(i) outline the methods used by the Braggs to determine crystal structure

Size: px
Start display at page:

Download "(i) outline the methods used by the Braggs to determine crystal structure"

Transcription

1 9.4.4 Investigations into the electrical properties of particular metals at different temperatures led to the identification of superconductivity and the exploration of possible applications (i) outline the methods used by the Braggs to determine crystal structure Year 11 When two different sources of waves are producing waves that are passing through each other the two waves will interfere with each other and produce constructive interference and destructive interference. The diagram above shows how two slits act as separate sources of waves and how these waves interfere with each other constructively and destructively. This is a picture that shows constructive and destructive interference of water waves produced from two separate sources CONSTRUCTIVE INTERFERENCE DESTRUCTIVE INTERFERENCE Braggs Experiment Outline Braggs used x-rays and directed them through A crystalline material. X-rays were used since they have a very short wavelength and comparable to the interatomic spacing in which they were investigating. The individual atoms acted as a separate source of the x-rays as they were scattered of them. As the x-rays travelled away from the crystalline solid they interacted with each other and produced constructive and destructive interference. A photographic plate was placed in the path of these scattered x-rays. The film was developed and the resulting wave interference pattern analysed In this analysis the angle in which constructive interference occurs (ie. a bright spot) was determined. The wavelength of the x-rays was known. The spacing between the atoms could then be determined using n 2d sin see below With more complex analysis of diffraction spacing af all atoms in the material could be determined and an overall picture of the arrangement of atoms could be deduced. n 2d sin

2 Ex. X-rays with a wavelength of 5 angstroms ( 0.5 nm) were incidented upon a crystalline structure and the first order of consructive interference (first bright spot) occurred at angle of 30 degrees. Calculate the spacing between the two atoms that caused this constructive interference. n=1, 0.5 nm = 0.5 x 10-9 m, 30 0, d=? n 2d sin d= 5 x m A photograph showing the pattern formed from x-ray diffraction. Each spot represents constructive interference Today, detectors can instantly measure the angles at which constructive interference occurs (ii) identify that metals possess a crystal lattice structure X-ray diffraction has been used to investigate how the atoms are arranged in metals. Metals have been found to possess a crystal lattice structure. This means that the atoms are arraged in a pattern that is:- 3 dimensional Repeating Ordered The diagram to the right shows some examples of the crystal lattice structure that metals have. Examples of different crystalline structures found in metals

3 (iii) describe conduction in metals as a free movement of electrons unimpeded by the lattice Metals have a large number of free electrons (charge carriers) that are loosely bound to their nucleus and thus can drift through the crystal lattice. This gives metals good electrical conductivity (iv) identify that resistance in metals is increased by the presence of impurities and scattering of electrons by lattice vibrations The electrons flowing through a lattice are impeded in two main ways:- Electrons colliding with phonons (packets of lattice vibrational energy) produced by the vibrating lattice. Electrons colliding with imperfections in the crystal lattice such as impurities or spaces in the lattice where an atom should be. Below are examples of impurities/imperfections that may occur in a crystal lattice of a metal.

4 Heat is generated Each time there is a collision between an electron & either an imperfection or a lattice vibration (phonon) the electron loses some kinetic energy. This energy is transformed into increased vibrational energy of the crystal lattice Increased Vibrational energy = Heat The substance gets hotter. This produces more vibration in the lattice (more phonons) An increase lattice vibration (increase in the number of phonons) means an increases in the number of collisions and an increase in resistance This explains why an increase in temperature of metals increases the resistance and A current flowing through a conductor heats the conductor What about resistance at low temperatures??? If we decrease the temperature we would expect the electrical resistance of a metallic conductor to decrease to a low but non-zero value as the temperature approaches absolute zero. However, we would still expect a residual resistance even near absolute zero due to crystal lattice imperfections. The fact is, however, the electrical resistance of some metals disappears completely at sufficiently low temperatures (v) describe the occurrence in superconductors below their critical temperature of a population of electron pairs unaffected by electrical resistance Materials that can exhibit superconductivity have crystal lattices :- that have impurities/imperfections that are vibrating & producing phonons. Packets (quanta) of vibrational energy that exhibit normal conductivity at high temp. s HOWEVER Superconductors will allow the transmission of electrons unimpeded and with no energy loss when bougfht to a temperature equal to or below their critical temperature, which is above absolute zero = 0K They do this by having there electrons pair up. These electron pairs interact with the crystal lattice. This interaction allows these pairs to move through the crystal lattice with zero resistance

5 (i) process information to identify some of the metals, metal alloys and compounds that have been identified as exhibiting the property of superconductivity and their critical temperatures (vi) discuss the BCS theory BCS Theory to explain Low Temperature Superconductivity This theory was thought up by three scientists working together (John Bardeen, Leon Cooper, and John Schrieffer BCS theory) in The theory states that the supercurrent in a superconductor is carried by many millions of bound electron pairs, called Cooper pairs.

