# UNDERSTANDING REFRIGERANT TABLES

Size: px
Start display at page:

Transcription

3 volume is ft 3 /lb. And 1.7 divided by equals lb. Caution: Liquid-full components of a refrigeration system will build up hydrostatic pressure with an increase in temperature. They can burst or explode, the same as a liquid-full cylinder. COLUMN 5: VAPOR VOLUME The values listed in Column 4 are specific volumes. They are the reciprocals of the density values. A good example is the liquid density of R-22 at 40 F. Column 4 shows it to be lb/ft 3. Divide 1 by to get the reciprocal, This is the specific volume of liquid R-22 at 40 F. The same is true of saturated vapor at 40 F. The density is 1.52 lb/ft 3. The specific volume is ft 3 /lb ( = 1.52). Thus, the volume value in Column 5 is the reciprocal of the density value of the saturated vapor. But if volume and density are reciprocals of each other, why show both in the tables? To find the amount of liquid in a space of known volume, you use the density values. If you know the amount of refrigerant and you need to find the size of the container, you use the specific volume values. In both cases, you must apply mathematics to find the answer. Vapor density values have another practical use. Assume that a 125-lb cylinder of R-22 (at 70 F) is waiting to be charged into a system. The cylinder has an internal volume of ft 3. Charging is done into the high side in liquid form. After the liquid is charged into the high side, the cylinder is secured with its cap on, ready for return. Actually, it still contains ft 3 of saturated vapor at 70 F. The volume of saturated vapor at 70 F is ft 3 /lb. This means that the cylinder still holds 4.87 lb (1.967 divided by ) of R-22. If you return the cylinder without recovering it, 4.87 lb of R-22 is lost. Note: EPA rules require the recovery of the vapor from disposable cylinders prior to disposal. COLUMNS 6, 7, AND 8: ENTHALPY Enthalpy means the same thing as heat content. Both terms refer to heat content in Btu per pound (Btu/lb). The term enthalpy is now more common than heat content. Columns 6 and 8 show the enthalpy values for liquid and vapor at Column 1 temperatures above 40 F. Vapor heat content values, however, include the latent heat value shown in Column 7. This will be discussed shortly. The heat content of liquid is sensible heat. In low-temperature areas, it amounts to about 0.25 Btu per pound per degree Fahrenheit (Btu/lb/ F) for R-22. It gradually increases until at liquid-line temperatures it is about 0.31 Btu/lb/ F. The heat content shown in Column 6 is the amount of heat (in Btu) in a pound of saturated liquid. Values are based on the assumption that the saturated liquid at 40 F has no sensible heat, which is not completely true, of course. Even liquid at 100 F still has some heat in it. To be completely accurate, these values would have to be based on absolute zero. This, however, is not really necessary. The purpose of the table is simply to find out how much heat is required to warm a pound of liquid refrigerant from one temperature to a higher temperature. For example, Column 6 shows the heat content of saturated liquid at 80 F is Btu/lb. At 20 F, it is Btu/lb. Therefore, to cool 1 lb of R-22 saturated liquid from 80 F to 20 F requires removing Btu/lb ( ). This difference is about the same whether heat content is based on 0 F, 40 F, 100 F, or even absolute zero. In Table 1, the values in Column 6 for saturated liquids below 40 F are negative (note the minus signs). This does not mean that saturated liquid R-22 at 60 F has Btu less than no heat at all. That is impossible. Rather, the minus sign means that at 60 F, R-22 has Btu/lb less heat content than it does at 40 F. Look at Table 1 again. You can see from Column 6 that warming 1 lb of R-22 from 60 F to 55 F requires Btu ( = 1.233). Divide by 5 (which is the temperature difference in degrees Fahrenheit), and you find that the heat content is about Btu/lb/ F in the 60 F range ( = ). Column 7 shows the latent heat of vaporization of the refrigerant at the saturation temperature in Column 1. Note that the latent heat decreases as saturation temperature increases. 3

4 Density Volume Enthalpy** Entropy** Temp Pressure (lb/ft 3 ) (ft 3 /lb) (Btu/lb) (Btu/lb/ R) ( F) (psia) (psig) Liquid Vapor Liquid Latent Vapor Liquid Vapor * * * * * * * * *Inches of mercury vacuum Table 1. Properties of R-22 at saturation **Based on 0 for the saturated liquid at 40 F 4

5 Density Volume Enthalpy** Entropy** Temp Pressure (lb/ft 3 ) (ft 3 /lb) (Btu/lb) (Btu/lb/ R) ( F) (psia) (psig) Liquid Vapor Liquid Latent Vapor Liquid Vapor Table 1. Properties of R-22 at saturation (continued) 5

