COMMERCIAL HVAC EQUIPMENT. Condensers and Cooling Towers
|
|
|
- Asher Cannon
- 9 years ago
- Views:
Transcription
1 COMMERCIAL HVAC EQUIPMENT Condensers and Cooling Towers
2 Technical Development Programs (TDP) are modules of technical training on HVAC theory, system design, equipment selection and application topics. They are targeted at engineers and designers who wish to develop their knowledge in this field to effectively design, specify, sell or apply HVAC equipment in commercial applications. Although TDP topics have been developed as stand-alone modules, there are logical groupings of topics. The modules within each group begin at an introductory level and progress to advanced levels. The breadth of this offering allows for customization into a complete HVAC curriculum from a complete HVAC design course at an introductory-level or to an advancedlevel design course. Advanced-level modules assume prerequisite knowledge and do not review basic concepts. This TDP module discusses the most common heat rejection equipment: condensers and cooling towers. Heat rejection is a process that is an integral part of the air conditioning cycle. The heat is rejected to the environment using air or water as the medium. In order to properly apply system concepts to a design, HVAC designers must be aware of the different heat rejection methods. Also presented is the concept of total heat of rejection, it s derivation, and how it applies to the process of air conditioning, as well as the controls that are used to regulate each type of heat rejection unit Carrier Corporation. All rights reserved. The information in this manual is offered as a general guide for the use of industry and consulting engineers in designing systems. Judgment is required for application of this information to specific installations and design applications. Carrier is not responsible for any uses made of this information and assumes no responsibility for the performance or desirability of any resulting system design. The information in this publication is subject to change without notice. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Carrier Corporation. Printed in Syracuse, NY CARRIER CORPORATION Carrier Parkway Syracuse, NY 13221, U.S.A.
3 Table of Contents Introduction... 1 Condenser Total Heat of Rejection... 2 Heat Rejection Factors... 3 Condensers... 4 Water-Cooled Condensers... 5 Once-Thru versus Recirculating... 5 Water Requirement Calculation for Recirculating Systems... 6 ARI Conditions... 7 Water Consumption and Makeup Quantity... 8 Construction and Types of Water-Cooled Condensers... 8 Fouling Factors Tubing Materials Effects of Antifreeze Condenser Pass Arrangements Selection Inputs Air-Cooled Condensers Air-Cooled Condenser versus Air-Cooled Condensing Unit Subcooling Circuit Placement Selection Evaporative Condensers Evaporative Condenser Selection Parameters Condenser Economics Cooling Towers Basic Terms Entering Wet Bulb Temperature Approach Range Total Heat of Rejection Drift (Windage) Evaporation Blow-down (Bleed) Makeup Cooling Tower Psychrometric Plot Types of Cooling Towers Natural Draft (Atmospheric) Mechanical Draft Closed-Circuit Cooling Towers (Fluid Coolers) Application of Cooling Towers Placement Effects of Reduced Cooling Tower Water Temperature Hydronic Free Cooling Cooling Tower Relief Profiles Cooling Tower Differences: Electric versus Absorption Chillers Cooling Tower Selection Water Treatment... 44
4 Condenser and Cooling Tower Control Systems Water-Cooled Condensers...47 Air-Cooled Condensers...47 Refrigerant Side Control...48 Airside Control...48 Evaporative Condensers...50 Cooling Towers...51 Water Bypass of the Cooling Tower...51 Airflow Control on Cooling Towers...52 Winter Operation of Cooling Towers...53 Summary Work Session Appendix References:...57 Work Session Answers...58
5 CONDENSERS AND COOLING TOWERS Introduction Condensers and cooling towers are the most common kinds of heat rejection equipment. There are three types of condensers: water-cooled, air-cooled, and evaporative. Water-cooled and air-cooled condensers use a sensible-only cooling process to reject heat. Evaporative condensers use both sensible and latent heat principles to reject heat. Cooling towers are similar to evaporative condensers because they also utilize latent cooling through the process of evaporation. We will discuss three kinds of cooling towers in this TDP: natural, mechanical, and closed-circuit. We will discuss total heat of rejection, its derivation, and how it applies to the process of air conditioning. Applications for condensers and cooling towers, as well as the controls that may be used to maintain proper refrigerant and water temperatures will also be covered. Figure 1 Three Types of Condensers Photos: Water-cooled: Courtesy of Standard Refrigeration; Evaporative: Courtesy of Baltimore Aircoil Company Figure 2 Cooling Towers Photos reproduced with permission of Baltimore Aircoil Company Commercial HVAC Equipment 1
