3(vi) B. Answer: False. 3(vii) B. Answer: True

Size: px
Start display at page:

Download "3(vi) B. Answer: False. 3(vii) B. Answer: True"

Transcription

1 Mathematics 0N1 Solutions 1 1. Write the following sets in list form. 1(i) The set of letters in the word banana. {a, b, n}. 1(ii) {x : x 2 + 3x 10 = 0}. 3(iv) C A. True 3(v) B = {e, e, f, c}. True 3(vi) B. False { 5, 2} 1(iii) {x : x an integer and 3 < x < 10}. {4, 5, 6, 7, 8, 9} 3(vii) B. True 4. Find all relations =, or between pairs of 2. Write the following sets in predicate form. 2(i) { a, e, i, o, u }. {x : x is a vowel in English alphabet} 2(ii) { 2, 2 }. {x R : x 2 2 = 0} 2(iii) { 5, 7, 9, 11, 13, 15, 17 }. {x Z : 5 x 17 and x is odd} 3. Let A = {a, b, c, d, e}, B = {c, e, f} and C = {a, d, e}. Which of the following statements are true? 3(i) c A. True 3(ii) f A. False 3(iii) B A. False {r, t, s}, {s, t, r, s}, {t, s, t, r}, {s}, s. s {r, t, s}, s {s, t, r, s}, s {t, s, t, r}, s {s}; {s} {r, t, s}, {s} {s, t, r, s}, {s} {t, s, t, r}, {s} {s}; {r, t, s} = {s, t, r, s} = {t, s, t, r}. Notice that if two sets A and B are equal then A B and B A. This means that {r, t, s} {s, t, r, s}, {s, t, r, s} {r, t, s}, {r, t, s} {t, s, t, r}, {t, s, t, r} {r, t, s}, {s, t, r, s} {t, s, t, r}, {t, s, t, r} {s, t, r, s}. 5. Find all subsets of the set {w, x, y, z}., {w}, {x}, {y}, {z}, {w, x}, {w, y}, {w, z}, {x, y}, {x, z}, {y, z}, {w, x, y}, {w, x, z}, {w, y, z}, {y, x, z}, {w, x, y, z}. This makes 16 = 2 4 subsets altogether.

2 0N1 Mathematics Solutions (i) A B {b, d} 1(i) If A B is it necessarily true that B A? No 1(ii) If A B and A C is it necessarily true that B = C? No 1(iii) If A B and B C is it necessarily true that A C? Yes 1(iv) If A B is it necessarily true that A B? Yes 1(v) If A B is it necessarily true that A B? No 1(vi) If A B and B C is it necessarily true that A C? Yes 3(ii) A C 3(iii) B C {j} 3(iv) A B {a, b, c, d, e, f, h, j} 3(v) B C {b, d, f, h, j, k, l, m, n} 3(vi) (A B C) 1(vii) If x B and A B is it necessarily true that x A? No 1(viii) If x A and A B is it necessarily true that x B? Yes 2. Which of the following sets are finite, and which infinite? 2(i) The set of even negative integers. infinite 2(ii) {x : x Z and x 2 < 9}. 2(iii) {x : x R and x 2 < 9}. finite infinite (i(v) [ 1 2, 1]. infinite 2(v) { 1 2, 1}. finite 3. Let the universal set be the English alphabet (all 26 letters), i.e. {g, i, o, p, q, r, s, t, u, v, w, x, y, z} 4. Let the universal set be the set of all integers, i.e. U = Z. Let Find 4(i) A B C A = {x U : x is odd }, B = {x U : x 2 > 25}, C = {x U : x is negative }. A B C = {..., 13, 11, 9, 7}. It can also be described as Let Find U = {a, b, c,..., z}. A = {a, b, c, d, e}, B = {b, d, f, h, j}, C = {j, k, l, m, n}. 4(ii) A B A B C = {x Z : x is odd and x < 5}. A B = { 5, 3, 1, 1, 3, 5}

