cooling Systems Jim Lukanich, CWT ChemCal, Inc. Grapevine, TX Cooling Water Systems Water is used for cooling because of its capacity to remove and store heat and availability. Cooling water is used in
Open Cycle Refrigeration System
Chapter 9 Open Cycle Refrigeration System Copy Right By: Thomas T.S. Wan 温 到 祥 著 Sept. 3, 2008 All rights reserved An open cycle refrigeration system is that the system is without a traditional evaporator.
Appendix C. Minimum Equipment Efficiency Standards
Appendix C Minimum Equipment Efficiency Standards Appendix C: Minimum Equipment Efficiency Standards This Appendix is an overview of building and equipment standards in the State of California that have
Refrigeration and Airconditioning Prof. M. Ramgopal Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Refrigeration and Airconditioning Prof. M. Ramgopal Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. # 22 Refrigeration System Components: Compressor (Continued)
ENERGY SAVING STUDY IN A HOTEL HVAC SYSTEM
ENERGY SAVING STUDY IN A HOTEL HVAC SYSTEM J.S. Hu, Philip C.W. Kwong, and Christopher Y.H. Chao Department of Mechanical Engineering, The Hong Kong University of Science and Technology Clear Water Bay,
How To Understand Evaporator
SECTION 5 COMMERCIAL REFRIGERATION UNIT 21 EVAPORATORS AND THE REFRIGERATION SYSTEM UNIT OBJECTIVES After studying this unit, the reader should be able to Define high-, medium-, and low-temperature refrigeration.
The Mean Green Cooling MachineTM www.aqua-chill.com
The Mean Green Cooling MachineTM www.aqua-chill.com Runs Less. Cools More. What is AquaChill? AquaChill is not a swamp cooler. Aqua Chill is a water cooled evaporative air conditioner. A water cooled system
Chapter 3.4: HVAC & Refrigeration System
Chapter 3.4: HVAC & Refrigeration System Part I: Objective type questions and answers 1. One ton of refrigeration (TR) is equal to. a) Kcal/h b) 3.51 kw c) 120oo BTU/h d) all 2. The driving force for refrigeration
Data Realty Colocation Data Center Ignition Park, South Bend, IN. Owner: Data Realty Engineer: ESD Architect: BSA LifeStructures
Data Realty Colocation Data Center Ignition Park, South Bend, IN Owner: Data Realty Engineer: ESD Architect: BSA LifeStructures Project Overview Data Realty is a data center service provider for middle
Solar Cooling. Methods and Applications. Sargon Ishaya, PE, LEED AP
Solar Cooling Methods and Applications Sargon Ishaya, PE, LEED AP Objectives Describe two practical methods for solar cooling Give air conditioning engineers the confidence to offer customers a mechanical
COMMERCIAL HVAC CHILLER EQUIPMENT. Air-Cooled Chillers
COMMERCIAL HVAC CHILLER EQUIPMENT Air-Cooled Chillers Technical Development Programs (TDP) are modules of technical training on HVAC theory, system design, equipment selection and application topics. They
Presentation Outline. Common Terms / Concepts HVAC Building Blocks. Links. Plant Level Building Blocks. Air Distribution Building Blocks
Presentation Outline Common Terms / Concepts HVAC Building Blocks Plant Level Building Blocks Description / Application Data Green opportunities Selection Criteria Air Distribution Building Blocks same
Energy Efficiency Best Practice Guide Industrial Refrigeration
3 Energy Efficiency Best Practice Guide Contents 1 Introduction 4 2 The business benefits of efficient refrigeration 5 3 What is your opportunity? 6 4 Solution 1 Improve the efficiency of your existing
Energy savings in commercial refrigeration. Low pressure control
Energy savings in commercial refrigeration equipment : Low pressure control August 2011/White paper by Christophe Borlein AFF and l IIF-IIR member Make the most of your energy Summary Executive summary
Rittal White Paper 305: Selecting Air Conditioners for Industrial Enclosures By: Judith Koetzsch Mark Corcoran, Editor