6 CONDENSERS AND COOLING TOWERS Condenser Total Heat of Rejection The heat to be rejected by the condenser in condensing the refrigerant is equal to the sum of the refrigeration effect (RE) of the evaporator plus the heat equivalent of the work of the compression. RE + Compressor work = THR (Total Heat Rejection) Heat rejection in the condenser may be illustrated on the P-H (pressure-enthalpy) diagram. A pressureenthalpy diagram is used because condensing takes place at constant pressure, or nearly constant pressure when blended refrigerants are used, (line F-G). This diagram may also be used to show the pressure rise of the condensing medium as it absorbs heat from the refrigerant (curved line). The THR of the condenser is defined by line E-H, which is the sum of the refrigeration effect (line A-B) and the heat of compression (line C-D). Figure 3 As the ratio between compressor discharge and suction pressures increase, Condenser Total Heat of Rejection (shown on p-h diagram) the refrigeration effect decreases and the heat of compression increases. This is because the work done by the compressor has increased. These are the equations to calculate the THR in units of Btuh: In cases where the brake horsepower (bhp) of the compressor(s) is known: THR = RE + ( bhp 2545) 2545 is a constant; it is the Btuh equivalent of one bhp. Brake horsepower is the application rating for the compressor. In cases where the compressor kw is known: THR = RE + ( kw 3414) 3414 Btuh is equivalent to one kw. Figure 4 Total Heat of Rejection Formulas 2 Commercial HVAC Equipment
7 CONDENSERS AND COOLING TOWERS Kilowatts (1000 watts) is the term used to describe compressor power. The kw unit is used more often than brake horsepower because most manufacturers product ratings are now expressed in kw. THR reflects the work done by the compressor as well as the evaporator. THR can be expressed in Btuh tons, or MBtuh. One MBtuh is equal to 1000 Btuh. Where refrigerant is used to cool the motor, such as in a hermetic-type compressor design, added heat (the heat from the motor losses) also becomes part of the THR in the condenser. Heat Rejection Factors Heat rejection factor is a multiplier applied to the cooling capacity to find the condenser total heat of rejection. The amount of heat added to the cooling capacity to arrive at the THR for any given application is a function of the compressor efficiency and the condenser cooling method (air, water, or evaporative) cooled. As an example, compressors used in HVAC equipment typically have a full load heat rejection factor in the range of 1.15 to Water-cooled screw and centrifugal compressors are very efficient, so they tend to have heat rejection factors between 1.15 and Compressors used in air-cooled When a chiller applications typically have heat rejection factors closer to This efficiency is a function of the saturated condensing temperature, which is lower for water-cooled chiller compressors. Using a value of 1.17 as an example for a water-cooled chiller, for every ton (12,000 Btuh) refrigeration effect, the load on the water-cooled condenser would be: 12, = 14,040 Btuh heat rejection for each ton of cooling capacity A heat rejection factor of 1.25 results in 15,000 Btuh heat rejection per ton of cooling. (12, = 15,000). Consequently, 15,000 Btuh per cooling ton was used for many years as representative of all chillers. For modern watercooled chillers, however, this value is no longer accurate due to efficiency improvements. is said to have a 100-ton capacity we are referring to the refrigeration effect. The condenser, however, should be represented in terms of THR tons. In the case of an air-cooled chiller, for example, the THR would be approximately = 125 tons. Figure 5 Typical Heat Rejection Factors Commercial HVAC Equipment 3
8 CONDENSERS AND COOLING TOWERS Condensers Condensers remove heat from the refrigeration system. Like the evaporator, the condenser is a heat transfer device. Heat from the high-temperature, high-pressure refrigerant vapor is transferred to a heat-absorbing medium (air or water) that passes over or through the condenser. Condensers do three things: desuperheat the refrigerant gas, condense the hot refrigerant gas into a liquid, and subcool the liquid refrigerant. Figure 6 Condenser Definition Condensers are one of the four basic refrigeration components. The other three are the evaporator, compressor, and metering device. The metering device shown in Figure 7 is a thermostatic expansion valve. Figure 7 Condensers reject the heat from the evaporator and the compressor. 4 Commercial HVAC Equipment
COMMERCIAL HVAC CHILLER EQUIPMENT. Air-Cooled Chillers
COMMERCIAL HVAC CHILLER EQUIPMENT Air-Cooled Chillers Technical Development Programs (TDP) are modules of technical training on HVAC theory, system design, equipment selection and application topics. They
SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS
SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS UNIT OBJECTIVES After studying this unit, the reader should be able to explain the purpose of the condenser in a refrigeration system. describe differences
Optimization of Water - Cooled Chiller Cooling Tower Combinations
Optimization of Water - Cooled Chiller Cooling Tower Combinations by: James W. Furlong & Frank T. Morrison Baltimore Aircoil Company The warm water leaving the chilled water coils is pumped to the evaporator
UNIT 2 REFRIGERATION CYCLE
UNIT 2 REFRIGERATION CYCLE Refrigeration Cycle Structure 2. Introduction Objectives 2.2 Vapour Compression Cycle 2.2. Simple Vapour Compression Refrigeration Cycle 2.2.2 Theoretical Vapour Compression
Heat Recovery In Retail Refrigeration
This article was published in ASHRAE Journal, February 2010. Copyright 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Posted at www.ashrae.org. This article may not
Characteristics of Evaporators
Characteristics of Evaporators Roger D. Holder, CM, MSME 10-28-2003 Heat or Energy In this paper, we will discuss the characteristics of an evaporator coil. The variance of the operational condenses of
UNDERSTANDING REFRIGERANT TABLES
Refrigeration Service Engineers Society 1666 Rand Road Des Plaines, Illinois 60016 UNDERSTANDING REFRIGERANT TABLES INTRODUCTION A Mollier diagram is a graphical representation of the properties of a refrigerant,
Chapter 3.4: HVAC & Refrigeration System
Chapter 3.4: HVAC & Refrigeration System Part I: Objective type questions and answers 1. One ton of refrigeration (TR) is equal to. a) Kcal/h b) 3.51 kw c) 120oo BTU/h d) all 2. The driving force for refrigeration
AIR CONDITIONING TECHNOLOGY
AIR CONDITIONING TECHNOLOGY PART 9 Water Cooled Condensers & Cooling Towers IN LAST month s article we looked at how Air Cooled Condensers are used to transfer the total heat of rejection from the air
CHILLER PLANT CONTROL MULTIPLE CHILLER CONTROLS
CHILLER PLANT CONTROL MULTIPLE CHILLER CONTROLS By: Michael J. Bitondo, Mark J. Tozzi Carrier Corporation Syracuse, New York August 1999 INTRODUCTION In December of 1998, the American Refrigeration Institute
Chapter 2 P-H Diagram Refrigeration Cycle Analysis & Refrigerant Flow Diagram
Chapter 2 P-H Diagram Refrigeration Cycle Analysis & Refrigerant Flow Diagram Copy Right By: Thomas T.S. Wan 温 到 祥 著 Sept. 3, 2008 All rights reserved Industrial refrigeration system design starts from
Tim Facius Baltimore Aircoil
Presented By: Tim Facius Baltimore Aircoil Slide No.: 1 CTI Mission Statement To advocate and promote the use of environmentally responsible Evaporative Heat Transfer Systems (EHTS) for the benefit of
HVAC Efficiency Definitions
HVAC Efficiency Definitions Term page EER - 2 SEER - 3 COP - 4 HSPF - 5 IPLV - 6 John Mix May 2006 Carrier Corporation 1 Energy Efficiency Ratio (EER) The energy efficiency ratio is used to evaluate the
How To Design A Building In New Delhi
ENERGY EFFICIENT HVAC DESIGN FOR COMPOSITE CLIMATE Overview of Design Conditions: Air conditioning system consumes most of the energy that a building needs in its operation. In order to reduce energy consumption
ENERGY EFFICIENT HVAC DESIGN FOR WARM-HUMID CLIMATE CLIMATE
ENERGY EFFICIENT HVAC DESIGN FOR WARM-HUMID CLIMATE CLIMATE Overview of Design Conditions: Air conditioning system consumes most of the energy that a building needs in its operation. In order to reduce
Presentation Outline. Common Terms / Concepts HVAC Building Blocks. Links. Plant Level Building Blocks. Air Distribution Building Blocks
Presentation Outline Common Terms / Concepts HVAC Building Blocks Plant Level Building Blocks Description / Application Data Green opportunities Selection Criteria Air Distribution Building Blocks same
Open Cycle Refrigeration System
Chapter 9 Open Cycle Refrigeration System Copy Right By: Thomas T.S. Wan 温 到 祥 著 Sept. 3, 2008 All rights reserved An open cycle refrigeration system is that the system is without a traditional evaporator.
Defining Quality. Building Comfort. Precision. Air Conditioning
Defining Quality. Building Comfort. Precision Air Conditioning Today s technology rooms require precise, stable environments in order for sensitive electronics to operate optimally. Standard comfort air
HVAC Systems: Overview
HVAC Systems: Overview Michael J. Brandemuehl, Ph.D, P.E. University of Colorado Boulder, CO, USA Overview System Description Secondary HVAC Systems Air distribution Room diffusers and air terminals Duct
Commissioning - Construction Documents (Page 1 of 6)
Commissioning - Construction Documents (Page 1 of 6) A. General Information Climate Zone: Building Type: Conditioned Area (sf): Reviewer's Name: Reviewer's Agency: Note: Design Review for each system/subsystem
9. ENERGY PERFORMANCE ASSESSMENT OF HVAC SYSTEMS
9. ENERGY PERFORMANCE ASSESSMENT OF HVAC SYSTEMS 9.1 Introduction Air conditioning and refrigeration consume significant amount of energy in buildings and in process industries. The energy consumed in
It will be available soon as an 8.5 X 11 paperback. For easier navigation through the e book, use the table of contents.