6 The values in Column 8, subtitled Vapor, are always the sum of the heat content of the saturated liquid refrigerant and the latent heat of vaporization. Before a liquid boils, it possesses sensible heat, as shown in Column 6. When the liquid boils, it acquires latent heat in addition to the sensible heat. The total heat of the resulting saturated vapor must equal the heat of the liquid plus the acquired latent heat. Some tables refer to the heat content of the vapor as total heat. This condition is more clearly defined in the following example. Assume that liquid R-22 is boiling (evaporating) in an evaporator at 40 F. The saturated vapor produced has a heat content (from Column 8) of Btu/lb.This consists of Btu/lb from Column 6 (sensible heat of the liquid), and Btu/lb from Column 7 (latent heat of vaporization). When Column 6 values are added to Column 7 values, the result shown in Column 8 represents the total heat content of the saturated vapor in the evaporator. This is before it is superheated or warmed to a temperature above the evaporator temperature. Note that if the evaporator temperature is below 40 F, the values in Column 6 are negative. They must be subtracted from the values in Column 7 to find the heat of the vapor. For example, the heat of vapor for R-22 at 60 F is Btu/lb. You calculate this by subtracting Btu/lb liquid heat from Btu/lb latent heat. NET COOLING EFFECT The net cooling effect is another value that you can find by using refrigerant tables. For example, assume that an R-22 system with a 40 F evaporator has liquid entering the metering device at 80 F. The liquid must be cooled 40 F before it can start to boil in the evaporator at 40 F. The heat of the R-22 liquid at 80 F is Btu/lb, as shown in Table 1. At 40 F, it is Btu/lb. Therefore, Btu/lb ( ) must be removed in order to cool the 80 F liquid to 40 F. It then boils in the evaporator and absorbs its latent heat of Btu/lb (that is, it cools at the rate of Btu/lb). However, the net cooling effect (actual useful cooling) is somewhat less than Btu/lb. This is because Btu/lb was used in cooling the liquid from 80 F to 40 F, which leaves only Btu/lb ( ) as the net cooling effect. In this system, each pound of R-22 would produce Btu/lb of useful cooling instead of the full latent heat of vaporization of Btu/lb. There is a faster method of finding the net cooling effect. Simply subtract the heat of the liquid at the inlet to the metering device from the heat of the vapor at its evaporator boiling temperature. The result is the same as with the more informative equation. Now, assume that the liquid entering the evaporator is subcooled. You can use the actual temperature of the liquid to find its heat content, instead of the saturation temperature corresponding to head pressure. In the preceding example, assume that the liquid is subcooled from 80 F to 60 F in the liquid line. Now you can use Btu/lb instead of Btu/lb as the heat of liquid. The result is a net cooling effect of Btu/lb ( ). This is a gain of almost 8%, just by subcooling the liquid from 80 F to 60 F. This can be done by means of a liquid subcooler. You will find that there are many other uses for the heat content values in Columns 6, 7, and 8. COLUMNS 9 AND 10: ENTROPY Entropy is a ratio that describes the relative energy in a refrigerant. It is found by dividing the amount of heat in the liquid or vapor refrigerant by its temperature in degrees absolute. Entropy is not of particular interest or importance to the service technician. It will not be discussed further here. Note, however, that entropy values are useful with a Mollier diagram to estimate compressor discharge temperature. CONCLUSION Table 1, used as an example in this chapter, is for R-22. R-22 will soon be phased out and will no longer be manufactured in the U.S. However, thousands of systems using R-22 are still operating. They will continue to do so as long as R-22 is available, or until they are retrofitted for a replacement refrigerant. With a thorough understanding of the use of refrigerant tables and the examples given in this chapter, you 6

7 can use such tables for any refrigerant, including the newer replacement refrigerants. The table included on pages 8 and 9 (for R-410A) is very similar in format to the table for R-22 that you have studied as an example. There may be slight variations in some refrigerant tables, but for the most part you should be able to find the same information and make the same kinds of calculations. You also may find the conversion methods on page 10 helpful. If you need tables for refrigerants that are not included in this chapter, you can get them from any refrigerant manufacturer through your refrigerant wholesaler. 7

8 Density Volume Enthalpy** Entropy** Temp Pressure (lb/ft 3 ) (ft 3 /lb) (Btu/lb) (Btu/lb/ R) ( F) (psia) (psig) Liquid Vapor Liquid Latent Vapor Liquid Vapor **Based on 0 for the saturated liquid at 40 F Table 2. Properties of R-410A at saturation 8

