SOC architecture and design
|
|
|
- Rodney Sutton
- 10 years ago
- Views:
Transcription
1 SOC architecture and design system-on-chip (SOC) processors: become components in a system SOC covers many topics processor: pipelined, superscalar, VLIW, array, vector storage: cache, embedded and external memory interconnect: buses, network-on-chip impact: time, area, power, reliability, configurability customisability: specialized processors, reconfiguration productivity/tools: model, explore, re-use, synthesise, verify examples: crypto, graphics, media, network, comm, security future: autonomous SOC, self-optimising/verifying design our focus overview, processor, memory wl
2 iphone SOC Processor I/O I/O 1 GHz ARM Cortex A8 Memory I/O Source: UC Berkeley wl
3 Basic system-on-chip model wl
4 2MB shared L3 Cache 512KB L2 512KB L2 512KB L2 512KB L2 AMD s Barcelona Multicore Processor Core 1 Core 2 4 out-of-order cores 1.9 GHz clock rate 65nm technology 3 levels of caches integrated Northbridge Northbridge Core 3 Core 4 wl
5 SOC vs processors on chip with lots of transistors, designs move in 2 ways: complete system on a chip multi-core processors with lots of cache processor System on chip multiple, simple, heterogeneous Processors on chip few, complex, homogeneous cache one level, small 2-3 levels, extensive memory embedded, on chip very large, off chip functionality special purpose general purpose interconnect wide, high bandwidth often through cache power, cost both low both high operation largely stand-alone need other chips wl
6 Processor types: overview Processor type Architecture / Implementation approach SIMD Vector VLIW Superscalar Single instruction applied to multiple functional units Single instruction applied to multiple pipelined registers Multiple instructions issued each cycle under compiler control Multiple instructions issued each cycle under hardware control wl
7 Processors for SOCs SOC Basic ISA Processor description Freescale c600: signal processing PowerPC Superscalar with vector extension ClearSpeed CSX600: general Proprietary Array processor with 96 processing elements PlayStation 2: gaming ARM VFP11: general MIPS ARM Pipelined with 2 vector coprocessors Configurable vector coprocessor wl
8 Sequential and parallel machines basic single stream processors pipelined: overlap operations in basic sequential superscalar: transparent concurrency VLIW: compiler-generated concurrency multiple streams, multiple functional units array processors vector processors multiprocessors wl
9 Pipelined processor Instruction #1 IF ID AG DF EX WB Instruction #2 IF ID AG DF EX WB Instruction #3 IF ID AG DF EX WB Instruction #4 Time IF ID AG DF EX WB wl
10 Superscalar and VLIW processors Instruction #1 IF ID AG DF EX WB Instruction #2 IF ID AG DF EX WB Instruction #3 IF ID AG DF EX WB Instruction #4 IF ID AG DF EX WB Instruction #5 IF ID AG DF EX WB Instruction #6 IF ID AG DF EX WB Time wl
11 Superscalar VLIW hardware for parallelism control wl
12 Array processors perform op if condition = mask operand can come from neighbour mask op dest sr1 sr2 n PEs, each with memory; neighbour communications one instruction issued to all PEs wl
13 Vector processors vector registers, eg 8 sets x 64 elements x 64 bits vector instructions: VR3 = VR2 VOP VR1 wl
14 Memory addressing: three levels (each segment contains pages for a program/process) wl
15 User view of memory: addressing a program: process address (offset + base + index) virtual address: from page address and process/user id segment table: process base and bound (for each process) system address: process base + page address pages: active localities in main/real memory virtual address: page table lookup to physical address page miss: virtual pages not in page table TLB (translation look-aside buffer): recent translations TLB entry: corresponding real and (virtual, id) address a few hashed virtual address bits address TLB entries if virtual, id = TLB (virtual, id) then use translation wl
16 TLB and Paging: Address translation Virtual Address (recent translations) (find process) process base System Address (find page) Physical Address wl
17 SOC interconnect interconnecting multiple active agents requires bandwidth: capacity to transmit information (bps) protocol: logic for non-interfering message transmission bus AMBA (Adv. Microcontroller Bus Architecture) from ARM, widely used for SOC bus performance: can determine system performance network on chip array of switches statically switched: eg mesh dynamically switched: eg crossbar wl