Rittal White Paper 305: Selecting Air Conditioners for Industrial Enclosures By: Judith Koetzsch Mark Corcoran, Editor Executive Summary Choosing the right air conditioners for enclosures can have a tremendous
Glossary of Heating, Ventilation and Air Conditioning Terms
Glossary of Heating, Ventilation and Air Conditioning Terms Air Change: Unlike re-circulated air, this is the total air required to completely replace the air in a room or building. Air Conditioner: Equipment
UNIT 2 REFRIGERATION CYCLE
UNIT 2 REFRIGERATION CYCLE Refrigeration Cycle Structure 2. Introduction Objectives 2.2 Vapour Compression Cycle 2.2. Simple Vapour Compression Refrigeration Cycle 2.2.2 Theoretical Vapour Compression
National Grid Small Business Energy Efficiency Program Overview. Central New York Energy Expo March 30, 2010
National Grid Small Business Energy Efficiency Program Overview Central New York Energy Expo March 30, 2010 Agenda National Grid Cooler Retrofit Program Refrigeration 101 Smart Thermostat Controls, Anti-Sweat
A Comparison of an R22 and an R410A Air Conditioner Operating at High Ambient Temperatures
R2-1 A Comparison of an R22 and an R410A Air Conditioner Operating at High Ambient Temperatures W. Vance Payne and Piotr A. Domanski National Institute of Standards and Technology Building Environment
PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH R404A, R407C AND R410A
Int. J. Mech. Eng. & Rob. Res. 213 Jyoti Soni and R C Gupta, 213 Research Paper ISSN 2278 149 www.ijmerr.com Vol. 2, No. 1, January 213 213 IJMERR. All Rights Reserved PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION
HVAC Efficiency Definitions
HVAC Efficiency Definitions Term page EER - 2 SEER - 3 COP - 4 HSPF - 5 IPLV - 6 John Mix May 2006 Carrier Corporation 1 Energy Efficiency Ratio (EER) The energy efficiency ratio is used to evaluate the
Troubleshooting an Air Conditioning system. R D Holder Eng. Roger D Holder MSME
Troubleshooting an Air Conditioning system R D Holder Eng. Roger D Holder MSME Troubleshooting of an air conditioning system is a step by step procedure. I have found that a 4 step procedure is the best
2004 Standard For Performance Rating Of Positive Displacement Refrigerant Compressors And Compressor Units
2004 Standard For Performance Rating Of Positive Displacement Refrigerant Compressors And Compressor Units ANSI/AHRI Standard 540 (formerly ARI Standard 540) IMPORTANT SAFETY RECOMMENDATIONS ARI does not
Testing methods applicable to refrigeration components and systems
Testing methods applicable to refrigeration components and systems Sylvain Quoilin (1)*, Cristian Cuevas (2), Vladut Teodorese (1), Vincent Lemort (1), Jules Hannay (1) and Jean Lebrun (1) (1) University
9. ENERGY PERFORMANCE ASSESSMENT OF HVAC SYSTEMS
9. ENERGY PERFORMANCE ASSESSMENT OF HVAC SYSTEMS 9.1 Introduction Air conditioning and refrigeration consume significant amount of energy in buildings and in process industries. The energy consumed in
DIABLO VALLEY COLLEGE CATALOG 2015-2016
HEATING, VENTILATION, AIR CONDITIONING, REFRIGERATION - HVACR Tish Young, Dean Physical Sciences and Engineering Division Physical Sciences Building, Room 263 Possible career opportunities Upon successful
Air Conditioning 101. STN Presentation AC101
Air Conditioning 101 What is Refrigeration? Refrigeration is Cooling by the Removal of Heat Heat is Measured In BTU s A BTU is a British Thermal Unit It is the Amount of Heat to Raise One Pound of Water,
Case Study: Innovative Energy Efficiency Approaches in NOAA s Environmental Security Computing Center in Fairmont, West Virginia
Case Study: Innovative Energy Efficiency Approaches in NOAA s Environmental Security Computing Center in Fairmont, West Virginia Prepared for the U.S. Department of Energy s Federal Energy Management Program
Analytical Study of Vapour Compression Refrigeration System Using Diffuser and Subcooling
