Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1
|
|
|
- Cecil Lynch
- 10 years ago
- Views:
Transcription
1 Introduction to GP-GPUs Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1
2 GPU Architectures: How do we reach here? NVIDIA Fermi, 512 Processing Elements (PEs) 2
3 What Can It Do? Render triangles. NVIDIA GTX480 can render 1.6 billion triangles per second!
4 General Purpose Computing ref: 4
5 General-Purpose GPUs (GP-GPUs) In 2006, NVIDIA introduced GeForce 8800 GPU supporting a new programming language: CUDA, Compute Unified Device Architecture Subsequently, broader industry pushing for OpenCL, a vendorneutral version of same ideas for multiple platforms. Basic idea: Take advantage of GPU computational performance and memory bandwidth to accelerate some kernels for general-purpose computing Attached processor model: Host CPU issues data-parallel kernels to GP-GPU device for execution Notice: This lecture has a simplified version of Nvidia CUDA-style model and only considers GPU execution for computational kernels, not graphics (Would probably need another course to describe graphics processing) 5
6 General-Purpose GPUs (GP-GPUs) Given the hardware invested to do graphics well, how can be supplement it to improve performance of a wider range of general purpose applications? Basic concepts: Heterogeneous execution model CPU is the host, GPU is the device Develop a C-like programming language for GPUs Unify all forms of GPU parallelism as CUDA thread Programming model is Single Instruction Multiple Thread (SIMT): massive number of light-weight threads Programmer unware of number of parallel cores Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 6
7 Threads, Blocks and Grids Thread: lower level of parallelism as programming primitive. Each thread is composed of SIMD instructions A thread is associated with each data element Threads are organized into Blocks Blocks are organized into Grids GPU hardware handles thread management, not applications or OS Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 7
8 Threads, Blocks and Grids (2) Copyright 2011, Elsevier Inc. All rights Reserved. 8
9 Threads, Blocks and Grids (3) Each thread of SIMD instructions calculates 32 elements for each instruction. Each thread block is executed by a multi-threaded SIMD processor. Example: Multiply two vectors of length 8192 Each SIMD instruction executes 32 elements at a time Each thread block contains 16 threads of SIMD instructions Grid size = 16 thread blocks Total 16 x 16 x 32 = 8192 elements Copyright 2012, Elsevier Inc. All rights reserved. 9
10 Scheduling Threads Two levels of HW Schedulers: 1. The Thread Block Scheduler assigns thread blocks to multithreaded SIMD processors 2. The Thread Scheduler, within a SIMD Processor, assigns each thread to run each clock cycle. Fermi architecture: 1. Giga Thread Scheduler 2. Dual Warp Scheduler Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 10
11 NVIDIA Fermi GPU (2010) Each thread block (warp) is composed of 32 CUDA threads for Fermi (16 CUDA threads for Tesla). Fermi GPUs have 16 multithreaded SIMD Processors (called SMs, Streaming Multiprocessors). Each SM has: two Warp Schedulers two sets of 16 CUDA cores also called SPs 16 load/store units 4 special function units (SFUs) to execute transcendental instructions (such as sin, cosine, reciprocal and square root). Globally there are 512 CUDA cores (512 SPs). Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 11
12 Floor plan of the Fermi GPU composed of 16 multithreaded SIMD Processors (called SMs, Streaming Multiprocessors) and a common L2 Cache. The Thread Block Scheduler on the left (Giga Thread) distributes thread blocks to SMs, each of which has its own dual SIMD Thread Scheduler (Dual Warp Scheduler). 12
13 Fermi Streaming Multiprocessor (SM) Each SM has: two warp schedulers, two sets of 16 cores (2 x 16 SPs), 16 load/store units and 4 SFUs Each SM has 32K registers of 32-bit Each SM has 64 KB shared memory /L1 cache
14 NVIDIA Fermi GPU: Scheduling Threads Two levels of HW Schedulers: 1. The Giga Thread Engine schedules thread blocks to various SMs. 2. The Dual Warp Schedulers selects two warps of 32 threads of SIMD instructions and issue one instruction from each warp to its execution units The threads are independent so there is no need to check for dependencies within the instruction stream. Analogous to a multi-threaded vector processor that can issue vector instructions from two independent threads Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 14
15 NVIDIA Fermi GPU: Dual Warp Scheduler Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 15