18 Design cost: product economics increasingly product cost determined by design costs, including verification not marginal cost to produce manage complexity in die technology by engineering effort engineering cleverness design effort often dictated by product volume Design time and effort Basic physical tradeoffs Balance point depends on n, number of units wl
19 Design complexity processors wl
20 Cost: product program vs engineering Chip design Fixed costs Variable costs Verify & test Labor costs Marketing, sales, administration Manufacturing costs Software CAD support Engineering Engineering costs Mask costs Product cost CAD programs Capital equipment Fixed project costs wl
21 Example: two scenarios fixed costs K f, support costs 0.1 x function(n), and variable costs K v x n, so design gets more complex, while production costs decrease K f increases while K v decreases if same price, requires higher volumes to break even when compared with 1995, in 2015 K f increased by 10 times K v decreased by the same amount wl
22 More recent: higher NRE wl
23 IP: Intellectual Property wl
24 Answers to Unassessed Coursework 5 1. rdl 1 R = snd [-] -1 ; R rdl n+1 R = snd apr n -1 ; rsh ; fst (rdl n R) ; R 2. P0 = rdl n Pcell; 1 <<s,x>, a> Pcell <sx+a, x> 3. rdl n R = row n (R i ; 2-1 ) ; 2 P1 = loop (row n Pcell1 ; fst map n D) ; 1 <<s,x>, a> Pcell1 <a,<sx+a, x>> 4. loop (row n R) = (loop R) n Proof: induction on n (see P1 = P2 ; [D,D] -n P2 = (loop (Pcell1 ; [D,[D,D]])) n wl
Architectures and Platforms
Hardware/Software Codesign Arch&Platf. - 1 Architectures and Platforms 1. Architecture Selection: The Basic Trade-Offs 2. General Purpose vs. Application-Specific Processors 3. Processor Specialisation
Computer System Design. System-on-Chip
Brochure More information from http://www.researchandmarkets.com/reports/2171000/ Computer System Design. System-on-Chip Description: The next generation of computer system designers will be less concerned
A Survey on ARM Cortex A Processors. Wei Wang Tanima Dey
A Survey on ARM Cortex A Processors Wei Wang Tanima Dey 1 Overview of ARM Processors Focusing on Cortex A9 & Cortex A15 ARM ships no processors but only IP cores For SoC integration Targeting markets:
What is a System on a Chip?
What is a System on a Chip? Integration of a complete system, that until recently consisted of multiple ICs, onto a single IC. CPU PCI DSP SRAM ROM MPEG SoC DRAM System Chips Why? Characteristics: Complex
More on Pipelining and Pipelines in Real Machines CS 333 Fall 2006 Main Ideas Data Hazards RAW WAR WAW More pipeline stall reduction techniques Branch prediction» static» dynamic bimodal branch prediction
CMSC 611: Advanced Computer Architecture
CMSC 611: Advanced Computer Architecture Parallel Computation Most slides adapted from David Patterson. Some from Mohomed Younis Parallel Computers Definition: A parallel computer is a collection of processing
Computer Architecture TDTS10
why parallelism? Performance gain from increasing clock frequency is no longer an option. Outline Computer Architecture TDTS10 Superscalar Processors Very Long Instruction Word Processors Parallel computers
ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM
ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM 1 The ARM architecture processors popular in Mobile phone systems 2 ARM Features ARM has 32-bit architecture but supports 16 bit
Introduction to Cloud Computing
Introduction to Cloud Computing Parallel Processing I 15 319, spring 2010 7 th Lecture, Feb 2 nd Majd F. Sakr Lecture Motivation Concurrency and why? Different flavors of parallel computing Get the basic
Computer Engineering: Incoming MS Student Orientation Requirements & Course Overview
Computer Engineering: Incoming MS Student Orientation Requirements & Course Overview Prof. Charles Zukowski ([email protected]) Interim Chair, September 3, 2015 MS Requirements: Overview (see bulletin for
IBM CELL CELL INTRODUCTION. Project made by: Origgi Alessandro matr. 682197 Teruzzi Roberto matr. 682552 IBM CELL. Politecnico di Milano Como Campus
Project made by: Origgi Alessandro matr. 682197 Teruzzi Roberto matr. 682552 CELL INTRODUCTION 2 1 CELL SYNERGY Cell is not a collection of different processors, but a synergistic whole Operation paradigms,
This Unit: Putting It All Together. CIS 501 Computer Architecture. Sources. What is Computer Architecture?