The System Evaluation Manual and Chiller Evaluation Manual have been revised and combined into this new book; the Air Conditioning and Refrigeration System Evaluation Guide. It will be available soon as
HEAT RECOVERY FROM CHILLED WATER SYSTEMS. Applications for Heat Reclaim Chillers
HEAT RECOVERY FROM CHILLED WATER SYSTEMS Applications for Heat Reclaim Chillers April 2008 TABLE OF CONTENTS INTRODUCTION... 3 WASTE HEAT SOURCES... 3,4 Capturing Sufficient Heat for Useful Purposes...
Refrigeration Basics 101. By: Eric Nelson
Refrigeration Basics 101 By: Eric Nelson Basics Refrigeration is the removal of heat from a material or space, so that it s temperature is lower than that of it s surroundings. When refrigerant absorbs
Large Energy Savings Per Installation VFDs for Large Chillers
This article was published in ASHRAE Journal, June 2010. Copyright 2010 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Reprinted here by permission from ASHRAE at www.tiaxllc.com.
Thermal Coupling Of Cooling and Heating Systems
This article was published in ASHRAE Journal, February 2011. Copyright 2011 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Posted at www.ashrae.org. This article may not
ASHRAE Boston Chapter Meeting Designing AC Refrigeration Systems Lessons Learned February 11, 2014
ASHRAE Boston Chapter Meeting Designing AC Refrigeration Systems Lessons Learned February 11, 2014 Explanation of the refrigeration cycle. Compressors. Benefits and operating characteristics. -Reciprocating
Why and How we Use Capacity Control
Why and How we Use Capacity Control On refrigeration and air conditioning applications where the load may vary over a wide range, due to lighting, occupancy, product loading, ambient weather variations,
How To Design A Refrigeration System
AIRAH Refrigeration (in HVAC) Back to Basics For the First Time Terms of Reference What this session is NOT about Detailed Refrigeration Design Detailed analysis of various Refrigants properties Comparison
How does solar air conditioning work?
How does solar air conditioning work? In a conventional air conditioning system; The working fluid arrives at the compressor as a cool, low-pressure gas. The compressor is powered by electricity to squeeze
Comparing Air Cooler Ratings Part 1: Not All Rating Methods are Created Equal
Technical Bulletin By Bruce I. Nelson, P.E., President, Colmac Coil Manufacturing, Inc. Comparing Air Cooler Ratings Part 1: Not All Rating Methods are Created Equal SUMMARY Refrigeration air coolers (evaporators)
Percent per Degree Rule of Thumb for Refrigeration Cycle Improvement
7 Percent per Degree Rule of Thumb for Refrigeration Cycle Improvement Steve Doty, PE, CEM [email protected] ABSTRACT A value of 1-1.5% power reduction per degree Fahrenheit (F) has been used successfully
Troubleshooting an Air Conditioning system. R D Holder Eng. Roger D Holder MSME
Troubleshooting an Air Conditioning system R D Holder Eng. Roger D Holder MSME Troubleshooting of an air conditioning system is a step by step procedure. I have found that a 4 step procedure is the best
Life Cycle Costing Analysis of Water-cooled Chillers. Chillventa Nuremburg, Germany
Life Cycle Costing Analysis of Water-cooled Chillers Chillventa Nuremburg, Germany Spring 2012 Description Life Cycle Cost Analysis is a method of determining and comparing the total costs of investment
Creating Efficient HVAC Systems
Creating Efficient HVAC Systems Heating and Cooling Fundamentals for Commercial Buildings Heating, ventilating, and air conditioning (HVAC) systems account for nearly half of the energy used in a typical
Appendix C. Minimum Equipment Efficiency Standards
Appendix C Minimum Equipment Efficiency Standards Appendix C: Minimum Equipment Efficiency Standards This Appendix is an overview of building and equipment standards in the State of California that have
3/29/2012 INTRODUCTION HVAC BASICS
INTRODUCTION HVAC BASICS AND HVAC SYSTEM EFFICIENCY IMPROVEMENT SECTION O HVAC systems or Heating, Ventilating and Air-Conditioning systems control the environment for people and equipment in our facilities.