9 Density Volume Enthalpy** Entropy** Temp Pressure (lb/ft 3 ) (ft 3 /lb) (Btu/lb) (Btu/lb/ R) ( F) (psia) (psig) Liquid Vapor Liquid Latent Vapor Liquid Vapor Table 2. Properties of R-410A at saturation (continued) 9

10 To convert measurements From To Multiply by Cubic feet Cubic inches 1,728.0 Cubic inches Cubic feet Cubic feet Gallons Gallons Cubic feet Liters Gallons Gallons Liters To convert pressure (at 32 F) From To Multiply by Inches of water Pounds per square inch Pounds per square inch Inches of water Inches of mercury Pounds per square inch Pounds per square inch Inches of mercury To convert energy, heat, and power From To Multiply by Horsepower Foot-pounds per minute 33,000.0 Horsepower Kilowatts Kilowatts Horsepower British thermal units Foot-pounds Foot-pounds British thermal units Horsepower Watts British thermal units per hour Watts To convert temperatures From To Do this Degrees Celsius Degrees Fahrenheit Multiply by 1.8 and add 32 Degrees Rankine Degrees Fahrenheit Subtract

11

12 Refrigeration Service Engineers Society 1666 Rand Road Des Plaines, IL

### Rusty Walker, Corporate Trainer Hill PHOENIX

Refrigeration 101 Rusty Walker, Corporate Trainer Hill PHOENIX Compressor Basic Refrigeration Cycle Evaporator Condenser / Receiver Expansion Device Vapor Compression Cycle Cooling by the removal of heat

### Refrigeration Basics 101. By: Eric Nelson

Refrigeration Basics 101 By: Eric Nelson Basics Refrigeration is the removal of heat from a material or space, so that it s temperature is lower than that of it s surroundings. When refrigerant absorbs

### Characteristics of Evaporators

Characteristics of Evaporators Roger D. Holder, CM, MSME 10-28-2003 Heat or Energy In this paper, we will discuss the characteristics of an evaporator coil. The variance of the operational condenses of

### Troubleshooting HVAC/R systems using refrigerant superheat and subcooling

Troubleshooting HVAC/R systems using refrigerant superheat and subcooling Application Note Troubleshooting and servicing refrigeration and air conditioning systems can be a challenging process for both

### THE PSYCHROMETRIC CHART AND ITS USE

Service Application Manual SAM Chapter 630-16 Section 3A THE PSYCHROMETRIC CHART AND ITS USE Psychrometry is an impressive word which is defined as the measurement of the moisture content of air. In broader

### Equivalents & Conversion Factors 406 Capacity Formulas for Steam Loads 407 Formulas for Control Valve Sizing 408-409

Engineering Data Table of Contents Page No. I II Formulas, Conversions & Guidelines Equivalents & Conversion Factors 406 Capacity Formulas for Steam Loads 407 Formulas for Control Sizing 408-409 Steam

### Troubleshooting an Air Conditioning system. R D Holder Eng. Roger D Holder MSME

Troubleshooting an Air Conditioning system R D Holder Eng. Roger D Holder MSME Troubleshooting of an air conditioning system is a step by step procedure. I have found that a 4 step procedure is the best

### Any Service Technician Can Fix It A Good Service Technician Can Figure Out What s Wrong With It.

I Dave s Statement If the thermostat calls for cooling, and the furnace fan is running properly, and the coil airflow is adequate, and the condenser fan is running properly, and the condenser airflow is

### RS-52 (R428A) RS-52: PHYSICAL PROPERTIES RS-52 R502 Molecular weight 107.5 111.6 Temperature glide o C 0.5 0.2 Boiling point (1 atm)

RS-52 (R428A) COMPOSITION % HFC 125 77.5 HFC 143a 20.0 R600a 1.9 R290 0.6 HCFC replacement Temperature glide R22, 502 & interim blends Approximately 0.8 o C Drop-in or long term Both Lubricant MO/AB/POE

### Specific Volume of Liquid (Column 7). The volume per unit of mass in cubic feet per pound.

Steam Tables What They Are How to Use Them The heat quantities and temperature/ pressure relationships referred to in this Handbook are taken from the Properties of Saturated Steam table. Definitions of

### Chapter 2 P-H Diagram Refrigeration Cycle Analysis & Refrigerant Flow Diagram

Chapter 2 P-H Diagram Refrigeration Cycle Analysis & Refrigerant Flow Diagram Copy Right By: Thomas T.S. Wan 温 到 祥 著 Sept. 3, 2008 All rights reserved Industrial refrigeration system design starts from

### COMMERCIAL HVAC EQUIPMENT. Condensers and Cooling Towers

COMMERCIAL HVAC EQUIPMENT Condensers and Cooling Towers Technical Development Programs (TDP) are modules of technical training on HVAC theory, system design, equipment selection and application topics.