This Unit: Putting It All Together CIS 501 Computer Architecture Unit 11: Putting It All Together: Anatomy of the XBox 360 Game Console Slides originally developed by Amir Roth with contributions by Milo
Introduction to System-on-Chip
Introduction to System-on-Chip COE838: Systems-on-Chip Design http://www.ee.ryerson.ca/~courses/coe838/ Dr. Gul N. Khan http://www.ee.ryerson.ca/~gnkhan Electrical and Computer Engineering Ryerson University
7a. System-on-chip design and prototyping platforms
7a. System-on-chip design and prototyping platforms Labros Bisdounis, Ph.D. Department of Computer and Communication Engineering 1 What is System-on-Chip (SoC)? System-on-chip is an integrated circuit
- Nishad Nerurkar. - Aniket Mhatre
- Nishad Nerurkar - Aniket Mhatre Single Chip Cloud Computer is a project developed by Intel. It was developed by Intel Lab Bangalore, Intel Lab America and Intel Lab Germany. It is part of a larger project,
OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC
OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC Driving industry innovation The goal of the OpenPOWER Foundation is to create an open ecosystem, using the POWER Architecture to share expertise,
How To Design A Single Chip System Bus (Amba) For A Single Threaded Microprocessor (Mma) (I386) (Mmb) (Microprocessor) (Ai) (Bower) (Dmi) (Dual
Architetture di bus per System-On On-Chip Massimo Bocchi Corso di Architettura dei Sistemi Integrati A.A. 2002/2003 System-on on-chip motivations 400 300 200 100 0 19971999 2001 2003 2005 2007 2009 Transistors
Scalability and Classifications
Scalability and Classifications 1 Types of Parallel Computers MIMD and SIMD classifications shared and distributed memory multicomputers distributed shared memory computers 2 Network Topologies static
COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING
COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING 2013/2014 1 st Semester Sample Exam January 2014 Duration: 2h00 - No extra material allowed. This includes notes, scratch paper, calculator, etc.
Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip.
Lecture 11: Multi-Core and GPU Multi-core computers Multithreading GPUs General Purpose GPUs Zebo Peng, IDA, LiTH 1 Multi-Core System Integration of multiple processor cores on a single chip. To provide
Lesson 7: SYSTEM-ON. SoC) AND USE OF VLSI CIRCUIT DESIGN TECHNOLOGY. Chapter-1L07: "Embedded Systems - ", Raj Kamal, Publs.: McGraw-Hill Education
Lesson 7: SYSTEM-ON ON-CHIP (SoC( SoC) AND USE OF VLSI CIRCUIT DESIGN TECHNOLOGY 1 VLSI chip Integration of high-level components Possess gate-level sophistication in circuits above that of the counter,
Design Cycle for Microprocessors
Cycle for Microprocessors Raúl Martínez Intel Barcelona Research Center Cursos de Verano 2010 UCLM Intel Corporation, 2010 Agenda Introduction plan Architecture Microarchitecture Logic Silicon ramp Types
How To Understand The Design Of A Microprocessor
Computer Architecture R. Poss 1 What is computer architecture? 2 Your ideas and expectations What is part of computer architecture, what is not? Who are computer architects, what is their job? What is
Chapter 2 Parallel Architecture, Software And Performance
Chapter 2 Parallel Architecture, Software And Performance UCSB CS140, T. Yang, 2014 Modified from texbook slides Roadmap Parallel hardware Parallel software Input and output Performance Parallel program
COMP 422, Lecture 3: Physical Organization & Communication Costs in Parallel Machines (Sections 2.4 & 2.5 of textbook)
COMP 422, Lecture 3: Physical Organization & Communication Costs in Parallel Machines (Sections 2.4 & 2.5 of textbook) Vivek Sarkar Department of Computer Science Rice University [email protected] COMP
INSTRUCTION LEVEL PARALLELISM PART VII: REORDER BUFFER