High Altitude HVAC. Silvertip Integrated Engineering Consultants [email protected] www.silvertipconsultants.com
Presentation to: Rocky Mountain ASHRAE 2013 Tech Conference April 19, 2013 High Altitude HVAC Design Considerations by: Michael D. Haughey, PE, HBDP, CEM, LEED TM AP 2013 Silvertip Integrated Engineering
TRAINING, EXAMINATION AND CERTIFICATION
TECHNICAL STANDARDS & SAFETY AUTHORITY TRAINING, EXAMINATION AND CERTIFICATION REFRIGERATION OPERATOR CLASS B CERTIFICATION & EXAMINATION GUIDE REVISED EDITION 2 CERTIFICATIONS PERSUANT TO THE OPERATING
HVAC and REFRIGERATION
This is a preview. Some pages have been omitted. PE principles and practice prracticce of engineering mechanical: HVAC and REFRIGERATION sample questions + solutions Copyright 2011 by NCEES. All rights
Total Heat Versus Sensible Heat Evaporator Selection Methods & Application
Total Heat Versus Sensible Heat Evaporator Selection Methods & Application Scope The purpose of this paper is to provide specifying engineers, purchasers and users of evaporators in industrial refrigeration
HVAC Made Easy - Selection Tips for Chiller Compressors
PDHonline Course M119 (2 PDH) HVAC Made Easy - Selection Tips for Chiller Compressors Instructor: A. Bhatia, B.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax:
> Executive summary. Explanation of Cooling and Air Conditioning Terminology for IT Professionals. White Paper 11 Revision 2. Contents.
Explanation of Cooling and Air Conditioning Terminology for IT Professionals White Paper 11 Revision 2 by Tony Evans Click on a section to jump to it > Executive summary As power densities continue to
VII. Commercial - Industrial Cooling Water Efficiency
VII. Commercial - Industrial Cooling Water Efficiency 1.0 Background Commercial and industrial (mechanical) cooling systems have become commonplace throughout the United States and the world over the last
Heat Rejection Options in HVAC Systems
Heat Rejection Options in HVAC Systems Course No: M04-029 Credit: 4 PDH A. Bhatia Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800 F: (877) 322-4774
White Paper #10. Energy Efficiency in Computer Data Centers
s.doty 06-2015 White Paper #10 Energy Efficiency in Computer Data Centers Computer Data Centers use a lot of electricity in a small space, commonly ten times or more energy per SF compared to a regular
MAC-120HE-01 Air-Cooled Chiller
MAC-120HE-01 Air-Cooled Chiller 10 Ton / 120,000 BTUH Air-Cooled Chiller 208/230-1-50/60 1 HVAC Guide Specifications Air-Cooled Liquid Chiller Nominal Size: 10 Tons Multiaqua Model Number: MAC-120HE-01
Evaporative Cooling for Residential and Light-Commercial
EMERGING TECHNOLOGIES This article was published in ASHRAE Journal, October 2011. Copyright 2011 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Posted at www.ashrae.org.
High Pressure Ammonia Systems New Opportunities
Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2010 High Pressure Ammonia Systems New Opportunities Andy Pearson Star Refrigeration
2004 Standard For Performance Rating Of Positive Displacement Refrigerant Compressors And Compressor Units
2004 Standard For Performance Rating Of Positive Displacement Refrigerant Compressors And Compressor Units ANSI/AHRI Standard 540 (formerly ARI Standard 540) IMPORTANT SAFETY RECOMMENDATIONS ARI does not
Air Conditioning 101. STN Presentation AC101
Air Conditioning 101 What is Refrigeration? Refrigeration is Cooling by the Removal of Heat Heat is Measured In BTU s A BTU is a British Thermal Unit It is the Amount of Heat to Raise One Pound of Water,
Air Conditioning Clinic
Air Conditioning Clinic Introduction to HVAC Systems One of the Systems Series February 2012 TRG-TRC018-EN Introduction to HVAC Systems One of the Systems Series A publication of Trane Preface Introduction
MODELLING AND OPTIMIZATION OF DIRECT EXPANSION AIR CONDITIONING SYSTEM FOR COMMERCIAL BUILDING ENERGY SAVING
MODELLING AND OPTIMIZATION OF DIRECT EXPANSION AIR CONDITIONING SYSTEM FOR COMMERCIAL BUILDING ENERGY SAVING V. Vakiloroaya*, J.G. Zhu, and Q.P. Ha School of Electrical, Mechanical and Mechatronic Systems,
8. Refrigeration. 4. Liquid. Refrigerant. 4. Liquid Refrigerant. Figure 8.1 Refrigeration system layout (single stage)
2. Vapor 8. Refrigeration 4. Liquid 3. Condenser 5. Receiver 4. Liquid 1. Compressor 6. Throttling Device 12. Electricity 2. Vapor 8. Recirculator 4. Liquid 7. Liquid/Vapor 7. Liquid/Vapor 10. Warm Air
COURSE TITLE : REFRIGERATION AND AIR CONDITIONING COURSE CODE : 4029 COURSECATEGORY : A PERIODS/WEEK : 5 PERIODS/SEMESTER : 90 CREDITS : 4 OBJECTIVES
COURSE TITLE : REFRIGERATION AND AIR CONDITIONING COURSE CODE : 4029 COURSECATEGORY : A PERIODS/WEEK : 5 PERIODS/SEMESTER : 90 CREDITS : 4 TIME SCHEDULE MODULE TOPICS PERIODS 1 Introduction 22 Principles
Table V. Troubleshooting Checklist for Refrigeration Systems. Air or non-condensable gas in system. Inlet water warm.