### It will be available soon as an 8.5 X 11 paperback. For easier navigation through the e book, use the table of contents.

The System Evaluation Manual and Chiller Evaluation Manual have been revised and combined into this new book; the Air Conditioning and Refrigeration System Evaluation Guide. It will be available soon as

### How To Understand Evaporator

SECTION 5 COMMERCIAL REFRIGERATION UNIT 21 EVAPORATORS AND THE REFRIGERATION SYSTEM UNIT OBJECTIVES After studying this unit, the reader should be able to Define high-, medium-, and low-temperature refrigeration.

### = 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C

Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.

### REFRIGERANT REFERENCE GUIDE

REFRIGERANT REFERENCE GUIDE WORLWIDE REFRIGERANT SUPPLIER 2004 FOURTH EDITION 2004 DISCLAIMER This publication is designed to provide accurate and authoritative information. It is not to be construed as

### Low GWP Replacements for R404A in Commercial Refrigeration Applications

Low GWP Replacements for R404A in Commercial Refrigeration Applications Samuel YANA MOTTA, Mark SPATZ Honeywell International, 20 Peabody Street, Buffalo, NY 14210, Samuel.YanaMotta@honeywell.com Abstract

### ACFM vs. SCFM vs. ICFM Series of Technical White Papers from Ohio Medical Corporation

ACFM vs. SCFM vs. ICFM Series of Technical White Papers from Ohio Medical Corporation Ohio Medical Corporation 1111 Lakeside Drive Gurnee, IL 60031 Phone: (800) 448-0770 Fax: (847) 855-6304 info@ohiomedical.com

### QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS. Thermodynamic Properties

QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS Thermodynamic Properties 1. If an object has a weight of 10 lbf on the moon, what would the same object weigh on Jupiter? ft ft -ft g

### Refrigerant Changeover Guidelines R-22 to R-407C. Leading the Industry with Environmentally Responsible Refrigerant Solutions

Refrigerant Changeover Guidelines R-22 to R-407C Leading the Industry with Environmentally Responsible Refrigerant Solutions Copeland does not CFC advocate the wholesale changeover of HCFC HCFC refrigerants

### HOW HVAC WORKS. How HVAC. Works PAGE 1

How HVAC Works PAGE 1 Heat - What is it? Heat is more than a physical concept - it is a feeling. Heat is taught to us at a very young age as a danger to be avoided. Yet, have you ever stopped and thought

### Refrigeration and Airconditioning Prof. M. Ramgopal Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Refrigeration and Airconditioning Prof. M. Ramgopal Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. # 22 Refrigeration System Components: Compressor (Continued)

### 2004 Standard For Performance Rating Of Positive Displacement Refrigerant Compressors And Compressor Units

2004 Standard For Performance Rating Of Positive Displacement Refrigerant Compressors And Compressor Units ANSI/AHRI Standard 540 (formerly ARI Standard 540) IMPORTANT SAFETY RECOMMENDATIONS ARI does not

### How does solar air conditioning work?

How does solar air conditioning work? In a conventional air conditioning system; The working fluid arrives at the compressor as a cool, low-pressure gas. The compressor is powered by electricity to squeeze

### WILLIAM C. WHITMAN WILLIAM M. JOHNSON JOHN A. TOMCZYK EUGENE SILBERSTEIN

Licensed to: CengageBrain User 2 5 T H A N N I V E R S A R Y REFRIGERATION & AIR CONDITIONING TECHNOLOGY SEVENTH EDITION WILLIAM C. WHITMAN WILLIAM M. JOHNSON JOHN A. TOMCZYK EUGENE SILBERSTEIN Australia

### HOT & COLD. Basic Thermodynamics and Large Building Heating and Cooling

HOT & COLD Basic Thermodynamics and Large Building Heating and Cooling What is Thermodynamics? It s the study of energy conversion using heat and other forms of energy based on temperature, volume, and

### Refrigerant Changeover Guidelines R-22 to R-407C. Leading the Industry with Environmentally Responsible Refrigerant Solutions

Refrigerant Changeover Guidelines R-22 to R-407C Leading the Industry with Environmentally Responsible Refrigerant Solutions Emerson Climate CFC Technologies, Inc. does not advocate the HCFC wholesale

### SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS

SECTION 5 COMMERCIAL REFRIGERATION UNIT 22 CONDENSERS UNIT OBJECTIVES After studying this unit, the reader should be able to explain the purpose of the condenser in a refrigeration system. describe differences

### Open Cycle Refrigeration System

Chapter 9 Open Cycle Refrigeration System Copy Right By: Thomas T.S. Wan 温 到 祥 著 Sept. 3, 2008 All rights reserved An open cycle refrigeration system is that the system is without a traditional evaporator.