Course on: Advanced Computer Architectures INSTRUCTION LEVEL PARALLELISM PART VII: REORDER BUFFER Prof. Cristina Silvano Politecnico di Milano [email protected] Prof. Silvano, Politecnico di Milano
Exploring the Design of the Cortex-A15 Processor ARM s next generation mobile applications processor. Travis Lanier Senior Product Manager
Exploring the Design of the Cortex-A15 Processor ARM s next generation mobile applications processor Travis Lanier Senior Product Manager 1 Cortex-A15: Next Generation Leadership Cortex-A class multi-processor
A Generic Network Interface Architecture for a Networked Processor Array (NePA)
A Generic Network Interface Architecture for a Networked Processor Array (NePA) Seung Eun Lee, Jun Ho Bahn, Yoon Seok Yang, and Nader Bagherzadeh EECS @ University of California, Irvine Outline Introduction
Introducción. Diseño de sistemas digitales.1
Introducción Adapted from: Mary Jane Irwin ( www.cse.psu.edu/~mji ) www.cse.psu.edu/~cg431 [Original from Computer Organization and Design, Patterson & Hennessy, 2005, UCB] Diseño de sistemas digitales.1
On-Chip Communications Network Report
On-Chip Communications Network Report ABSTRACT This report covers the results of an independent, blind worldwide survey covering on-chip communications networks (OCCN), defined as is the entire interconnect
Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level
System: User s View System Components: High Level View Input Output 1 System: Motherboard Level 2 Components: Interconnection I/O MEMORY 3 4 Organization Registers ALU CU 5 6 1 Input/Output I/O MEMORY
LSN 2 Computer Processors
LSN 2 Computer Processors Department of Engineering Technology LSN 2 Computer Processors Microprocessors Design Instruction set Processor organization Processor performance Bandwidth Clock speed LSN 2
Chapter 2 Heterogeneous Multicore Architecture
Chapter 2 Heterogeneous Multicore Architecture 2.1 Architecture Model In order to satisfy the high-performance and low-power requirements for advanced embedded systems with greater fl exibility, it is
AMD Opteron Quad-Core
AMD Opteron Quad-Core a brief overview Daniele Magliozzi Politecnico di Milano Opteron Memory Architecture native quad-core design (four cores on a single die for more efficient data sharing) enhanced
ARM Processors and the Internet of Things. Joseph Yiu Senior Embedded Technology Specialist, ARM
ARM Processors and the Internet of Things Joseph Yiu Senior Embedded Technology Specialist, ARM 1 Internet of Things is a very Diverse Market Human interface Location aware MEMS sensors Smart homes Security,
<Insert Picture Here> T4: A Highly Threaded Server-on-a-Chip with Native Support for Heterogeneous Computing
T4: A Highly Threaded Server-on-a-Chip with Native Support for Heterogeneous Computing Robert Golla Senior Hardware Architect Paul Jordan Senior Principal Hardware Engineer Oracle
Chapter 1 Computer System Overview
Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Eighth Edition By William Stallings Operating System Exploits the hardware resources of one or more processors Provides
Optimizing Configuration and Application Mapping for MPSoC Architectures
Optimizing Configuration and Application Mapping for MPSoC Architectures École Polytechnique de Montréal, Canada Email : [email protected] 1 Multi-Processor Systems on Chip (MPSoC) Design Trends
Enabling Technologies for Distributed Computing
Enabling Technologies for Distributed Computing Dr. Sanjay P. Ahuja, Ph.D. Fidelity National Financial Distinguished Professor of CIS School of Computing, UNF Multi-core CPUs and Multithreading Technologies
Enabling Technologies for Distributed and Cloud Computing