16 Fermi GPU: Fused Multiply-Add The Fermi architecture implements the new IEE floating point standard. Fused Multiply-Add (FMA) performs multiplication and addition a <= a + (b x c) with a single final rounding step (more accurate than performing the two operations separately). Each SP can fulfill up to two single precision FMAs per clock Each SM up to 32 single precision (32-bit) FP operations or 16 double precision (64-bit) FP operations Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 16
17 Fermi GPU Memory Hierarchy
18 Fermi GPU Memory Hierarchy 19
19 Fermi GPU Memory Hierarchy Each SM has 32,768 registers of 32-bit Divided into lanes Each SIMD thread has access to its own registers and not those of other threads. Each SIMD thread is limited to 64 registers Each SM has 64 KB shared memory/l1 cache to be configured as either 48 KB of shared memory among threads (within the same block) + 16 KB of L1 to cache data to individual threads or 16 KB of shared memory and 48 KB of L1 cache. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 20
20 Fermi GPU Memory Hierarchy Local memory can be used to hold spilled registers, when a thread block requires more register storage than is available on SM registers. L2 cache 768 KB unified among the 16 SMs that services all load/store from/to global memory (including copies to/from CPU host) and used for managing access to data shared across thread blocks. Global Memory accessible by all threads as well as host CPU. High latency. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 21
21 NVIDIA GPU vs. Vector Architectures Similarities : Works well with data-level parallel problems Scatter-gather transfers Mask registers Branch hardware uses internal masks Large register files Differences: No scalar processor Uses multithreading to hide memory latency Has many functional units, as opposed to a few deeply pipelined units like a vector processor Copyright 2012, Elsevier Inc. All rights reserved. 22
22 NVIDIA Fermi GPU Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 23
23 NVIDIA Kepler GPU Kepler GK110 Architecture 7.1B Transistors 15 SMX units (2880 cores) >1TFLOP FP64 1.5MB L2 Cache 384-bit GDDR5 PCI Express Gen3 Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 24
Next Generation GPU Architecture Code-named Fermi
Next Generation GPU Architecture Code-named Fermi The Soul of a Supercomputer in the Body of a GPU Why is NVIDIA at Super Computing? Graphics is a throughput problem paint every pixel within frame time
Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com
CSCI-GA.3033-012 Graphics Processing Units (GPUs): Architecture and Programming Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com Modern GPU
Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011
Graphics Cards and Graphics Processing Units Ben Johnstone Russ Martin November 15, 2011 Contents Graphics Processing Units (GPUs) Graphics Pipeline Architectures 8800-GTX200 Fermi Cayman Performance Analysis
GPU System Architecture. Alan Gray EPCC The University of Edinburgh
GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems
Introduction to GPU Programming Languages
CSC 391/691: GPU Programming Fall 2011 Introduction to GPU Programming Languages Copyright 2011 Samuel S. Cho http://www.umiacs.umd.edu/ research/gpu/facilities.html Maryland CPU/GPU Cluster Infrastructure
E6895 Advanced Big Data Analytics Lecture 14:! NVIDIA GPU Examples and GPU on ios devices
E6895 Advanced Big Data Analytics Lecture 14: NVIDIA GPU Examples and GPU on ios devices Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist,
Introduction to GPU hardware and to CUDA
Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 37 Course outline Introduction to GPU hardware
Introduction to GPGPU. Tiziano Diamanti [email protected]
[email protected] Agenda From GPUs to GPGPUs GPGPU architecture CUDA programming model Perspective projection Vectors that connect the vanishing point to every point of the 3D model will intersecate
OpenCL Optimization. San Jose 10/2/2009 Peng Wang, NVIDIA
OpenCL Optimization San Jose 10/2/2009 Peng Wang, NVIDIA Outline Overview The CUDA architecture Memory optimization Execution configuration optimization Instruction optimization Summary Overall Optimization
GPU Parallel Computing Architecture and CUDA Programming Model
GPU Parallel Computing Architecture and CUDA Programming Model John Nickolls Outline Why GPU Computing? GPU Computing Architecture Multithreading and Arrays Data Parallel Problem Decomposition Parallel
Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming
Overview Lecture 1: an introduction to CUDA Mike Giles [email protected] hardware view software view Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Lecture 1 p.