### Recharge Procedure for Telemark TVP-2000 and TVP-3500

Recharge Procedure for Telemark TVP-2000 and TVP-3500 Required items: 1.) Refrigeration service manifold. 2.) Charge recovery system. 3.) Dry nitrogen gas. If a high pressure cylinder is used, a pressure

### UNIT 2 REFRIGERATION CYCLE

UNIT 2 REFRIGERATION CYCLE Refrigeration Cycle Structure 2. Introduction Objectives 2.2 Vapour Compression Cycle 2.2. Simple Vapour Compression Refrigeration Cycle 2.2.2 Theoretical Vapour Compression

### Geothermal Alliance of Illinois. TXVs Theory and Fundamentals John Haug Senior Application Engineer Emerson Climate Technologies - Flow Controls

Geothermal Alliance of Illinois TXVs Theory and Fundamentals John Haug Senior Application Engineer Emerson Climate Technologies - Flow Controls Thermal Expansion Valve Topics Anatomy Operation Terms &

### Ground Source Heat Pumps The Fundamentals. Southington, Connecticut 860 628 4622 John F. Sima III P.E.

Ground Source Heat Pumps The Fundamentals Southington, Connecticut 860 628 4622 John F. Sima III P.E. Winter/Spring 2010 Ground Source Heat Pumps The Fundamentals TOPICS: Heat Pump Terminology Basic Physics

### Recover Heat from Boiler Blowdown Water

Prepared for California Energy Commission (CEC) Prepared By: Southern California Gas Company (A Sempra Energy Utility) E3M Inc. May 2012 i Disclaimer The CEC and its contractor, Southern California Gas

### Total Heat Versus Sensible Heat Evaporator Selection Methods & Application

Total Heat Versus Sensible Heat Evaporator Selection Methods & Application Scope The purpose of this paper is to provide specifying engineers, purchasers and users of evaporators in industrial refrigeration

### Why and How we Use Capacity Control

Why and How we Use Capacity Control On refrigeration and air conditioning applications where the load may vary over a wide range, due to lighting, occupancy, product loading, ambient weather variations,

### MAXIMUM HEAT LOAD TEMPERATURE TESTING ( Differential Temperature Testing )

MAXIMUM HEAT LOAD TEMPERATURE TESTING ( Differential Temperature Testing ) The Concept Maximum Heat Load Temperature Testing is a powerful air-conditioning diagnostic and evaluation technique. It is also

### SERVICE GUIDELINES HCFC R22 TO HFC REFRIGERANT BLENDS

SERVICE GUIDELINES HCFC R22 TO HFC REFRIGERANT BLENDS 2009 Tecumseh Products Company. All rights reserved. Page 1 of 8 Refrigerant R22 is widely used for residential and commercial air conditioning, as

### SIZING AND CAPACITIES OF GAS PIPING

APPENDIX A (IFGS) SIZING AND CAPACITIES OF GAS PIPING (This appendix is informative and is not part of the code.) A.1 General. To determine the size of piping used in a gas piping system, the following

### Automobile Air Conditioning Primer

Automobile Air Conditioning Primer An air conditioner is basically a refrigerator without the insulated box. It uses the evaporation of a refrigerant, like Freon, to provide cooling. The mechanics of the

### Contents and Nomenclature

DX Coils Contents and Nomenclature Nomenclature... 1 Evaporator Coil Types EN... 2 EF... 2 ER... 2 EJ... 3 EK... 3 Evaporator Construction Connections... 4 Tubing... 4 Headers... 5 Tube Supports... 5 Coil

### R407C GUIDELINES FOR UTILIZATION OF. DATE: August 2009 REFERENCE DOCUMENT NO. RD-0005-E GUIDELINES FOR UTILIZATION OF R407C

GUIDELINES FOR UTILIZATION OF R407C 2009 Tecumseh Products Company. All rights reserved. Page 1 of 6 After many years of testing and investigation, R407C is recognized as a suitable alternative refrigerant

### Gas Line Sizing. Z Maximum gas demand shall be determined by adding all of the equipment Btu ratings from appliances connected on the system.