Enabling Technologies for Distributed and Cloud Computing Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF Multi-core CPUs and Multithreading
Driving force. What future software needs. Potential research topics
Improving Software Robustness and Efficiency Driving force Processor core clock speed reach practical limit ~4GHz (power issue) Percentage of sustainable # of active transistors decrease; Increase in #
Binary search tree with SIMD bandwidth optimization using SSE
Binary search tree with SIMD bandwidth optimization using SSE Bowen Zhang, Xinwei Li 1.ABSTRACT In-memory tree structured index search is a fundamental database operation. Modern processors provide tremendous
VLIW Processors. VLIW Processors
1 VLIW Processors VLIW ( very long instruction word ) processors instructions are scheduled by the compiler a fixed number of operations are formatted as one big instruction (called a bundle) usually LIW
Vorlesung Rechnerarchitektur 2 Seite 178 DASH
Vorlesung Rechnerarchitektur 2 Seite 178 Architecture for Shared () The -architecture is a cache coherent, NUMA multiprocessor system, developed at CSL-Stanford by John Hennessy, Daniel Lenoski, Monica
OpenSoC Fabric: On-Chip Network Generator
OpenSoC Fabric: On-Chip Network Generator Using Chisel to Generate a Parameterizable On-Chip Interconnect Fabric Farzad Fatollahi-Fard, David Donofrio, George Michelogiannakis, John Shalf MODSIM 2014 Presentation
Digitale Signalverarbeitung mit FPGA (DSF) Soft Core Prozessor NIOS II Stand Mai 2007. Jens Onno Krah
(DSF) Soft Core Prozessor NIOS II Stand Mai 2007 Jens Onno Krah Cologne University of Applied Sciences www.fh-koeln.de [email protected] NIOS II 1 1 What is Nios II? Altera s Second Generation
Reconfigurable Computing. Reconfigurable Architectures. Chapter 3.2
Reconfigurable Architectures Chapter 3.2 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Coarse-Grained Reconfigurable Devices Recall: 1. Brief Historically development (Estrin Fix-Plus
Computer Systems Structure Input/Output
Computer Systems Structure Input/Output Peripherals Computer Central Processing Unit Main Memory Computer Systems Interconnection Communication lines Input Output Ward 1 Ward 2 Examples of I/O Devices
Outline. Introduction. Multiprocessor Systems on Chip. A MPSoC Example: Nexperia DVP. A New Paradigm: Network on Chip
Outline Modeling, simulation and optimization of Multi-Processor SoCs (MPSoCs) Università of Verona Dipartimento di Informatica MPSoCs: Multi-Processor Systems on Chip A simulation platform for a MPSoC
All Programmable Logic. Hans-Joachim Gelke Institute of Embedded Systems. Zürcher Fachhochschule
All Programmable Logic Hans-Joachim Gelke Institute of Embedded Systems Institute of Embedded Systems 31 Assistants 10 Professors 7 Technical Employees 2 Secretaries www.ines.zhaw.ch Research: Education:
High Performance Computing in the Multi-core Area
High Performance Computing in the Multi-core Area Arndt Bode Technische Universität München Technology Trends for Petascale Computing Architectures: Multicore Accelerators Special Purpose Reconfigurable
Hardware/Software Co-Design of a Java Virtual Machine
Hardware/Software Co-Design of a Java Virtual Machine Kenneth B. Kent University of Victoria Dept. of Computer Science Victoria, British Columbia, Canada [email protected] Micaela Serra University of Victoria
Systolic Computing. Fundamentals
Systolic Computing Fundamentals Motivations for Systolic Processing PARALLEL ALGORITHMS WHICH MODEL OF COMPUTATION IS THE BETTER TO USE? HOW MUCH TIME WE EXPECT TO SAVE USING A PARALLEL ALGORITHM? HOW
Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1
Introduction to GP-GPUs Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 GPU Architectures: How do we reach here? NVIDIA Fermi, 512 Processing Elements (PEs) 2 What Can It Do?