NVIDIA GeForce GTX 580 GPU Datasheet
NVIDIA GeForce GTX 580 GPU Datasheet NVIDIA GeForce GTX 580 GPU Datasheet 3D Graphics Full Microsoft DirectX 11 Shader Model 5.0 support: o NVIDIA PolyMorph Engine with distributed HW tessellation engines
GPU Architectures. A CPU Perspective. Data Parallelism: What is it, and how to exploit it? Workload characteristics
GPU Architectures A CPU Perspective Derek Hower AMD Research 5/21/2013 Goals Data Parallelism: What is it, and how to exploit it? Workload characteristics Execution Models / GPU Architectures MIMD (SPMD),
Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip.
Lecture 11: Multi-Core and GPU Multi-core computers Multithreading GPUs General Purpose GPUs Zebo Peng, IDA, LiTH 1 Multi-Core System Integration of multiple processor cores on a single chip. To provide
Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga
Programming models for heterogeneous computing Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Talk outline [30 slides] 1. Introduction [5 slides] 2.
Introduction to GPU Architecture
Introduction to GPU Architecture Ofer Rosenberg, PMTS SW, OpenCL Dev. Team AMD Based on From Shader Code to a Teraflop: How GPU Shader Cores Work, By Kayvon Fatahalian, Stanford University Content 1. Three
GPU Hardware and Programming Models. Jeremy Appleyard, September 2015
GPU Hardware and Programming Models Jeremy Appleyard, September 2015 A brief history of GPUs In this talk Hardware Overview Programming Models Ask questions at any point! 2 A Brief History of GPUs 3 Once
Parallel Programming Survey
Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory
Computer Graphics Hardware An Overview
Computer Graphics Hardware An Overview Graphics System Monitor Input devices CPU/Memory GPU Raster Graphics System Raster: An array of picture elements Based on raster-scan TV technology The screen (and
GPU Computing - CUDA
GPU Computing - CUDA A short overview of hardware and programing model Pierre Kestener 1 1 CEA Saclay, DSM, Maison de la Simulation Saclay, June 12, 2012 Atelier AO and GPU 1 / 37 Content Historical perspective
GPGPU for Real-Time Data Analytics: Introduction. Nanyang Technological University, Singapore 2
GPGPU for Real-Time Data Analytics: Introduction Bingsheng He 1, Huynh Phung Huynh 2, Rick Siow Mong Goh 2 1 Nanyang Technological University, Singapore 2 A*STAR Institute of High Performance Computing,
GPGPU Computing. Yong Cao
GPGPU Computing Yong Cao Why Graphics Card? It s powerful! A quiet trend Copyright 2009 by Yong Cao Why Graphics Card? It s powerful! Processor Processing Units FLOPs per Unit Clock Speed Processing Power
OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC
OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC Driving industry innovation The goal of the OpenPOWER Foundation is to create an open ecosystem, using the POWER Architecture to share expertise,
GPUs for Scientific Computing
GPUs for Scientific Computing p. 1/16 GPUs for Scientific Computing Mike Giles [email protected] Oxford-Man Institute of Quantitative Finance Oxford University Mathematical Institute Oxford e-research
NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist
NVIDIA CUDA Software and GPU Parallel Computing Architecture David B. Kirk, Chief Scientist Outline Applications of GPU Computing CUDA Programming Model Overview Programming in CUDA The Basics How to Get
HPC with Multicore and GPUs
HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville CS 594 Lecture Notes March 4, 2015 1/18 Outline! Introduction - Hardware
GPU Computing with CUDA Lecture 2 - CUDA Memories. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile