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 3 Ver. VII (May- Jun. 2014), PP 92-97 Analytical Study of Vapour Compression Refrigeration
Comparing Air Cooler Ratings Part 1: Not All Rating Methods are Created Equal
Technical Bulletin By Bruce I. Nelson, P.E., President, Colmac Coil Manufacturing, Inc. Comparing Air Cooler Ratings Part 1: Not All Rating Methods are Created Equal SUMMARY Refrigeration air coolers (evaporators)
Troubleshooting HVAC/R systems using refrigerant superheat and subcooling
Troubleshooting HVAC/R systems using refrigerant superheat and subcooling Application Note Troubleshooting and servicing refrigeration and air conditioning systems can be a challenging process for both
Environmental and Safety Impacts of HFC Emission Reduction Options for Air Conditioning and Heat Pump Systems
Environmental and Safety Impacts of HFC Emission Reduction Options for Air Conditioning and Heat Pump Systems William M. Corcoran, George Rusch, Mark W. Spatz, and Tim Vink AlliedSignal, Inc. ABSTRACT
Yijun Gao, Wei Wu, Zongwei Han, Xianting Li *
Study on the performance of air conditioning system combining heat pipe and vapor compression based on ground source energy-bus for commercial buildings in north China Yijun Gao, Wei Wu, Zongwei Han, Xianting
Impacts of Refrigerant Charge on Air Conditioner and Heat Pump Performance
Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2010 Impacts of Refrigerant Charge on Air Conditioner and Heat Pump Performance
APPLICATIONS AND DEFINITIONS
HEAT PUMP APPLICATIONS AND DEFINITIONS Per Fahlén SP Energy Technology APPLICATIONS OF HEAT PUMPS 900s: Refrigeration, need to chill food; Survival: very large application; chilled food comprises Turnover:
PG Student (Heat Power Engg.), Mechanical Engineering Department Jabalpur Engineering College, India. Jabalpur Engineering College, India.
International Journal of Emerging Trends in Engineering and Development Issue 3, Vol. (January 23) EFFECT OF SUB COOLING AND SUPERHEATING ON VAPOUR COMPRESSION REFRIGERATION SYSTEMS USING 22 ALTERNATIVE
3/29/2012 INTRODUCTION HVAC BASICS
INTRODUCTION HVAC BASICS AND HVAC SYSTEM EFFICIENCY IMPROVEMENT SECTION O HVAC systems or Heating, Ventilating and Air-Conditioning systems control the environment for people and equipment in our facilities.
Absolute and relative humidity Precise and comfort air-conditioning
Absolute and relative humidity Precise and comfort air-conditioning Trends and best practices in data centers Compiled by: CONTEG Date: 30. 3. 2010 Version: 1.11 EN 2013 CONTEG. All rights reserved. No
We will try to get familiar with a heat pump, and try to determine its performance coefficient under different circumstances.
C4. Heat Pump I. OBJECTIVE OF THE EXPERIMENT We will try to get familiar with a heat pump, and try to determine its performance coefficient under different circumstances. II. INTRODUCTION II.1. Thermodynamic
DEVELOPMENT OF A TWIN SCREW EXPRESSOR AS A THROTTLE VALVE REPLACEMENT FOR WATER-COOLED CHILLERS
DEVELOPMENT OF A TWIN SCREW EXPRESSOR AS A THROTTLE VALVE REPLACEMENT FOR WATER-COOLED CHILLERS J J Brasz, Carrier Corporation, Syracuse, NY, 13221, USA [email protected] I K Smith and N Stosic
Fundamentals of THERMAL-FLUID SCIENCES
Fundamentals of THERMAL-FLUID SCIENCES THIRD EDITION YUNUS A. CENGEL ROBERT H. TURNER Department of Mechanical JOHN M. CIMBALA Me Graw Hill Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl
Increasing the evaporation temperature with the help of an internal heat exchanger
Increasing the evaporation temperature with the help of an internal heat exchanger A. TAMBOVTSEV (a), H. QUACK (b) (a,b) Technische Universität Dresden, D-01062, Dresden, Germany (a) Fax: (+49351) 463-37247,
It will be available soon as an 8.5 X 11 paperback. For easier navigation through the e book, use the table of contents.