Gas Line Sizing When sizing Gas piping systems certain factors must be considered. They are: Z It shall provide sufficient gas to meet the maximum demand of the gas equipment. Piping must be sized to supply

### High Pressure Ammonia Systems New Opportunities

Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2010 High Pressure Ammonia Systems New Opportunities Andy Pearson Star Refrigeration

### REFRIGERANT 410A. Refrigeration Service Engineers Society 1666 Rand Road Des Plaines, Illinois 60016. Information compiled by Frank Prah, CMS

Refrigeration Service Engineers Society 1666 Rand Road Des Plaines, Illinois 60016 REFRIGERANT 410A Information compiled by Frank Prah, CMS INTRODUCTION Recently a new refrigerant, R-410A, has been formulated

### Refrigeration Manual. Part 3 - The Refrigeration Load

Refrigeration Manual Part 3 - The Refrigeration Load FOREWORD The practice of refrigeration undoubtedly goes back as far as the history of mankind, but for thousands of years the only cooling mediums were

### Preferred SI (Metric) Units

Quantity Unit Symbol LENGTH meter m Preferred SI (Metric) Units Metric-U.S. Customary Unit Equivalents 1 m = 1000 mm = 39.37 in. = millimeter mm 25.4 mm = 1 inch micrometer μm 1 μm = 10-6 m Remarks 3.281

### Commercial refrigeration has been in the environmental. Refrigerant. as a. Basics Considerations PART 1:

PART 1: CO 2 Commercial refrigeration has been in the environmental spotlight for more than a decade, especially as leakage studies have revealed the true effects of hydrofluorocarbon (HFC) emissions.

### How To Clean Water From An Ammonia Refrigeration System

Water Contamination and Water Removal in Industrial Ammonia Refrigeration Systems By Ray Ficker, PE Effects of Water Contamination Water contamination in an industrial ammonia refrigeration system can

### Pump Formulas Imperial and SI Units

Pump Formulas Imperial and Pressure to Head H = head, ft P = pressure, psi H = head, m P = pressure, bar Mass Flow to Volumetric Flow ṁ = mass flow, lbm/h ρ = fluid density, lbm/ft 3 ṁ = mass flow, kg/h

### Percent per Degree Rule of Thumb for Refrigeration Cycle Improvement

7 Percent per Degree Rule of Thumb for Refrigeration Cycle Improvement Steve Doty, PE, CEM sdoty@csu.org ABSTRACT A value of 1-1.5% power reduction per degree Fahrenheit (F) has been used successfully

### FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

### Air Conditioning 101. STN Presentation AC101

Air Conditioning 101 What is Refrigeration? Refrigeration is Cooling by the Removal of Heat Heat is Measured In BTU s A BTU is a British Thermal Unit It is the Amount of Heat to Raise One Pound of Water,

### Technical Training Associates Presents. Commercial Refrigeration Equipment Servicing Part 1

Technical Training Associates Presents Commercial Refrigeration Equipment Servicing Part 1 By Jim Johnson A Practical Approach To The Fundamentals Of Walk-Ins, Reach-In and, Display Cases: Restaurant,

### SEALED SYSTEM DIAGNOSIS

CONSUMER SERVICES TECHNICAL EDUCATION GROUP PRESENTS R-105 SEALED SYSTEM DIAGNOSIS Liquid level varies but ly last couple of passes of condenser is filled with liquid when running TRAINING MANUAL Part

### C H A P T E R T W O. Fundamentals of Steam Power

35 C H A P T E R T W O Fundamentals of Steam Power 2.1 Introduction Much of the electricity used in the United States is produced in steam power plants. Despite efforts to develop alternative energy converters,

### HVAC and REFRIGERATION

This is a preview. Some pages have been omitted. PE principles and practice prracticce of engineering mechanical: HVAC and REFRIGERATION sample questions + solutions Copyright 2011 by NCEES. All rights

### APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more

### AUTOMOTIVE AIR CONDITIONING

3rd Edition 3rd Edition Resources available For the instructor Register online at: www.cengagebrain.com for the study tools that come with your textbook! Companion website: includes weblinks and downloadable

### VACUUM REFRIGERATION SYSTEMS

VACUUM REFRIGERATION SYSTEMS CHILL VACTOR The Croll-Reynolds CHILL-VACTOR is a chiller that uses a vapor flashing process. Water has a pressure-temperature relationship which is its boiling point. If its

### Chapter 3.4: HVAC & Refrigeration System

Chapter 3.4: HVAC & Refrigeration System Part I: Objective type questions and answers 1. One ton of refrigeration (TR) is equal to. a) Kcal/h b) 3.51 kw c) 120oo BTU/h d) all 2. The driving force for refrigeration

### > Executive summary. Explanation of Cooling and Air Conditioning Terminology for IT Professionals. White Paper 11 Revision 2. Contents.