6 These pairs form when one electron passing between adjacent positive ions distorts the lattice slightly due to electrostatic attraction. This distortion is associated with the release of phonons. These phonons create a trough of increased positive charge density around the electron. Before the electron passes by and before the lattice springs back to its normal position, a second electron is drawn into the trough. It is through this process that two electrons, which should repel one another, link up. The forces exerted by the phonons overcome the electrons' natural repulsion By pairing off two by two in cooper pairs the electrons pass through the superconductor unobstructed. WHEN, and only when, THE TEMPERATURE OF THE SUPERCONDUCTOR IS EQUAL TO OR BELOW THE CRITICAL TEMPERATURE (T C ). Phonons When one of the electrons that makes up a Cooper pair, passes close to an ion in the crystal lattice, the attraction between the negative electron and the positive ion cause a vibration to pass from ion to ion until the other electron of the pair absorbs the vibration. The net effect is that the electron has emitted a phonon and the other electron has absorbed the phonon. It is this exchange that keeps the Cooper pairs together. Discuss for and/against FOR The BCS theory is very useful in explaining low temperature superconductivity HOWEVER AGAINST The BCS theory cannot, in it s current form, be used to explain high temperature superconductivity (vii) discuss the advantages of using superconductors and identify limitations to their use Advantages of Superconductors Low energy wastage Low heat build up Faster transmission of information via electricity (faster switching)

7 Limitations of Superconductors In most superconductors temperatures need to be kept far too low for practical purposes. New high temp. superconductors are :- brittle difficult to make into wires difficult to manufacture chemically unstable in some environments (ii)perform an investigation to demonstrate magnetic levitation The Meissner effect is an expulsion of a magnetic field from a superconductor during its transition to the superconducting state. Eddy currents are induced in the surface of the superconductor. These induced currents set up a magnetic field to oppose any field that would otherwise penetrate the surface (iii) gather and process information to describe how superconductors and the effects of magnetic fields have been applied to develop a maglev train MAGLEV Train Propulsion and Levitation is achieved by the attractive and repulsive forces of magnetism. There are superconducting magnets on the carriage. These electromagnets are made from a superconductor and the temperature is kept under the critical temperature. The superconductor allows huge currents and hence huge magnetic fields to be achieved by these electromagnets on the train. The movement of these superconducting magnets as the train moves along the track induces a current in levitation coils in the track. These coils will then become electromagnets themselves, repelling the train upwards. This counteracts the downward force of gravity or weight force & thus the carriage will levitate. Other coils in the track are responsible for propelling the carriage along. Superconductors are essential to produce the huge magnetic fields required for levitating a train.

8 MAGLEV Track Propulsion Forces on a MAGLEV train Levitation (iv) process information to discuss possible applications of superconductivity and the effects of those applications on computers, generators and motors and transmission of electricity through power grids Computers Further reduction in size of Si chips is limited to heat build up from the resistance in connections to the chip. Conventional connections to chip are slower in conducting information (several magnitudes) than superconductors Using superconductors will allow more densely packed chips and higher processing speeds (250x) faster & smaller computers Generators & Motors Motors & Generators using superconductor magnets would not require an iron core The would become smaller & lighter Requiring lower energy input from fossil fuels Cheaper for consumers & better for the environment (greenhouse gases) Transmission of electricity through power grids Traditionally electricity is transmitted at high voltages and through thick copper wires to minimise energy waste in the form of heat from resistance. Using superconductors to transmit power there would not be any resistance and hence lower voltages, larger currents and thinner wires could be used. This would reduce cost to consumers.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

The unifying field Theory

The unifying field Theory The unifying field Theory M T Keshe 2000-2009, all rights reserved Date of release 28.10.2009 Abstract In this paper the origin of electromagnetic fields or electromagnetism and how they are created within