GPU Computing with CUDA Lecture 2 - CUDA Memories Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile 1 Outline of lecture Recap of Lecture 1 Warp scheduling CUDA Memory hierarchy
Programming GPUs with CUDA
Programming GPUs with CUDA Max Grossman Department of Computer Science Rice University [email protected] COMP 422 Lecture 23 12 April 2016 Why GPUs? Two major trends GPU performance is pulling away from
GPU Performance Analysis and Optimisation
GPU Performance Analysis and Optimisation Thomas Bradley, NVIDIA Corporation Outline What limits performance? Analysing performance: GPU profiling Exposing sufficient parallelism Optimising for Kepler
Guided Performance Analysis with the NVIDIA Visual Profiler
Guided Performance Analysis with the NVIDIA Visual Profiler Identifying Performance Opportunities NVIDIA Nsight Eclipse Edition (nsight) NVIDIA Visual Profiler (nvvp) nvprof command-line profiler Guided
The Fastest, Most Efficient HPC Architecture Ever Built
Whitepaper NVIDIA s Next Generation TM CUDA Compute Architecture: TM Kepler GK110 The Fastest, Most Efficient HPC Architecture Ever Built V1.0 Table of Contents Kepler GK110 The Next Generation GPU Computing
LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR
LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR Frédéric Kuznik, frederic.kuznik@insa lyon.fr 1 Framework Introduction Hardware architecture CUDA overview Implementation details A simple case:
Introduction to GPU Computing
Matthis Hauschild Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme December 4, 2014 M. Hauschild - 1 Table of Contents 1. Architecture
FLOATING-POINT ARITHMETIC IN AMD PROCESSORS MICHAEL SCHULTE AMD RESEARCH JUNE 2015
FLOATING-POINT ARITHMETIC IN AMD PROCESSORS MICHAEL SCHULTE AMD RESEARCH JUNE 2015 AGENDA The Kaveri Accelerated Processing Unit (APU) The Graphics Core Next Architecture and its Floating-Point Arithmetic
The Evolution of Computer Graphics. SVP, Content & Technology, NVIDIA
The Evolution of Computer Graphics Tony Tamasi SVP, Content & Technology, NVIDIA Graphics Make great images intricate shapes complex optical effects seamless motion Make them fast invent clever techniques
GPU Programming Strategies and Trends in GPU Computing
GPU Programming Strategies and Trends in GPU Computing André R. Brodtkorb 1 Trond R. Hagen 1,2 Martin L. Sætra 2 1 SINTEF, Dept. Appl. Math., P.O. Box 124, Blindern, NO-0314 Oslo, Norway 2 Center of Mathematics
Introduction to Numerical General Purpose GPU Computing with NVIDIA CUDA. Part 1: Hardware design and programming model
Introduction to Numerical General Purpose GPU Computing with NVIDIA CUDA Part 1: Hardware design and programming model Amin Safi Faculty of Mathematics, TU dortmund January 22, 2016 Table of Contents Set
Lecture 1: an introduction to CUDA
Lecture 1: an introduction to CUDA Mike Giles [email protected] Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Overview hardware view software view CUDA programming
Real-Time Realistic Rendering. Michael Doggett Docent Department of Computer Science Lund university
Real-Time Realistic Rendering Michael Doggett Docent Department of Computer Science Lund university 30-5-2011 Visually realistic goal force[d] us to completely rethink the entire rendering process. Cook
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected]
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected] Informa(on & Communica(on Technology Sec(on (ICTS) Interna(onal Centre for Theore(cal Physics (ICTP) Mul(ple Socket
L20: GPU Architecture and Models
L20: GPU Architecture and Models scribe(s): Abdul Khalifa 20.1 Overview GPUs (Graphics Processing Units) are large parallel structure of processing cores capable of rendering graphics efficiently on displays.