Introduction to GPGPU. Tiziano Diamanti [email protected]
[email protected] Agenda From GPUs to GPGPUs GPGPU architecture CUDA programming model Perspective projection Vectors that connect the vanishing point to every point of the 3D model will intersecate
ANNEX. to the. Commission Delegated Regulation
EUROPEAN COMMISSION Brussels, 12.10.2015 C(2015) 6823 final ANNEX 1 PART 6/11 ANNEX to the Commission Delegated Regulation amending Council Regulation (EC) No 428/2009 setting up a Community regime for
CSE597a - Cell Phone OS Security. Cellphone Hardware. William Enck Prof. Patrick McDaniel
CSE597a - Cell Phone OS Security Cellphone Hardware William Enck Prof. Patrick McDaniel CSE597a - Cellular Phone Operating Systems Security - Spring 2009 - Instructors McDaniel and Enck 1 2 Embedded Systems
OC By Arsene Fansi T. POLIMI 2008 1
IBM POWER 6 MICROPROCESSOR OC By Arsene Fansi T. POLIMI 2008 1 WHAT S IBM POWER 6 MICROPOCESSOR The IBM POWER6 microprocessor powers the new IBM i-series* and p-series* systems. It s based on IBM POWER5
Bindel, Spring 2010 Applications of Parallel Computers (CS 5220) Week 1: Wednesday, Jan 27
Logistics Week 1: Wednesday, Jan 27 Because of overcrowding, we will be changing to a new room on Monday (Snee 1120). Accounts on the class cluster (crocus.csuglab.cornell.edu) will be available next week.
ELEC 5260/6260/6266 Embedded Computing Systems
ELEC 5260/6260/6266 Embedded Computing Systems Spring 2016 Victor P. Nelson Text: Computers as Components, 3 rd Edition Prof. Marilyn Wolf (Georgia Tech) Course Topics Embedded system design & modeling
GEDAE TM - A Graphical Programming and Autocode Generation Tool for Signal Processor Applications
GEDAE TM - A Graphical Programming and Autocode Generation Tool for Signal Processor Applications Harris Z. Zebrowitz Lockheed Martin Advanced Technology Laboratories 1 Federal Street Camden, NJ 08102
In-Memory Databases Algorithms and Data Structures on Modern Hardware. Martin Faust David Schwalb Jens Krüger Jürgen Müller
In-Memory Databases Algorithms and Data Structures on Modern Hardware Martin Faust David Schwalb Jens Krüger Jürgen Müller The Free Lunch Is Over 2 Number of transistors per CPU increases Clock frequency
CISC, RISC, and DSP Microprocessors
CISC, RISC, and DSP Microprocessors Douglas L. Jones ECE 497 Spring 2000 4/6/00 CISC, RISC, and DSP D.L. Jones 1 Outline Microprocessors circa 1984 RISC vs. CISC Microprocessors circa 1999 Perspective:
Chapter 07: Instruction Level Parallelism VLIW, Vector, Array and Multithreaded Processors. Lesson 05: Array Processors
Chapter 07: Instruction Level Parallelism VLIW, Vector, Array and Multithreaded Processors Lesson 05: Array Processors Objective To learn how the array processes in multiple pipelines 2 Array Processor
Accelerate Cloud Computing with the Xilinx Zynq SoC
X C E L L E N C E I N N E W A P P L I C AT I O N S Accelerate Cloud Computing with the Xilinx Zynq SoC A novel reconfigurable hardware accelerator speeds the processing of applications based on the MapReduce
Computer Organization
Computer Organization and Architecture Designing for Performance Ninth Edition William Stallings International Edition contributions by R. Mohan National Institute of Technology, Tiruchirappalli PEARSON
System Design Issues in Embedded Processing
System Design Issues in Embedded Processing 9/16/10 Jacob Borgeson 1 Agenda What does TI do? From MCU to MPU to DSP: What are some trends? Design Challenges Tools to Help 2 TI - the complete system The
From Bus and Crossbar to Network-On-Chip. Arteris S.A.