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

Experiment: Crystal Structure Analysis in Engineering Materials

Experiment: Crystal Structure Analysis in Engineering Materials Experiment: Crystal Structure Analysis in Engineering Materials Objective The purpose of this experiment is to introduce students to the use of X-ray diffraction techniques for investigating various types

More information

HSC Physics Notes From Ideas to Implementation

HSC Physics Notes From Ideas to Implementation HSC Physics Notes From Ideas to Implementation 9.3-1. Increased understanding of cathode rays led to the development of the television 1. explain why the apparent inconsistent behaviour of cathode rays

More information

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory Introduction to Electricity & Magnetism Dr Lisa Jardine-Wright Cavendish Laboratory Examples of uses of electricity Christmas lights Cars Electronic devices Human body Electricity? Electricity is the presence

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure. Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van

More information

Energy and Energy Transformations Test Review

Energy and Energy Transformations Test Review Energy and Energy Transformations Test Review Completion: 1. Mass 13. Kinetic 2. Four 14. thermal 3. Kinetic 15. Thermal energy (heat) 4. Electromagnetic/Radiant 16. Thermal energy (heat) 5. Thermal 17.

More information

Crystal Structure of High Temperature Superconductors. Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson

Crystal Structure of High Temperature Superconductors. Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson Crystal Structure of High Temperature Superconductors Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson Introduction History of Superconductors Superconductors are material which

More information

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

More information

ElectroMagnetic Induction. AP Physics B

ElectroMagnetic Induction. AP Physics B ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday

More information

CHAPTER 5: MAGNETIC PROPERTIES

CHAPTER 5: MAGNETIC PROPERTIES CHAPTER 5: MAGNETIC PROPERTIES and Magnetic Materials ISSUES TO ADDRESS... Why do we study magnetic properties? What is magnetism? How do we measure magnetic properties? What are the atomic reasons for

More information

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1 SUPERCONDUCTIVITY property of complete disappearance of electrical resistance in solids when they are cooled below a characteristic temperature. This temperature is called transition temperature or critical

More information

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact

More information

Chapter 2: Forms of Energy

Chapter 2: Forms of Energy Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3 To describe energy storage

More information

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

More information

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be

More information

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

Objectives 200 CHAPTER 4 RESISTANCE

Objectives 200 CHAPTER 4 RESISTANCE Objectives Explain the differences among conductors, insulators, and semiconductors. Define electrical resistance. Solve problems using resistance, voltage, and current. Describe a material that obeys

More information

X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US. Hanno zur Loye

X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US. Hanno zur Loye X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US Hanno zur Loye X-rays are electromagnetic radiation of wavelength about 1 Å (10-10 m), which is about the same size as an atom. The

More information

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb. Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling

More information

Semester 2. Final Exam Review

Semester 2. Final Exam Review Semester 2 Final Exam Review Motion and Force Vocab Motion object changes position relative to a reference point. Speed distance traveled in a period of time. Velocity speed in a direction. Acceleration

More information

Energy Transformations

Energy Transformations Energy Transformations Concept Sheet Energy Transformations PS.6: The student will investigate and understand states and forms of energy and how energy is transferred and transformed. 1. Energy is the

More information

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

More information

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states. Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

More information

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise. Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

More information

TOF FUNDAMENTALS TUTORIAL

TOF FUNDAMENTALS TUTORIAL TOF FUNDAMENTALS TUTORIAL Presented By: JORDAN TOF PRODUCTS, INC. 990 Golden Gate Terrace Grass Valley, CA 95945 530-272-4580 / 530-272-2955 [fax] www.rmjordan.com [web] info@rmjordan.com [e-mail] This

More information

Energy comes in many flavors!

Energy comes in many flavors! Forms of Energy Energy is Fun! Energy comes in many flavors! Kinetic Energy Potential Energy Thermal/heat Energy Chemical Energy Electrical Energy Electrochemical Energy Electromagnetic Radiation Energy

More information

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

More information

Alternating Current and Direct Current

Alternating Current and Direct Current K Hinds 2012 1 Alternating Current and Direct Current Direct Current This is a Current or Voltage which has a constant polarity. That is, either a positive or negative value. K Hinds 2012 2 Alternating

More information

3 Atomic Structure 15

3 Atomic Structure 15 3 Atomic Structure 15 3.1 Atoms You need to be familiar with the terms in italics The diameter of the nucleus is approximately 10-15 m and an atom 10-10 m. All matter consists of atoms. An atom can be

More information

Interference. Physics 102 Workshop #3. General Instructions

Interference. Physics 102 Workshop #3. General Instructions Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

More information

PHYSICS PAPER 1 (THEORY)

PHYSICS PAPER 1 (THEORY) PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------

More information

Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

More information

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm? Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through

More information

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate.