Explanation of Cooling and Air Conditioning Terminology for IT Professionals White Paper 11 Revision 2 by Tony Evans Click on a section to jump to it > Executive summary As power densities continue to

### Conversion Formulas and Tables

Conversion Formulas and Tables Metric to English, Introduction Most of the world, with the exception of the USA, uses the metric system of measurements exclusively. In the USA there are many people that

### Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

ht ig yr C op Es co s Pr es Copyright 1995 Business News Publishing Company All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced

### Fundamentals of Mechanical Refrigeration Systems

PDHonline Course M244 (4 PDH) Fundamentals of Mechanical Refrigeration Systems Instructor: A. Bhatia, B.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088

### CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION

CHAPTER 4 THE CAUIU-CAPEYRON EQUATION Before starting this chapter, it would probably be a good idea to re-read ections 9. and 9.3 of Chapter 9. The Clausius-Clapeyron equation relates the latent heat

### How To Design A Refrigeration System

AIRAH Refrigeration (in HVAC) Back to Basics For the First Time Terms of Reference What this session is NOT about Detailed Refrigeration Design Detailed analysis of various Refrigants properties Comparison

### HVAC Calculations and Duct Sizing

PDH Course M199 HVAC Calculations and Duct Sizing Gary D. Beckfeld, M.S.E., P.E. 2007 PDH Center 2410 Dakota Lakes Drive Herndon, VA 20171-2995 Phone: 703-478-6833 Fax: 703-481-9535 www.pdhcenter.com An

### Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1

Lesson Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications Version ME, IIT Kharagpur The objectives of this lecture are to discuss. Performance aspects of SSS cycle and

### PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH R404A, R407C AND R410A

Int. J. Mech. Eng. & Rob. Res. 213 Jyoti Soni and R C Gupta, 213 Research Paper ISSN 2278 149 www.ijmerr.com Vol. 2, No. 1, January 213 213 IJMERR. All Rights Reserved PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION

### Basic Nameplate Information

Basic Nameplate Information General Information: Most equipment nameplates will have some common items of information. Many of these are self explanatory, and include: Manufacturer Manufacturerʼs address

### 1. Standard conditions are 29.92 in. Hg (760 mm Hg, 14.696 psia) and 68 F (20 C).

INTRODUCTION Emission Monitoring Inc. DETERMINING F-FACTORS FROM GAS CHROMATOGRAPHIC ANALYSES Roger T. Shigehara Emission Monitoring Incorporated Howard F. Schiff TRC Environmental Corporation EPA Method

### Energy Efficient Building Design College of Architecture Illinois Institute of Technology, Chicago. Relative Humidities RH% 49.4. 0.

Psychrometrics Psychrometric Chart Relative Humidities RH% 49.4 100% 80% 0.030 Enthalpies 70% H btu/lb 46.5 0.028 85 Not to Scale 0.026 Humidity Numbers and Values 43.7 60% Ratios are approximate 0.024

### DOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 1 of 3

DOE-HDBK-1012/1-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK THERMODYNAMICS, HEAT TRANSFER, AND FLUID FLOW Volume 1 of 3 U.S. Department of Energy Washington, D.C. 20585 FSC-6910 Distribution Statement A. Approved

### Fluid Power Formula. These Formula Cover All Fluid Power Applications In This Manual

These Formula Cover All Fluid Power Applications In This Manual For Computer Programs To Work Problems By Simply Filling In The Blanks See Your Local Fluid Power Distributor Many Companies Web Site Or

### REFRIGERATION (& HEAT PUMPS)

REFRIGERATION (& HEAT PUMPS) Refrigeration is the 'artificial' extraction of heat from a substance in order to lower its temperature to below that of its surroundings Primarily, heat is extracted from

### How To Calculate The Performance Of A Refrigerator And Heat Pump

THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION On completion of this tutorial you should be able to do the following. Discuss the merits of different refrigerants. Use thermodynamic tables for

### One basic concept in math is that if we multiply a number by 1, the result is equal to the original number. For example,

MA 35 Lecture - Introduction to Unit Conversions Tuesday, March 24, 205. Objectives: Introduce the concept of doing algebra on units. One basic concept in math is that if we multiply a number by, the result

### Vogt Valves The Connection Bulletin for Forged Steel Flow Control Valves CB 15

The Connection Bulletin for Forged Steel Flow Control Valves CB 15 Flow Control Division Forged Steel Flow Control Valves GRADUATED DIAL AND INDICATOR FULLY GUIDED V-PORT THROTTLING DISC AND INTEGRAL HARD