3 0N1 Mathematics Solutions 2 3 4(iii) A C A C = {1, 3, 5, 7, 9, 11,...} 5(vi) U 5(vii) U A 4(iv) B C {..., 7, 6, 5, 4, 3, 2, 1, 6, 7,...} 5. Let A be any subset of a universal set U. Find 5(i) U A A U 5(viii) A A U 5(ix) A A A 5(x) A 6. By drawing Venn diagrams, decide whether or not the following statements are always true when A, B and C are subsets of a universal set U. 5(ii) A A A 5(iii) U 5(iv) A A 5(v) A A (i) (A B) = A B False (ii) (A B C) = A B C True (iii) (A B) (B C) (C A) = (A B) (B C) (C A) True (iv) A (B C) (A B) C True

4 0N1 Mathematics Solutions (i) 1(ii) (A B ) by (8) = (A ) (B ) by (7) = A B so (x 2)(x 1) < 0. Hence either x 2 > 0 and x 1 < 0 or x 2 < 0 and x 1 > 0. The first is impossible. Therefore x 2 < 0 and x 1 > 0. hence 1 < x < 2. Hence x B. Therefore A B. 1(iii) 1(iv) (A B) A by (1) = (B A) A A (A B) by (3) = B (A A ) by (7) = B U by (6) = U by (4) = (A A ) (A B) by (7) = U (A B) by (1) = (A B) U by (6) = A B A (A B) by (8) = A ((A ) B ) by (7) = A (A B ) by (3) = (A A) B by (1) = (A A ) B by (7) = B by (1) = B by (6) = 2. Let x A. Then x 1 > 2 and x < 4. Hence x > 3 and x < 4. Hence x 2 > 9 and x 2 < 16. Hence x 2 5 and x Hence x B. So every element of A belongs to B. Therefore A B. 3. Write A = {x R : x 2 3x + 2 < 0} and B = (1, 2). Let x A. Then x 2 3x + 2 < 0, 4. Denote by a, b, c, d, e, f, g, h the number of people in each region of the Venn diagram as shown. A a f d g c e C b B (0) a + b + c + d + e + f + g + h = 25 (1) d + g = 6 (2) b + e = 7 (3) g = 2 (4) e + g = 7 (5) f = 3 (6) a = 5 (7) a + b + d + h = 15. From (3), (5), (6), g = 2, f = 3, a = 5. Therefore, from (1), d = 4. From (4), e = 5. From (3), b = 2. From (7), h = 4. From (0), c = 0. Hence number of people who like B only is b = 2. Number of people who like C but not A is c + e = 5. h

5 0N1 Mathematics Solutions (i) (ii) (iii) (iv) (v) (vi) p p p p T F F F T T p q p p q ( p q) T T F F T T F F F T F T T T F F F T F T p q q p q T T F T T F T T F T F F F F T T p q p q (p q) p T T T T T F F F F T F F F F T F p q r r q r p (q r) (p (q r)) (p (q r)) T T T F T T T T T F T T T T T F T F F F F T F F T T T T F T T F T T T F T F T T T T F F T F F T T F F F T T T T p q p q (p q) p ((p q) p) q T T T T T T F F T F F T T F T F F T F T

6 0N1 Mathematics Solutions 4 1. Let p be Mr Black is taller than Mr Blue T Let q be Mr Green is shorter than Mr White F Let r be Mr Blue is of average height T Let s be Mr Brown has same height as Mr Black F (a) p q. p q q p q T F T T T (b) ( s q) r. s q r s s q ( s q) r F F T T T T T (c) s (q r). s q r s r q r s (q r) F F T T F F F F 2. (i) p q p q q p (p q) (q p) T T T T T T F T T T F T T T T F F F F T Tautology. (ii) Always T when p is F. So we only need to consider the case where p is T. But then (p q) r is T. Hence p ((p q) r) is T. (iii) Tautology. p q q p q (q p) p (q (q p)) T T T T T T F T T T F T F F T F F T T T Tautology.