OpenCL Programming for the CUDA Architecture. Version 2.3
OpenCL Programming for the CUDA Architecture Version 2.3 8/31/2009 In general, there are multiple ways of implementing a given algorithm in OpenCL and these multiple implementations can have vastly different
CUDA programming on NVIDIA GPUs
p. 1/21 on NVIDIA GPUs Mike Giles [email protected] Oxford University Mathematical Institute Oxford-Man Institute for Quantitative Finance Oxford eresearch Centre p. 2/21 Overview hardware view
Radeon GPU Architecture and the Radeon 4800 series. Michael Doggett Graphics Architecture Group June 27, 2008
Radeon GPU Architecture and the series Michael Doggett Graphics Architecture Group June 27, 2008 Graphics Processing Units Introduction GPU research 2 GPU Evolution GPU started as a triangle rasterizer
Fast Implementations of AES on Various Platforms
Fast Implementations of AES on Various Platforms Joppe W. Bos 1 Dag Arne Osvik 1 Deian Stefan 2 1 EPFL IC IIF LACAL, Station 14, CH-1015 Lausanne, Switzerland {joppe.bos, dagarne.osvik}@epfl.ch 2 Dept.
Parallel Firewalls on General-Purpose Graphics Processing Units
Parallel Firewalls on General-Purpose Graphics Processing Units Manoj Singh Gaur and Vijay Laxmi Kamal Chandra Reddy, Ankit Tharwani, Ch.Vamshi Krishna, Lakshminarayanan.V Department of Computer Engineering
CUDA SKILLS. Yu-Hang Tang. June 23-26, 2015 CSRC, Beijing
CUDA SKILLS Yu-Hang Tang June 23-26, 2015 CSRC, Beijing day1.pdf at /home/ytang/slides Referece solutions coming soon Online CUDA API documentation http://docs.nvidia.com/cuda/index.html Yu-Hang Tang @
A quick tutorial on Intel's Xeon Phi Coprocessor
A quick tutorial on Intel's Xeon Phi Coprocessor www.cism.ucl.ac.be [email protected] Architecture Setup Programming The beginning of wisdom is the definition of terms. * Name Is a... As opposed
CUDA Optimization with NVIDIA Tools. Julien Demouth, NVIDIA
CUDA Optimization with NVIDIA Tools Julien Demouth, NVIDIA What Will You Learn? An iterative method to optimize your GPU code A way to conduct that method with Nvidia Tools 2 What Does the Application
Radeon HD 2900 and Geometry Generation. Michael Doggett
Radeon HD 2900 and Geometry Generation Michael Doggett September 11, 2007 Overview Introduction to 3D Graphics Radeon 2900 Starting Point Requirements Top level Pipeline Blocks from top to bottom Command
Introducing PgOpenCL A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child
Introducing A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child Bio Tim Child 35 years experience of software development Formerly VP Oracle Corporation VP BEA Systems Inc.