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate. Series ONS SET-1 Roll No. Candiates must write code on the title page of the answer book Please check that this question paper contains 16 printed pages. Code number given on the right hand side of the

More information

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to : PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

More information

Electromagnetism Extra Study Questions Short Answer

Electromagnetism Extra Study Questions Short Answer Electromagnetism Extra Study Questions Short Answer 1. The electrostatic force between two small charged objects is 5.0 10 5 N. What effect would each of the following changes have on the magnitude of

More information

A-level PHYSICS (7408/1)

A-level PHYSICS (7408/1) SPECIMEN MATERIAL A-level PHYSICS (7408/1) Paper 1 Specimen 2014 Morning Time allowed: 2 hours Materials For this paper you must have: a pencil a ruler a calculator a data and formulae booklet. Instructions

More information

SAM Teachers Guide Heat and Temperature

SAM Teachers Guide Heat and Temperature SAM Teachers Guide Heat and Temperature Overview Students learn that temperature measures average kinetic energy, and heat is the transfer of energy from hot systems to cold systems. They consider what

More information

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

More information

ELECTRICAL FUNDAMENTALS

ELECTRICAL FUNDAMENTALS General Electricity is a form of energy called electrical energy. It is sometimes called an "unseen" force because the energy itself cannot be seen, heard, touched, or smelled. However, the effects of

More information

13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory

13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation,

More information

Heisenberg Uncertainty

Heisenberg Uncertainty Heisenberg Uncertainty Outline - Heisenberg Microscope - Measurement Uncertainty - Example: Hydrogen Atom - Example: Single Slit Diffraction - Example: Quantum Dots 1 TRUE / FALSE A photon (quantum of

More information

104 Practice Exam 2-3/21/02

104 Practice Exam 2-3/21/02 104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero

More information

Objectives 404 CHAPTER 9 RADIATION

Objectives 404 CHAPTER 9 RADIATION Objectives Explain the difference between isotopes of the same element. Describe the force that holds nucleons together. Explain the relationship between mass and energy according to Einstein s theory

More information

KINETIC THEORY OF MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature

KINETIC THEORY OF MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature 1 KINETIC TERY F MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature TE STATES F MATTER 1. Gas a) ideal gas - molecules move freely - molecules have

More information

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided. Name Date lass APTER 6 REVIEW hemical Bonding SETIN 1 SRT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence

More information

Chapter 2: Forms of Energy

Chapter 2: Forms of Energy Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3: To define the efficiency

More information

UNIT I: INTRFERENCE & DIFFRACTION Div. B Div. D Div. F INTRFERENCE

UNIT I: INTRFERENCE & DIFFRACTION Div. B Div. D Div. F INTRFERENCE 107002: EngineeringPhysics Teaching Scheme: Lectures: 4 Hrs/week Practicals-2 Hrs./week T.W.-25 marks Examination Scheme: Paper-50 marks (2 hrs) Online -50marks Prerequisite: Basics till 12 th Standard

More information

Classification of Chemical Substances

Classification of Chemical Substances Classification of Chemical Substances INTRODUCTION: Depending on the kind of bonding present in a chemical substance, the substance may be called ionic, molecular or metallic. In a solid ionic compound

More information

Chemical Building Blocks: Chapter 3: Elements and Periodic Table

Chemical Building Blocks: Chapter 3: Elements and Periodic Table Name: Class: Date: Chemical Building Blocks: Chapter 3: Elements and Periodic Table Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

More information

G482 Electrons, Waves and Photons; Revision Notes Module 1: Electric Current

G482 Electrons, Waves and Photons; Revision Notes Module 1: Electric Current G482 Electrons, Waves and Photons; Revision Notes Module 1: Electric Current Electric Current A net flow of charged particles. Electrons in a metal Ions in an electrolyte Conventional Current A model used

More information

How To Understand Light And Color

How To Understand Light And Color PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