The System Evaluation Manual and Chiller Evaluation Manual have been revised and combined into this new book; the Air Conditioning and Refrigeration System Evaluation Guide. It will be available soon as
ALONE. small scale solar cooling device Project No TREN FP7EN 218952. Project No TREN/FP7EN/218952 ALONE. small scale solar cooling device
Project No TREN/FP7EN/218952 ALONE small scale solar cooling device Collaborative Project Small or Medium-scale Focused Research Project DELIVERABLE D5.2 Start date of the project: October 2008, Duration:
Air-sourced 90 Hot Water Supplying Heat Pump "HEM-90A"
Air-sourced 90 Hot Water Supplying Heat Pump "HEM-90A" Takahiro OUE *1, Kazuto OKADA *1 *1 Refrigeration System & Energy Dept., Compressor Div., Machinery Business Kobe Steel has developed an air-sourced
Scroll Compressor Development for Air-Source Heat Pump Water Heater Applications
Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2008 Scroll Compressor Development for Air-Source Heat Pump Water Heater Applications
Achieving ENERGY EFFICIENCY with Standard Air-Conditioning Units. Mike West, PhD, PE Advantek Consulting, Inc
Achieving ENERGY EFFICIENCY with Standard Air-Conditioning Units Mike West, PhD, PE Advantek Consulting, Inc Standard Air Conditioning Unit Packaged Unit Split System DX (not chilled water) Air-cooled
Building Energy Systems. - HVAC: Heating, Distribution -
* Some of the images used in these slides are taken from the internet for instructional purposes only Building Energy Systems - HVAC: Heating, Distribution - Bryan Eisenhower Associate Director Center
News in Data Center Cooling
News in Data Center Cooling Wednesday, 8th May 2013, 16:00h Benjamin Petschke, Director Export - Products Stulz GmbH News in Data Center Cooling Almost any News in Data Center Cooling is about increase
How Ground/Water Source Heat Pumps Work
How Ground/Water Source s Work Steve Kavanaugh, Professor Emeritus of Mechanical Engineering, University of Alabama Ground Source s (a.k.a. Geothermal s) are becoming more common as the costs of energy
REFRIGERATION (& HEAT PUMPS)
REFRIGERATION (& HEAT PUMPS) Refrigeration is the 'artificial' extraction of heat from a substance in order to lower its temperature to below that of its surroundings Primarily, heat is extracted from
Commissioning - Construction Documents (Page 1 of 6)
Commissioning - Construction Documents (Page 1 of 6) A. General Information Climate Zone: Building Type: Conditioned Area (sf): Reviewer's Name: Reviewer's Agency: Note: Design Review for each system/subsystem
Chapter 2 P-H Diagram Refrigeration Cycle Analysis & Refrigerant Flow Diagram
Chapter 2 P-H Diagram Refrigeration Cycle Analysis & Refrigerant Flow Diagram Copy Right By: Thomas T.S. Wan 温 到 祥 著 Sept. 3, 2008 All rights reserved Industrial refrigeration system design starts from
COURSE TITLE : REFRIGERATION AND AIR CONDITIONING COURSE CODE : 4029 COURSECATEGORY : A PERIODS/WEEK : 5 PERIODS/SEMESTER : 90 CREDITS : 4 OBJECTIVES
COURSE TITLE : REFRIGERATION AND AIR CONDITIONING COURSE CODE : 4029 COURSECATEGORY : A PERIODS/WEEK : 5 PERIODS/SEMESTER : 90 CREDITS : 4 TIME SCHEDULE MODULE TOPICS PERIODS 1 Introduction 22 Principles
Measurement And Application of Performance Characteristics Of A Free Piston Stirling Cooler
Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 00 Measurement And Application of Performance Characteristics Of A Free Piston
Mechanical Heat Pumps Using Water as Refrigerant for Ice Production and Air Conditioning. Case studies
Mechanical Heat Pumps Using Water as Refrigerant for Ice Production and Air Conditioning Case studies Avraham Ophir IDEA 99 th Annual Convention, Orlando, Florida, 2008 IDE was founded in 1965 To Develop
HEAT RECOVERY FROM CHILLED WATER SYSTEMS. Applications for Heat Reclaim Chillers
HEAT RECOVERY FROM CHILLED WATER SYSTEMS Applications for Heat Reclaim Chillers April 2008 TABLE OF CONTENTS INTRODUCTION... 3 WASTE HEAT SOURCES... 3,4 Capturing Sufficient Heat for Useful Purposes...
The Second Law of Thermodynamics
The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction
How To Know If A Refrigeration System Is Efficient
Universitatea de Ştiinţe Agricole şi Medicină Veterinară Iaşi ASSESSMENT OF E SUBCOOLING CAPABILITIES OF A ERMOELECTRIC DEVICE IN A VAPOR COMPRESSION REFRIGERATION SYSTEM R. ROŞCA 1, I. ŢENU 1, P. CÂRLESCU
Any Service Technician Can Fix It A Good Service Technician Can Figure Out What s Wrong With It.