7 0N1 Mathematics Solutions 4 7 (iv) p q p q (p q) q ((p q) q) p T T T T T T F F T T F T T T F F F T F T Not a tautology. (v) If p is F then p q is F so (p q) (p r) is T. So we only need to consider the case where p is T. p q r p q p r (p q) (p r) T T T T T T T T F T T T T F T F T T T F F F T T (vi) Tautology. p q p q q p (p q) (q p) T T T T T T F F T F F T T F F F F T T T Not a tautology. 3. Let p be it is raining ; let q be it is snowing. The given statement is p q. (i) ( p q) p q p q. (ii) (p q) q. p q p q (p q) q p q T T T T T T F F F T F T F T T F F F F F Last 2 columns are different. So (p q) q p q. (iii) p (q p) (p q) (p p) (p q) T p q. (iv) p q (p q). This has opposite truth values to p q. So p q p q. (v) p q. p q q p q p q T T F F T T F T T T F T F F T F F T F F Last 2 columns are different. p q p q. (vi) p q p q p q. 4. (i) p (p q) ( p p) ( p q) T ( p q) p q.

8 0N1 Mathematics Solutions 4 8 (ii) p (q p) p (q p) p ( q p) p (p q) ( p p) q T q T (iii) ( p q) (p q) ( p q) ( p q) p (q q) p T p. [Using distributive law backwards!] (iv) p ((p q) (p r)) p (p (q r)) ( p p) (q r) F (q r) F. [Using distributive law backwards!]

9 0N1 Mathematics Solutions 5 1. In each of the following find values of x and y which make p(x, y) true and find values which make p(x, y) false. (Only one example of each is required.) (i) p(x, y) denotes x 2 + y 2 = 2. p(1, 1) is true and p(0, 0) is false. (ii) p(x, y) denotes x > y 3. p(1, 0) is true and p(0, 5) is false. (iii) p(x, y) denotes x + y xy. p(1, 0) is true and p(0, 0) is false. 2. Let p(x), q(x, y), r(x, y) and s(x, y) denote the predicates x > 0, x > y, x = y and x + y = 2, respectively. Find whether the following statements are true or false. (i) p(2) (q(1, 1) r(2, 0)). True, because p(2) is true and q(1, 1) is false. (ii) p( 1) p(1). False, because p( 1) is false and p(1) is true. (iii) (q(2, 1) s(1, 1)). False, because q(2, 1) and s(1, 1) are both true. 3. Write the following statements using quantifiers (e.g. ( x)x 2 0): (i) For all A and B, A B = B A. ( A)( B)A B = B A. (ii) x + y = y + x for all x and y. ( x)( y)x + y = y + x. (iii) 2x > 50 for some x. ( x)2x > 50. (iv) There exist A and B such that A B. ( A)( B)A B. (v) Given any x there exists y such that y < x. ( x)( y)y < x. (vi) There exists x such that x y 2 for all y. ( x)( y)x y Let p(x, y) denote the predicate Person x answered question y. Write the following statements using predicate notation (e.g. ( x)( y)p(x, y)): (i) There was one question which was answered by everyone. ( y)( x)p(x, y). (ii) Everyone answered at least one question. ( x)( y)p(x, y). (iii) All questions were answered by everyone. ( y)( x)p(x, y). (iv) There was somebody there who answered all the questions. ( x)( y)p(x, y). 5. Let p(x, y) be as in Exercise 4. Suppose Ann, Bill, Carol and Dick answered from a set of questions numbered 1, 2, 3, 4 as shown. Ann Bill Carol Dick

10 0N1 Mathematics Solutions 5 Predicate Logic 10 Which of the following statements are true? (i) ( x)( y)p(x, y) False (ii) ( x)( y)p(x, y) False; Carol answered no questions. (iii) ( y)( x)p(x, y) False (iv) ( x)( y)p(x, y) True; this person is Dick. (v) ( y)( x)p(x, y) True; every question is answered by someone. (vi) ( x)( y)p(x, y) True