GPU(Graphics Processing Unit) with a Focus on Nvidia GeForce 6 Series. By: Binesh Tuladhar Clay Smith
GPU(Graphics Processing Unit) with a Focus on Nvidia GeForce 6 Series By: Binesh Tuladhar Clay Smith Overview History of GPU s GPU Definition Classical Graphics Pipeline Geforce 6 Series Architecture Vertex
Evaluation of CUDA Fortran for the CFD code Strukti
Evaluation of CUDA Fortran for the CFD code Strukti Practical term report from Stephan Soller High performance computing center Stuttgart 1 Stuttgart Media University 2 High performance computing center
Texture Cache Approximation on GPUs
Texture Cache Approximation on GPUs Mark Sutherland Joshua San Miguel Natalie Enright Jerger {suther68,enright}@ece.utoronto.ca, [email protected] 1 Our Contribution GPU Core Cache Cache
Introduction GPU Hardware GPU Computing Today GPU Computing Example Outlook Summary. GPU Computing. Numerical Simulation - from Models to Software
GPU Computing Numerical Simulation - from Models to Software Andreas Barthels JASS 2009, Course 2, St. Petersburg, Russia Prof. Dr. Sergey Y. Slavyanov St. Petersburg State University Prof. Dr. Thomas
Accelerating Intensity Layer Based Pencil Filter Algorithm using CUDA
Accelerating Intensity Layer Based Pencil Filter Algorithm using CUDA Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Technology, Computer Engineering by Amol
CUDA Basics. Murphy Stein New York University
CUDA Basics Murphy Stein New York University Overview Device Architecture CUDA Programming Model Matrix Transpose in CUDA Further Reading What is CUDA? CUDA stands for: Compute Unified Device Architecture
Embedded Systems: map to FPGA, GPU, CPU?
Embedded Systems: map to FPGA, GPU, CPU? Jos van Eijndhoven [email protected] Bits&Chips Embedded systems Nov 7, 2013 # of transistors Moore s law versus Amdahl s law Computational Capacity Hardware
GPU Architecture. Michael Doggett ATI
GPU Architecture Michael Doggett ATI GPU Architecture RADEON X1800/X1900 Microsoft s XBOX360 Xenos GPU GPU research areas ATI - Driving the Visual Experience Everywhere Products from cell phones to super
IBM CELL CELL INTRODUCTION. Project made by: Origgi Alessandro matr. 682197 Teruzzi Roberto matr. 682552 IBM CELL. Politecnico di Milano Como Campus
Project made by: Origgi Alessandro matr. 682197 Teruzzi Roberto matr. 682552 CELL INTRODUCTION 2 1 CELL SYNERGY Cell is not a collection of different processors, but a synergistic whole Operation paradigms,
Fast Software AES Encryption
Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 2010 Fast Software AES Encryption Osvik, Dag Arne Proceedings FSE'10 Proceedings of the 17th
NVIDIA Solves the GPU Computing Puzzle
NVIDIA Solves the GPU Computing Puzzle Nathan Brookwood Research Fellow [email protected] An Insight 64 White Paper Sponsored by NVIDIA Anyone who has ever assembled a jigsaw puzzle knows the drill.
Clustering Billions of Data Points Using GPUs
Clustering Billions of Data Points Using GPUs Ren Wu [email protected] Bin Zhang [email protected] Meichun Hsu [email protected] ABSTRACT In this paper, we report our research on using GPUs to accelerate
~ Greetings from WSU CAPPLab ~
~ Greetings from WSU CAPPLab ~ Multicore with SMT/GPGPU provides the ultimate performance; at WSU CAPPLab, we can help! Dr. Abu Asaduzzaman, Assistant Professor and Director Wichita State University (WSU)
Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi
Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi ICPP 6 th International Workshop on Parallel Programming Models and Systems Software for High-End Computing October 1, 2013 Lyon, France
Case Study on Productivity and Performance of GPGPUs
Case Study on Productivity and Performance of GPGPUs Sandra Wienke [email protected] ZKI Arbeitskreis Supercomputing April 2012 Rechen- und Kommunikationszentrum (RZ) RWTH GPU-Cluster 56 Nvidia
Home Exam 3: Distributed Video Encoding using Dolphin PCI Express Networks. October 20 th 2015
INF5063: Programming heterogeneous multi-core processors because the OS-course is just to easy! Home Exam 3: Distributed Video Encoding using Dolphin PCI Express Networks October 20 th 2015 Håkon Kvale
Experiences on using GPU accelerators for data analysis in ROOT/RooFit
Experiences on using GPU accelerators for data analysis in ROOT/RooFit Sverre Jarp, Alfio Lazzaro, Julien Leduc, Yngve Sneen Lindal, Andrzej Nowak European Organization for Nuclear Research (CERN), Geneva,
IMAGE PROCESSING WITH CUDA
IMAGE PROCESSING WITH CUDA by Jia Tse Bachelor of Science, University of Nevada, Las Vegas 2006 A thesis submitted in partial fulfillment of the requirements for the Master of Science Degree in Computer
This Unit: Putting It All Together. CIS 501 Computer Architecture. Sources. What is Computer Architecture?