More information

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which

More information

Time allowed: 1 hour 45 minutes

Time allowed: 1 hour 45 minutes GCSE PHYSICS Foundation Tier Paper 1F F Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the Physics Equation Sheet (enclosed). Instructions Answer

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

STUDY GUIDE: ELECTRICITY AND MAGNETISM

STUDY GUIDE: ELECTRICITY AND MAGNETISM 319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: info@questionsgalore.net Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three

More information

BUILDING A BASIC CIRCUIT

BUILDING A BASIC CIRCUIT Teacher Information BUILDING A BASIC CIRCUIT NSES9-12.2 Physical Science: Interactions of Energy and Matter Adaptations Some adaptations and modifications that may assist a student with visual and/or other

More information

MEASURING INSTRUMENTS. By: Nafees Ahmed, Asstt, Prof, EE Deptt, DIT, Dehradun

MEASURING INSTRUMENTS. By: Nafees Ahmed, Asstt, Prof, EE Deptt, DIT, Dehradun MEASURING INSTRUMENTS By: Nafees Ahmed, Asstt, Prof, EE Deptt, DIT, Dehradun MEASURING INSTRUMENTS The device used for comparing the unknown quantity with the unit of measurement or standard quantity is

More information

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds? CHAPTER 1 2 Ionic Bonds SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is ionic bonding? What happens to atoms that gain or lose

More information

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of: ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

More information

Science Standard 3 Energy and Its Effects Grade Level Expectations

Science Standard 3 Energy and Its Effects Grade Level Expectations Science Standard 3 Energy and Its Effects Grade Level Expectations Science Standard 3 Energy and Its Effects The flow of energy drives processes of change in all biological, chemical, physical, and geological

More information

Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives. Capacitors 262 CHAPTER 5 ENERGY Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

More information

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves Name: Teacher: Pd. Date: STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves TEK 8.8C: Explore how different wavelengths of the electromagnetic spectrum such as light and radio waves are used to

More information

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages 385 389)

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages 385 389) 13 STATES OF MATTER SECTION 13.1 THE NATURE OF GASES (pages 385 389) This section introduces the kinetic theory and describes how it applies to gases. It defines gas pressure and explains how temperature

More information

Structure and Properties of Atoms

Structure and Properties of Atoms PS-2.1 Compare the subatomic particles (protons, neutrons, electrons) of an atom with regard to mass, location, and charge, and explain how these particles affect the properties of an atom (including identity,

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2012

Candidate Number. General Certificate of Education Advanced Level Examination June 2012 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 212 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Monday

More information

CHAPTER 2 Energy and Earth

CHAPTER 2 Energy and Earth CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

Physics 10. Lecture 29A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 10. Lecture 29A. There are two ways of spreading light: to be the candle or the mirror that reflects it. --Edith Wharton Physics 10 Lecture 29A "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton Converging Lenses What if we wanted to use refraction to converge parallel

More information

After a wave passes through a medium, how does the position of that medium compare to its original position?

After a wave passes through a medium, how does the position of that medium compare to its original position? Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.

More information

Magnetic Fields. I. Magnetic Field and Magnetic Field Lines

Magnetic Fields. I. Magnetic Field and Magnetic Field Lines Magnetic Fields I. Magnetic Field and Magnetic Field Lines A. The concept of the magnetic field can be developed in a manner similar to the way we developed the electric field. The magnitude of the magnetic

More information

18.2 Comparing Atoms. Atomic number. Chapter 18

18.2 Comparing Atoms. Atomic number. Chapter 18 As you know, some substances are made up of only one kind of atom and these substances are called elements. You already know something about a number of elements you ve heard of hydrogen, helium, silver,

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

The Phenomenon of Photoelectric Emission:

The Phenomenon of Photoelectric Emission: The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of

More information

Preview of Period 2: Forms of Energy

Preview of Period 2: Forms of Energy Preview of Period 2: Forms of Energy 2.1 Forms of Energy How are forms of energy defined? 2.2 Energy Conversions What happens when energy is converted from one form into another form? 2.3 Efficiency of

More information

Coating Technology: Evaporation Vs Sputtering

Coating Technology: Evaporation Vs Sputtering Satisloh Italy S.r.l. Coating Technology: Evaporation Vs Sputtering Gianni Monaco, PhD R&D project manager, Satisloh Italy 04.04.2016 V1 The aim of this document is to provide basic technical information

More information

The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.