From Bus and Crossbar to Network-On-Chip Arteris S.A. Copyright 2009 Arteris S.A. All rights reserved. Contact information Corporate Headquarters Arteris, Inc. 1741 Technology Drive, Suite 250 San Jose,
Overview. CISC Developments. RISC Designs. CISC Designs. VAX: Addressing Modes. Digital VAX
Overview CISC Developments Over Twenty Years Classic CISC design: Digital VAX VAXÕs RISC successor: PRISM/Alpha IntelÕs ubiquitous 80x86 architecture Ð 8086 through the Pentium Pro (P6) RJS 2/3/97 Philosophy
Rethinking SIMD Vectorization for In-Memory Databases
SIGMOD 215, Melbourne, Victoria, Australia Rethinking SIMD Vectorization for In-Memory Databases Orestis Polychroniou Columbia University Arun Raghavan Oracle Labs Kenneth A. Ross Columbia University Latest
Computer Organization and Components
Computer Organization and Components IS1500, fall 2015 Lecture 5: I/O Systems, part I Associate Professor, KTH Royal Institute of Technology Assistant Research Engineer, University of California, Berkeley
Introduction to Exploration and Optimization of Multiprocessor Embedded Architectures based on Networks On-Chip
Introduction to Exploration and Optimization of Multiprocessor Embedded Architectures based on Networks On-Chip Cristina SILVANO [email protected] Politecnico di Milano, Milano (Italy) Talk Outline
Computer Performance. Topic 3. Contents. Prerequisite knowledge Before studying this topic you should be able to:
55 Topic 3 Computer Performance Contents 3.1 Introduction...................................... 56 3.2 Measuring performance............................... 56 3.2.1 Clock Speed.................................
BDTI Solution Certification TM : Benchmarking H.264 Video Decoder Hardware/Software Solutions
Insight, Analysis, and Advice on Signal Processing Technology BDTI Solution Certification TM : Benchmarking H.264 Video Decoder Hardware/Software Solutions Steve Ammon Berkeley Design Technology, Inc.
Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit.
Objectives The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Identify the components of the central processing unit and how they work together and interact with memory Describe how
Software Programmable Data Allocation in Multi-Bank Memory of SIMD Processors
2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools Software Programmable Data Allocation in Multi-Bank of SIMD Processors Jian Wang, Joar Sohl, Olof Kraigher and
UNIT 2 CLASSIFICATION OF PARALLEL COMPUTERS
UNIT 2 CLASSIFICATION OF PARALLEL COMPUTERS Structure Page Nos. 2.0 Introduction 27 2.1 Objectives 27 2.2 Types of Classification 28 2.3 Flynn s Classification 28 2.3.1 Instruction Cycle 2.3.2 Instruction
Solution: start more than one instruction in the same clock cycle CPI < 1 (or IPC > 1, Instructions per Cycle) Two approaches:
Multiple-Issue Processors Pipelining can achieve CPI close to 1 Mechanisms for handling hazards Static or dynamic scheduling Static or dynamic branch handling Increase in transistor counts (Moore s Law):
ARM Microprocessor and ARM-Based Microcontrollers
ARM Microprocessor and ARM-Based Microcontrollers Nguatem William 24th May 2006 A Microcontroller-Based Embedded System Roadmap 1 Introduction ARM ARM Basics 2 ARM Extensions Thumb Jazelle NEON & DSP Enhancement
Interconnection Networks Programmierung Paralleler und Verteilter Systeme (PPV)
Interconnection Networks Programmierung Paralleler und Verteilter Systeme (PPV) Sommer 2015 Frank Feinbube, M.Sc., Felix Eberhardt, M.Sc., Prof. Dr. Andreas Polze Interconnection Networks 2 SIMD systems
Lecture 17: Virtual Memory II. Goals of virtual memory
Lecture 17: Virtual Memory II Last Lecture: Introduction to virtual memory Today Review and continue virtual memory discussion Lecture 17 1 Goals of virtual memory Make it appear as if each process has:
Interconnection Networks
Advanced Computer Architecture (0630561) Lecture 15 Interconnection Networks Prof. Kasim M. Al-Aubidy Computer Eng. Dept. Interconnection Networks: Multiprocessors INs can be classified based on: 1. Mode
Intel Labs at ISSCC 2012. Copyright Intel Corporation 2012
Intel Labs at ISSCC 2012 Copyright Intel Corporation 2012 Intel Labs ISSCC 2012 Highlights 1. Efficient Computing Research: Making the most of every milliwatt to make computing greener and more scalable
Memory Management Outline. Background Swapping Contiguous Memory Allocation Paging Segmentation Segmented Paging
Memory Management Outline Background Swapping Contiguous Memory Allocation Paging Segmentation Segmented Paging 1 Background Memory is a large array of bytes memory and registers are only storage CPU can
ARM Webinar series. ARM Based SoC. Abey Thomas
ARM Webinar series ARM Based SoC Verification Abey Thomas Agenda About ARM and ARM IP ARM based SoC Verification challenges Verification planning and strategy IP Connectivity verification Performance verification
Optimizing Code for Accelerators: The Long Road to High Performance
Optimizing Code for Accelerators: The Long Road to High Performance Hans Vandierendonck Mons GPU Day November 9 th, 2010 The Age of Accelerators 2 Accelerators in Real Life 3 Latency (ps/inst) Why Accelerators?