This Unit: Putting It All Together CIS 501 Computer Architecture Unit 11: Putting It All Together: Anatomy of the XBox 360 Game Console Slides originally developed by Amir Roth with contributions by Milo
Optimizing GPU-based application performance for the HP for the HP ProLiant SL390s G7 server
Optimizing GPU-based application performance for the HP for the HP ProLiant SL390s G7 server Technology brief Introduction... 2 GPU-based computing... 2 ProLiant SL390s GPU-enabled architecture... 2 Optimizing
Applications to Computational Financial and GPU Computing. May 16th. Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61
F# Applications to Computational Financial and GPU Computing May 16th Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61 Today! Why care about F#? Just another fashion?! Three success stories! How Alea.cuBase
Binary search tree with SIMD bandwidth optimization using SSE
Binary search tree with SIMD bandwidth optimization using SSE Bowen Zhang, Xinwei Li 1.ABSTRACT In-memory tree structured index search is a fundamental database operation. Modern processors provide tremendous
Optimizing Code for Accelerators: The Long Road to High Performance
Optimizing Code for Accelerators: The Long Road to High Performance Hans Vandierendonck Mons GPU Day November 9 th, 2010 The Age of Accelerators 2 Accelerators in Real Life 3 Latency (ps/inst) Why Accelerators?
Towards Large-Scale Molecular Dynamics Simulations on Graphics Processors
Towards Large-Scale Molecular Dynamics Simulations on Graphics Processors Joe Davis, Sandeep Patel, and Michela Taufer University of Delaware Outline Introduction Introduction to GPU programming Why MD
GPU File System Encryption Kartik Kulkarni and Eugene Linkov
GPU File System Encryption Kartik Kulkarni and Eugene Linkov 5/10/2012 SUMMARY. We implemented a file system that encrypts and decrypts files. The implementation uses the AES algorithm computed through
Hardware design for ray tracing
Hardware design for ray tracing Jae-sung Yoon Introduction Realtime ray tracing performance has recently been achieved even on single CPU. [Wald et al. 2001, 2002, 2004] However, higher resolutions, complex
NVIDIA GeForce GTX 750 Ti
Whitepaper NVIDIA GeForce GTX 750 Ti Featuring First-Generation Maxwell GPU Technology, Designed for Extreme Performance per Watt V1.1 Table of Contents Table of Contents... 1 Introduction... 3 The Soul
ultra fast SOM using CUDA
ultra fast SOM using CUDA SOM (Self-Organizing Map) is one of the most popular artificial neural network algorithms in the unsupervised learning category. Sijo Mathew Preetha Joy Sibi Rajendra Manoj A
Multicore Processor and GPU. Jia Rao Assistant Professor in CS http://cs.uccs.edu/~jrao/
Multicore Processor and GPU Jia Rao Assistant Professor in CS http://cs.uccs.edu/~jrao/ Moore s Law The number of transistors on integrated circuits doubles approximately every two years! CPU performance
SGRT: A Mobile GPU Architecture for Real-Time Ray Tracing
SGRT: A Mobile GPU Architecture for Real-Time Ray Tracing Won-Jong Lee 1, Youngsam Shin 1, Jaedon Lee 1, Jin-Woo Kim 2, Jae-Ho Nah 3, Seokyoon Jung 1, Shihwa Lee 1, Hyun-Sang Park 4, Tack-Don Han 2 1 SAMSUNG
AMD GPU Architecture. OpenCL Tutorial, PPAM 2009. Dominik Behr September 13th, 2009
AMD GPU Architecture OpenCL Tutorial, PPAM 2009 Dominik Behr September 13th, 2009 Overview AMD GPU architecture How OpenCL maps on GPU and CPU How to optimize for AMD GPUs and CPUs in OpenCL 2 AMD GPU