The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time. H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law

More information

Boardworks AS Physics

Boardworks AS Physics Boardworks AS Physics Vectors 24 slides 11 Flash activities Prefixes, scalars and vectors Guide to the SI unit prefixes of orders of magnitude Matching powers of ten to their SI unit prefixes Guide to

More information

ELECTROMAGNETIC LEVITATION THESIS

ELECTROMAGNETIC LEVITATION THESIS ELECTROMAGNETIC LEVITATION THESIS 2005 COMPILED BY: LANCE WILLIAMS ACKNOWLEDGEMENTS I would like to acknowledge the help and support of Professor J. Greene in the formation and development of this thesis.

More information

Chapter 7. Magnetism and Electromagnetism ISU EE. C.Y. Lee

Chapter 7. Magnetism and Electromagnetism ISU EE. C.Y. Lee Chapter 7 Magnetism and Electromagnetism Objectives Explain the principles of the magnetic field Explain the principles of electromagnetism Describe the principle of operation for several types of electromagnetic

More information

Preview of Period 3: Electromagnetic Waves Radiant Energy II

Preview of Period 3: Electromagnetic Waves Radiant Energy II Preview of Period 3: Electromagnetic Waves Radiant Energy II 3.1 Radiant Energy from the Sun How is light reflected and transmitted? What is polarized light? 3.2 Energy Transfer with Radiant Energy How

More information

Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW

Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW The p-n junction is the fundamental building block of the electronic

More information

Students will investigate the characteristics of electromagnetism and then use what they learn to plan and conduct an experiment on electromagnets.

Students will investigate the characteristics of electromagnetism and then use what they learn to plan and conduct an experiment on electromagnets. Electromagnetic Power! Lesson Overview Students will investigate the characteristics of electromagnetism and then use what they learn to plan and conduct an experiment on electromagnets. Suggested Grade

More information

Physics PH1FP. (Jun15PH1FP01) General Certificate of Secondary Education Foundation Tier June 2015. Unit Physics P1. Unit Physics P1 TOTAL

Physics PH1FP. (Jun15PH1FP01) General Certificate of Secondary Education Foundation Tier June 2015. Unit Physics P1. Unit Physics P1 TOTAL Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Question Mark Science A Unit Physics P1 Physics Unit Physics P1 Friday 12 June 2015 General

More information

Structure Factors 59-553 78

Structure Factors 59-553 78 78 Structure Factors Until now, we have only typically considered reflections arising from planes in a hypothetical lattice containing one atom in the asymmetric unit. In practice we will generally deal

More information

Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum

Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum Wave Function, ψ Chapter 28 Atomic Physics The Hydrogen Atom The Bohr Model Electron Waves in the Atom The value of Ψ 2 for a particular object at a certain place and time is proportional to the probability

More information

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5 Solutions to Homework Questions 5 Chapt19, Problem-2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat

More information

Physics 30 Worksheet # 14: Michelson Experiment

Physics 30 Worksheet # 14: Michelson Experiment Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the

More information

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information

SOLAR ELECTRICITY: PROBLEM, CONSTRAINTS AND SOLUTIONS

SOLAR ELECTRICITY: PROBLEM, CONSTRAINTS AND SOLUTIONS SOLAR ELECTRICITY: PROBLEM, CONSTRAINTS AND SOLUTIONS The United States generates over 4,110 TWh of electricity each year, costing $400 billion and emitting 2.5 billion metric tons of carbon dioxide (Yildiz,

More information

Objectives. Electric Current

Objectives. Electric Current Objectives Define electrical current as a rate. Describe what is measured by ammeters and voltmeters. Explain how to connect an ammeter and a voltmeter in an electrical circuit. Explain why electrons travel

More information

Basics of Electricity

Basics of Electricity Basics of Electricity Generator Theory PJM State & Member Training Dept. PJM 2014 8/6/2013 Objectives The student will be able to: Describe the process of electromagnetic induction Identify the major components

More information

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge

More information

XX. Introductory Physics, High School

XX. Introductory Physics, High School XX. Introductory Physics, High School High School Introductory Physics Test The spring 2014 high school Introductory Physics test was based on learning standards in the Introductory Physics content strand

More information

Science Standard Articulated by Grade Level Strand 5: Physical Science

Science Standard Articulated by Grade Level Strand 5: Physical Science Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties

More information