### UNIT (1) MEASUREMENTS IN CHEMISTRY

UNIT (1) MEASUREMENTS IN CHEMISTRY Measurements are part of our daily lives. We measure our weights, driving distances, and gallons of gasoline. As a health professional you might measure blood pressure,

### The Second Law of Thermodynamics

The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction

### Lesson 1 HVAC/R TECHNOLOGY

HVAC/R TECHNOLOGY As you read in the introduction to this course, HVAC/R technicians are known for performing a very broad range of tasks on a variety of equipment. Their work most often requires working

### OUR PRODUCTS TRH-TRS-TRM-TRV. LIQUID RING VACUUM PUMPS AND COMPRESSORS Capacity up to 2100 ACFM Vacuum to 29 Hg. Our Other Products.

Our Other Products OUR PRODUCTS Liquid Ring & Rotary Vane Vacuum Pumps and Systems Liquid Ring Vacuum Pumps: 3 CFM to,000 CFM Liquid Ring Compressors up to 1 psig Heat Transfer Pumps for hot thermal oils

### Refrigerant Changeover Guidelines HCFC R-22 to HFC R-404A/R-507. Leading the Industry with Environmentally Responsible Refrigerant Solutions

Refrigerant Changeover Guidelines HCFC R-22 to HFC R-404A/R-507 Leading the Industry with Environmentally Responsible Refrigerant Solutions Copeland does not advocate the wholesale changeover of HCFCs

### Density Measurement. Technology: Pressure. Technical Data Sheet 00816-0100-3208 INTRODUCTION. S min =1.0 S max =1.2 CONSTANT LEVEL APPLICATIONS

Technical Data Sheet 00816-0100-3208 Density Measurement Technology: Pressure INTRODUCTION Pressure and differential pressure transmitters are often used to measure the density of a fluid. Both types of

### Technical Information

Determining Energy Requirements - & Gas Heating & Gas Heating and gas heating applications can be divided into two conditions, air or gas at normal atmospheric pressure and air or gas under low to high

### AIR CONDITION & REFRIGERATION INSTALLATION & REPAIR

AIR CONDITION & REFRIGERATION INSTALLATION & REPAIR SERVICE CAPACITY (Value) : Rs. 15,40,000/- MONTH AND YEAR : July, 2014 OF PREPARATION PREPARED BY : Sh. Sunil Arora Investigator (Mechanical) 1. INTRODUCTION

### Steam System Efficiency. Bill Lumsden Leidos Engineering

Steam System Efficiency Bill Lumsden Leidos Engineering Steam System Efficiency Steam System Efficiency Key Take-aways: Review of the properties of ice, water, and steam Learn the basics of steam trap

### Chapter 1 Chemistry: The Study of Change

Chapter 1 Chemistry: The Study of Change This introductory chapter tells the student why he/she should have interest in studying chemistry. Upon completion of this chapter, the student should be able to:

### Mohan Chandrasekharan #1

International Journal of Students Research in Technology & Management Exergy Analysis of Vapor Compression Refrigeration System Using R12 and R134a as Refrigerants Mohan Chandrasekharan #1 # Department

### Commercial CO2 Refrigeration Systems. Guide for Subcritical and Transcritical CO2 Applications

Commercial CO2 Refrigeration Systems Guide for Subcritical and Transcritical CO2 Applications 2 Contents Chapter 1. Introduction 4 Chapter 2. CO 2 Basics and Considerations as a Refrigerant 5 Section 1.

### PG Student (Heat Power Engg.), Mechanical Engineering Department Jabalpur Engineering College, India. Jabalpur Engineering College, India.

International Journal of Emerging Trends in Engineering and Development Issue 3, Vol. (January 23) EFFECT OF SUB COOLING AND SUPERHEATING ON VAPOUR COMPRESSION REFRIGERATION SYSTEMS USING 22 ALTERNATIVE

### EXERCISE # 1.Metric Measurement & Scientific Notation

EXERCISE # 1.Metric Measurement & Scientific Notation Student Learning Outcomes At the completion of this exercise, students will be able to learn: 1. How to use scientific notation 2. Discuss the importance

### Glossary of Heating, Ventilation and Air Conditioning Terms

Glossary of Heating, Ventilation and Air Conditioning Terms Air Change: Unlike re-circulated air, this is the total air required to completely replace the air in a room or building. Air Conditioner: Equipment

### Design of A Waste Energy Recovery System For the Pettit National Ice Center

ME-496 Senior Design Project Design of A Waste Energy Recovery System For the Pettit National Ice Center Group 1 Michael Lechtenberg Matthew Matenaer Nicholas Treder University of Wisconsin Milwaukee Department