GPU Computing with CUDA Lecture 4 - Optimizations. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile
GPU Computing with CUDA Lecture 4 - Optimizations Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile 1 Outline of lecture Recap of Lecture 3 Control flow Coalescing Latency hiding
Precision & Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs
Precision & Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs Nathan Whitehead Alex Fit-Florea ABSTRACT A number of issues related to floating point accuracy and compliance are a frequent
Intro to GPU computing. Spring 2015 Mark Silberstein, 048661, Technion 1
Intro to GPU computing Spring 2015 Mark Silberstein, 048661, Technion 1 Serial vs. parallel program One instruction at a time Multiple instructions in parallel Spring 2015 Mark Silberstein, 048661, Technion
GPGPU accelerated Computational Fluid Dynamics
t e c h n i s c h e u n i v e r s i t ä t b r a u n s c h w e i g Carl-Friedrich Gauß Faculty GPGPU accelerated Computational Fluid Dynamics 5th GACM Colloquium on Computational Mechanics Hamburg Institute
Parallel programming: Introduction to GPU architecture. Sylvain Collange Inria Rennes Bretagne Atlantique sylvain.collange@inria.
Parallel programming: Introduction to GPU architecture Sylvain Collange Inria Rennes Bretagne Atlantique [email protected] GPU internals What makes a GPU tick? NVIDIA GeForce GTX 980 Maxwell GPU.
Spatial BIM Queries: A Comparison between CPU and GPU based Approaches
Technische Universität München Faculty of Civil, Geo and Environmental Engineering Chair of Computational Modeling and Simulation Prof. Dr.-Ing. André Borrmann Spatial BIM Queries: A Comparison between
The High Performance Internet of Things: using GVirtuS for gluing cloud computing and ubiquitous connected devices
WS on Models, Algorithms and Methodologies for Hierarchical Parallelism in new HPC Systems The High Performance Internet of Things: using GVirtuS for gluing cloud computing and ubiquitous connected devices
GPU Architecture. An OpenCL Programmer s Introduction. Lee Howes November 3, 2010
GPU Architecture An OpenCL Programmer s Introduction Lee Howes November 3, 2010 The aim of this webinar To provide a general background to modern GPU architectures To place the AMD GPU designs in context:
www.xenon.com.au STORAGE HIGH SPEED INTERCONNECTS HIGH PERFORMANCE COMPUTING VISUALISATION GPU COMPUTING
www.xenon.com.au STORAGE HIGH SPEED INTERCONNECTS HIGH PERFORMANCE COMPUTING GPU COMPUTING VISUALISATION XENON Accelerating Exploration Mineral, oil and gas exploration is an expensive and challenging
High Performance GPGPU Computer for Embedded Systems
High Performance GPGPU Computer for Embedded Systems Author: Dan Mor, Aitech Product Manager September 2015 Contents 1. Introduction... 3 2. Existing Challenges in Modern Embedded Systems... 3 2.1. Not
Parallel Image Processing with CUDA A case study with the Canny Edge Detection Filter
Parallel Image Processing with CUDA A case study with the Canny Edge Detection Filter Daniel Weingaertner Informatics Department Federal University of Paraná - Brazil Hochschule Regensburg 02.05.2011 Daniel
A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS
A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS SUDHAKARAN.G APCF, AERO, VSSC, ISRO 914712564742 [email protected] THOMAS.C.BABU APCF, AERO, VSSC, ISRO 914712565833