Table V Troubleshooting Checklist for Refrigeration Systems TROUBLE POSSIBLE CAUSE CORRECTIVE MEASURE High condensing pressure. Low condensing pressure. Air or non-condensable gas in system. Inlet water
How much do you know about HVAC? Try testing yourself with the following questions and then take a look at the answers on the following page.
Demystifying HVAC Test Your HVAC Knowledge By Ron Prager How much do you know about HVAC? Try testing yourself with the following questions and then take a look at the answers on the following page. 1)
National Grid Small Business Energy Efficiency Program Overview. Central New York Energy Expo March 30, 2010
National Grid Small Business Energy Efficiency Program Overview Central New York Energy Expo March 30, 2010 Agenda National Grid Cooler Retrofit Program Refrigeration 101 Smart Thermostat Controls, Anti-Sweat
A Comparison of an R22 and an R410A Air Conditioner Operating at High Ambient Temperatures
R2-1 A Comparison of an R22 and an R410A Air Conditioner Operating at High Ambient Temperatures W. Vance Payne and Piotr A. Domanski National Institute of Standards and Technology Building Environment
SASO XXXX:2016. (Including the modifications approved in Saudi Council Board No. XXX/2016) LARGE CAPACITY AIR CONDITIONERS
SASO XXXX:2016 (Including the modifications approved in Saudi Council Board No. XXX/2016) LARGE CAPACITY AIR CONDITIONERS PERFORMANCE REQUIREMENTS AND METHODS OF TESTING 1 LARGE CAPACITY AIR CONDITIONERS
Troubleshooting HVAC/R systems using refrigerant superheat and subcooling
Troubleshooting HVAC/R systems using refrigerant superheat and subcooling Application Note Troubleshooting and servicing refrigeration and air conditioning systems can be a challenging process for both
REFRIGERATION & AIR CONDITIONING SYSTEM
REFRIGERATION & AIR CONDITIONING SYSTEM 1. INTRODUCTION...1 2. TYPES OF REFRIGERATION AND AIR CONDITIONING...3 3. ASSESSMENT OF REFRIGERATION AND AIR CONDITIONING...9 4. ENERGY EFFICIENCY OPPORTUNITIES...12
Data Realty Colocation Data Center Ignition Park, South Bend, IN. Owner: Data Realty Engineer: ESD Architect: BSA LifeStructures
Data Realty Colocation Data Center Ignition Park, South Bend, IN Owner: Data Realty Engineer: ESD Architect: BSA LifeStructures Project Overview Data Realty is a data center service provider for middle
Environmental and Safety Impacts of HFC Emission Reduction Options for Air Conditioning and Heat Pump Systems
Environmental and Safety Impacts of HFC Emission Reduction Options for Air Conditioning and Heat Pump Systems William M. Corcoran, George Rusch, Mark W. Spatz, and Tim Vink AlliedSignal, Inc. ABSTRACT
P. A. Hilton Ltd REFRIGERATION & AIR CONDITIONING VAPOUR COMPRESSION HEAT PUMPS VENTILATION VOCATIONAL
REFRIGERATION & AIR CONDITIONING Refrigeration and air conditioning is an aspect of modern life that is accepted almost without thought. Food storage, the long distance transport of foodstuffs, stockpiling
Cooling Systems 2/18/2014. Cooling Water Systems. Jim Lukanich, CWT ChemCal, Inc. Grapevine, TX
Cooling Systems Jim Lukanich, CWT ChemCal, Inc. Grapevine, TX Cooling Water Systems Water is used for cooling because of its capacity to remove and store heat and availability. Cooling water is used in
Rusty Walker, Corporate Trainer Hill PHOENIX
Refrigeration 101 Rusty Walker, Corporate Trainer Hill PHOENIX Compressor Basic Refrigeration Cycle Evaporator Condenser / Receiver Expansion Device Vapor Compression Cycle Cooling by the removal of heat
Glossary of Heating, Ventilation and Air Conditioning Terms
Glossary of Heating, Ventilation and Air Conditioning Terms Air Change: Unlike re-circulated air, this is the total air required to completely replace the air in a room or building. Air Conditioner: Equipment
POLK STATE COLLEGE CHILLER PLANT EVALUATION WINTER HAVEN, FLORIDA APRIL 2, 2014. C arastro & A ssociates, C&A# 5747
POLK STATE COLLEGE WINTER HAVEN, FLORIDA CHILLER PLANT EVALUATION APRIL 2, 2014 C&A# 5747 C arastro & A ssociates, c o n s u l t i n g e n g i n e e r s inc. 2609 W. De Leon Street, Tampa, Florida 33609
Lower Energy Costs with Rooftop Air-Conditioning Package Units
Lower Energy Costs with Rooftop Air-Conditioning Package Units Sponsored by Mike West, PhD, PE Advantek Consulting, Inc Package Unit Efficiency Factors Sensible and latent performance ratings Unit efficiency
4. HVAC AND REFRIGERATION SYSTEM
4. HVAC AND REFRIGERATION SYSTEM Syllabus HVAC and Refrigeration System: Vapor compression refrigeration cycle, Refrigerants, Coefficient of performance, Capacity, Factors affecting Refrigeration and Air
The main steam enters the building in the basement mechanical room; this is where the condensate line also leaves the building.