I Dave s Statement If the thermostat calls for cooling, and the furnace fan is running properly, and the coil airflow is adequate, and the condenser fan is running properly, and the condenser airflow is
Advanced Heat Reclaim Systems. Harrison Horning, PE, CEM Delhaize America - Hannaford
Advanced Heat Reclaim Systems Harrison Horning, PE, CEM Delhaize America - Hannaford Outline Basic refrigeration cycle Conventional series heat reclaim Full-condensing parallel heat reclaim Direct Hydronic
SAMPLE CHAPTERS UNESCO EOLSS
STEAM TURBINE OPERATIONAL ASPECTS R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada Keywords: Steam Turbines, Operation, Supersaturation, Moisture, Back Pressure, Governing
How To Clean Water From An Ammonia Refrigeration System
Water Contamination and Water Removal in Industrial Ammonia Refrigeration Systems By Ray Ficker, PE Effects of Water Contamination Water contamination in an industrial ammonia refrigeration system can
Moisture Control. It s The Dew Point. Stupid! Its not the humidity.
Moisture Control Its not the humidity. It s The Dew Point Stupid! Mike Schell EpiphanyTec Inc. Santa Barbara, CA [email protected] 805 687-3175 Matching great technology to market need! Topics SHR
Defining Quality. Building Comfort. Precision. Air Conditioning
Defining Quality. Building Comfort. Precision Air Conditioning Today s technology rooms require precise, stable environments in order for sensitive electronics to operate optimally. Standard comfort air
CHILLER PLANT CONTROL MULTIPLE CHILLER CONTROLS
CHILLER PLANT CONTROL MULTIPLE CHILLER CONTROLS By: Michael J. Bitondo, Mark J. Tozzi Carrier Corporation Syracuse, New York August 1999 INTRODUCTION In December of 1998, the American Refrigeration Institute
VACUUM REFRIGERATION SYSTEMS
VACUUM REFRIGERATION SYSTEMS CHILL VACTOR The Croll-Reynolds CHILL-VACTOR is a chiller that uses a vapor flashing process. Water has a pressure-temperature relationship which is its boiling point. If its
THE PSYCHROMETRIC CHART AND ITS USE
Service Application Manual SAM Chapter 630-16 Section 3A THE PSYCHROMETRIC CHART AND ITS USE Psychrometry is an impressive word which is defined as the measurement of the moisture content of air. In broader
Why and How we Use Capacity Control
Why and How we Use Capacity Control On refrigeration and air conditioning applications where the load may vary over a wide range, due to lighting, occupancy, product loading, ambient weather variations,
Low GWP Replacements for R404A in Commercial Refrigeration Applications
Low GWP Replacements for R404A in Commercial Refrigeration Applications Samuel YANA MOTTA, Mark SPATZ Honeywell International, 20 Peabody Street, Buffalo, NY 14210, [email protected] Abstract
Chilled Water HVAC Systems
Chilled Water HVAC Systems By Ron Prager, Brinco Mechanical Services, Inc. Types of water based systems: There are three types of HVAC systems that utilize water as a heat transfer medium. The first system,
Mohan Chandrasekharan #1
International Journal of Students Research in Technology & Management Exergy Analysis of Vapor Compression Refrigeration System Using R12 and R134a as Refrigerants Mohan Chandrasekharan #1 # Department
1. What percent of a commercial business s energy usage comes from their HVAC system? A. 13% B. 23% C. 33% D. 43% E. 53%
1 1. What percent of a commercial business s energy usage comes from their HVAC system? A. 13% B. 23% C. 33% D. 43% E. 53% 2. How much money do commercial facilities spend per square foot on energy costs
SOLAR COOLING WITH ICE STORAGE
SOLAR COOLING WITH ICE STORAGE Beth Magerman Patrick Phelan Arizona State University 95 N. College Ave Tempe, Arizona, 8581 [email protected] [email protected] ABSTRACT An investigation is undertaken of a
Refrigerant Choices for Commercial Refrigeration. Finding the Right Balance
Refrigerant Choices for Commercial Refrigeration Finding the Right Balance 2 CONTENTS 1. Executive Summary 1.1. Introduction 4 1.2. Glossary of terms 5 5. Cases configuration 5.1. Introduction 17 5.2.
Life Cycle Costing Analysis of Water-cooled Chillers. Chillventa Nuremburg, Germany
Life Cycle Costing Analysis of Water-cooled Chillers Chillventa Nuremburg, Germany Spring 2012 Description Life Cycle Cost Analysis is a method of determining and comparing the total costs of investment