The ARM Architecture. With a focus on v7a and Cortex-A8
The ARM Architecture With a focus on v7a and Cortex-A8 1 Agenda Introduction to ARM Ltd ARM Processors Overview ARM v7a Architecture/Programmers Model Cortex-A8 Memory Management Cortex-A8 Pipeline 2 ARM
Introduction to RISC Processor. ni logic Pvt. Ltd., Pune
Introduction to RISC Processor ni logic Pvt. Ltd., Pune AGENDA What is RISC & its History What is meant by RISC Architecture of MIPS-R4000 Processor Difference Between RISC and CISC Pros and Cons of RISC
We r e going to play Final (exam) Jeopardy! "Answers:" "Questions:" - 1 -
. (0 pts) We re going to play Final (exam) Jeopardy! Associate the following answers with the appropriate question. (You are given the "answers": Pick the "question" that goes best with each "answer".)
PCI Express Overview. And, by the way, they need to do it in less time.
PCI Express Overview Introduction This paper is intended to introduce design engineers, system architects and business managers to the PCI Express protocol and how this interconnect technology fits into
Making Multicore Work and Measuring its Benefits. Markus Levy, president EEMBC and Multicore Association
Making Multicore Work and Measuring its Benefits Markus Levy, president EEMBC and Multicore Association Agenda Why Multicore? Standards and issues in the multicore community What is Multicore Association?
A Lab Course on Computer Architecture
A Lab Course on Computer Architecture Pedro López José Duato Depto. de Informática de Sistemas y Computadores Facultad de Informática Universidad Politécnica de Valencia Camino de Vera s/n, 46071 - Valencia,
A New, High-Performance, Low-Power, Floating-Point Embedded Processor for Scientific Computing and DSP Applications
1 A New, High-Performance, Low-Power, Floating-Point Embedded Processor for Scientific Computing and DSP Applications Simon McIntosh-Smith Director of Architecture 2 Multi-Threaded Array Processing Architecture
Memory Architecture and Management in a NoC Platform
Architecture and Management in a NoC Platform Axel Jantsch Xiaowen Chen Zhonghai Lu Chaochao Feng Abdul Nameed Yuang Zhang Ahmed Hemani DATE 2011 Overview Motivation State of the Art Data Management Engine
Middleware and Distributed Systems. Introduction. Dr. Martin v. Löwis
Middleware and Distributed Systems Introduction Dr. Martin v. Löwis 14 3. Software Engineering What is Middleware? Bauer et al. Software Engineering, Report on a conference sponsored by the NATO SCIENCE
Board Notes on Virtual Memory
Board Notes on Virtual Memory Part A: Why Virtual Memory? - Letʼs user program size exceed the size of the physical address space - Supports protection o Donʼt know which program might share memory at
Cortex -A15. Technical Reference Manual. Revision: r2p0. Copyright 2011 ARM. All rights reserved. ARM DDI 0438C (ID102211)
Cortex -A15 Revision: r2p0 Technical Reference Manual Copyright 2011 ARM. All rights reserved. ARM DDI 0438C () Cortex-A15 Technical Reference Manual Copyright 2011 ARM. All rights reserved. Release Information
Switched Interconnect for System-on-a-Chip Designs
witched Interconnect for ystem-on-a-chip Designs Abstract Daniel iklund and Dake Liu Dept. of Physics and Measurement Technology Linköping University -581 83 Linköping {danwi,dake}@ifm.liu.se ith the increased
Architecture of Hitachi SR-8000
Architecture of Hitachi SR-8000 University of Stuttgart High-Performance Computing-Center Stuttgart (HLRS) www.hlrs.de Slide 1 Most of the slides from Hitachi Slide 2 the problem modern computer are data