MSV: Square Footage: 24,844 No. of Floors: 1 Year Built: 1963 Type of Use: Lounge and dining area open all night for snacks Steam Water-cooled condenser, 50-Ton York unit with a 6 cylinder-reciprocating
High School Graduation years 2013, 2014, 2015. Unit/Standard Number
1 Secondary Task List 100 INTRODUCTION TO HVAC 101 Identify HVAC systems. 102 Describe career opportunities in the HVAC profession. 103 Demonstrate awareness of the occupational requirements. 104 Explain
Optimization of Industrial Refrigeration Plants: Including a Case Study at Stonyfield Farm Yogurt
Optimization of Industrial Refrigeration Plants: Including a Case Study at Stonyfield Farm Yogurt Mark D Antonio, Satyen Moray, Brian McCowan and Gary Epstein, Energy & Resource Solutions, Inc. Lisa Drake,
OPTIMIZING CONDENSER WATER FLOW RATES. W. A. Liegois, P.E. Stanley Consultants, Inc. Muscatine, Iowa
OPTIMIZING CONDENSER WATER FLOW RATES W. A. Liegois, P.E. Stanley Consultants, Inc. Muscatine, Iowa T.A. Brown, P.E. Thermal Energy Corporation Houston, Texas ABSTRACT Most chillers are designed for a
Energy Efficiency Best Practice Guide Industrial Refrigeration
3 Energy Efficiency Best Practice Guide Contents 1 Introduction 4 2 The business benefits of efficient refrigeration 5 3 What is your opportunity? 6 4 Solution 1 Improve the efficiency of your existing
How Ground/Water Source Heat Pumps Work
How Ground/Water Source s Work Steve Kavanaugh, Professor Emeritus of Mechanical Engineering, University of Alabama Ground Source s (a.k.a. Geothermal s) are becoming more common as the costs of energy
DEVELOPMENT OF A TWIN SCREW EXPRESSOR AS A THROTTLE VALVE REPLACEMENT FOR WATER-COOLED CHILLERS
DEVELOPMENT OF A TWIN SCREW EXPRESSOR AS A THROTTLE VALVE REPLACEMENT FOR WATER-COOLED CHILLERS J J Brasz, Carrier Corporation, Syracuse, NY, 13221, USA [email protected] I K Smith and N Stosic
Fundamentals of Mechanical Refrigeration Systems
PDHonline Course M244 (4 PDH) Fundamentals of Mechanical Refrigeration Systems Instructor: A. Bhatia, B.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088
Dr. Michael K. West, PE 1 Dr. Richard S. Combes, PE 2 Advantek Consulting / Melbourne, Florida
Optimizing 100% Outside Air Systems with Heat Pipes Dr. Michael K. West, PE 1 Dr. Richard S. Combes, PE 2 Advantek Consulting / Melbourne, Florida Introduction To meet increasingly rigorous building codes
How To Understand Evaporator
SECTION 5 COMMERCIAL REFRIGERATION UNIT 21 EVAPORATORS AND THE REFRIGERATION SYSTEM UNIT OBJECTIVES After studying this unit, the reader should be able to Define high-, medium-, and low-temperature refrigeration.
Testing methods applicable to refrigeration components and systems
Testing methods applicable to refrigeration components and systems Sylvain Quoilin (1)*, Cristian Cuevas (2), Vladut Teodorese (1), Vincent Lemort (1), Jules Hannay (1) and Jean Lebrun (1) (1) University
MAINTENANCE INSTRUCTIONS. Thermia Robust heat pump
MAINTENANCE INSTRUCTIONS Thermia Robust heat pump 9 6 8 0-5 4 7 4 5 0 0 1 R e v. 3 Table of contents 1 Important information.................. 2 1.1 Product description....................... 2 1.2 General................................
Any Service Technician Can Fix It A Good Service Technician Can Figure Out What s Wrong With It.
I Dave s Statement If the thermostat calls for cooling, and the furnace fan is running properly, and the coil airflow is adequate, and the condenser fan is running properly, and the condenser airflow is
Wet Bulb Temperature and Its Impact on Building Performance
Wet Bulb Temperature and Its Impact on Building Performance By: Kurmit Rockwell, PE, CEM, LEED AP and Justin Lee, PE, LEED, AP BD+C Energy Solution Services, AtSite, Inc. 1 What is Wet Bulb Temperature?
How To Know If A Refrigeration System Is Efficient
Universitatea de Ştiinţe Agricole şi Medicină Veterinară Iaşi ASSESSMENT OF E SUBCOOLING CAPABILITIES OF A ERMOELECTRIC DEVICE IN A VAPOR COMPRESSION REFRIGERATION SYSTEM R. ROŞCA 1, I. ŢENU 1, P. CÂRLESCU
DATA CENTER COOLING INNOVATIVE COOLING TECHNOLOGIES FOR YOUR DATA CENTER
DATA CENTER COOLING INNOVATIVE COOLING TECHNOLOGIES FOR YOUR DATA CENTER DATA CENTERS 2009 IT Emissions = Aviation Industry Emissions Nations Largest Commercial Consumers of Electric Power Greenpeace estimates
OPTIMIZED CONTROL STRATEGIES FOR A TYPICAL WATER LOOP HEAT PUMP SYSTEM
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Architectural Engineering -- Dissertations and Student Research Architectural Engineering 7-26-2011 OPTIMIZED CONTROL STRATEGIES
Calculating System Flow Requirements
Calculating System Flow Requirements To select a pump, we need to know the flow rate (the amount of fluid to be pumped) and the system resistance or head. In the U.S., flow rates are given in gallons per
HVAC Basic Science - System Capacity
HVAC Basic Science - System Capacity Btu/hour, btu/h, b/h, btuh. btu?? 1 MBH = 1000 btu/hour 1 KBH = 1000 btu/hour 1 ton of cooling= 12,000 btu/hour 1 watt = 3.414 btu/hour 1 kilowatt = 1000 watts = 3,414
Data Centers WHAT S ONTHEHORIZON FOR NR HVAC IN TITLE 24 2013? SLIDE 1
WHAT S ONTHEHORIZON FOR NR HVAC IN TITLE 24 2013? SLIDE 1 Data Center CASE Scope Existing Title 24 2008 Scope Current scope ( 100 T24-2008) exempts process space from many of the requirements, however
HVAC System Selection Criteria. RTSPco Technical department M.dadkhah
HVAC System Selection Criteria RTSPco Technical department M.dadkhah An HVAC system maintains desired environmental conditions in a space. In almost every application, many options are available to the
Modeling Guide for Daikin VRV in EnergyPro 6
Modeling Guide for Daikin VRV in EnergyPro 6 Table of Contents Introduction... 1 Program Installation... 2 Importing Designated VRV Product File... 3 System Modeling... 6 Modeling air-cooled outdoor units...
Refrigeration and Airconditioning Prof. M. Ramgopal Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Refrigeration and Airconditioning Prof. M. Ramgopal Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. # 22 Refrigeration System Components: Compressor (Continued)
Increasing the evaporation temperature with the help of an internal heat exchanger
Increasing the evaporation temperature with the help of an internal heat exchanger A. TAMBOVTSEV (a), H. QUACK (b) (a,b) Technische Universität Dresden, D-01062, Dresden, Germany (a) Fax: (+49351) 463-37247,
Free Cooling in Data Centers. John Speck, RCDD, DCDC JFC Solutions
Free Cooling in Data Centers John Speck, RCDD, DCDC JFC Solutions Why this topic Many data center projects or retrofits do not have a comprehensive analyses of systems power consumption completed in the
Advanced Heat Reclaim Systems. Harrison Horning, PE, CEM Delhaize America - Hannaford
Advanced Heat Reclaim Systems Harrison Horning, PE, CEM Delhaize America - Hannaford Outline Basic refrigeration cycle Conventional series heat reclaim Full-condensing parallel heat reclaim Direct Hydronic
New Trends in the Field of Automobile Air Conditioning
New Trends in the Field of Automobile Air Conditioning E. Janotkova and M. Pavelek Department of Thermomechanics and Environmental Engineering Brno University of Technology, 61669 Brno, Czech Republic
The Refrigeration Cycle. Jerry Cohen President Jacco & Assoc.
The Refrigeration Cycle Jerry Cohen President Jacco & Assoc. Who is Jacco Established 1968 Hudson, Ohio Columbus, Ohio Toledo, Ohio Focused on the Engineered Environment Systems Knowledgeable HVAC Systems
Drives and motors. A guide to using variable-speed drives and motors in retail environments
Drives and motors A guide to using variable-speed drives and motors in retail environments Improving energy efficiency and lowering the carbon footprint Retailers across the UK take their corporate responsibility