11 0N1 Mathematics Solutions 6 1. Find whether the following statements are true or false where the universal set is Z = {..., 3, 2, 1, 0, 1, 2, 3,...}. (i) ( x)( y)( z)z < x + y True (ii) ( z)( x)z < x 4 True; for example, z = 1. (iii) ( x)( y)y 2 = x False; x = 2 is a counterexample. (iv) ( y)( x)y 2 = x True (v) ( x)( y)x + y = 2 False (vi) ( z)( y)yz = 6. True; for example, z = 1 and y = Let U be a universal set. Let x stands for any elements of U and let A and B stand for any subsets of U. Which of the following are true? (i) ( A)( x)(x A x A ) True. the statement is In plain English, For all sets A and all elements x, x belongs to A or x does not belong to A. This is obviously always true because P P is a tautology, every statement of that form is always true. For example, the statement I live on the Moon or I do not live on the Moon is true. Our particular statement ( A)( x)(x A x A ) is logically equivalent to ( A)( x)((x A) (x A)) (because x A is the same as (x A)). But, as we just discussed, (x A) (x A) is always true, and therefore ( A)( x)((x A) (x A)) is true. (ii) ( A)( x)x A False; A = is a counterexample. (iii) ( A)( B)(A B B A) False (iv) ( A)( B)A B. True; take B = U (or B = A). (v) ( A)( B)(A B ( x)(x B (x A))) True 3. Simplify the following statement. (i) (( x)( y)(p(x, y) ( y) q(y))

12 0N1 Mathematics Solutions 6 Predicate Logic 12 (( x)( y)(p(x, y) ( y) q(y)) ( x) ( y)(p(x, y) ( y) q(y)) ( x)( y) (p(x, y) ( y) q(y)) ( x)( y)( p(x, y) ( y) q(y)) ( x)( y)( p(x, y) ( y) q(y)) ( x)( y)( p(x, y) ( y)q(y)) ( x)( y)(p(x, y) ( y)q(y)) (ii) ( x) ( y)(p(x, y) q(y)) ( x) ( y)(p(x, y) q(y)) ( x)( y) (p(x, y) q(y)) ( x)( y) ( p(x, y) q(y)) ( x)( y)( p(x, y) q(y)) ( x)( y)(p(x, y) q(y)) (iii) ( x)( y)( z)p(x, y, z) ( x)( y)( z) p(x, y, z) (iv) (( x)( y) p(x, y)) ( x)q(x) (( x)( y) p(x, y)) ( x)q(x) (( x)( y) p(x, y)) ( x)q(x) ( ( x)( y) p(x, y)) ( x)q(x) (( x) ( y) p(x, y)) ( x)q(x) (( x)( y) p(x, y)) ( x)q(x) (( x)( y)p(x, y)) ( x)q(x)

13 0N1 Mathematics Solutions 7 1. Express in interval / segment notation 1. A B (i) { x : 1 x 4 }. A B =]0, 4] [1, 4] (ii) { x : 1 < x 4 } 2. A B ]1, 4] A B =]2, 3[ (iii) { x : x > 4 } 3. A C ]4, + [ A C = [ 1, 3[ 2. Given sets 4. A C A = { 2, 0, 1, 2, 3, 4}, B = [ 1, 3], A C =]0, 1] C = ] 2, 1[, 5. B C find 1. A B B C = [ 1, 1] ]2, 4] 6. B C A B = [ 1, 3] { 2, 4} B C = 2. A B A B = {0, 1, 2, 3} 3. A C 4. Find (i) [0, 1] ]1, 2] [0, 2] A C = [ 2, 1] {2, 3, 4} (ii) ], 1] [0, + [. 4. A C [0, 1] A C = {0} 5. B C B C = ] 2, 3] 6. B C 5. We take R for the universal set U. Compute (i) [1, 2] ( ], 1] [2, + [ ). B C = [ 1, 1[ 3. Given intervals / segments A = ]0, 3[, B = ]2, 4], and C = [ 1, 1], { 1, 2 } just two points! (ii) ( ], 1] [2, + [ ). find The interval ]1, 2[.

14 0N1 Mathematics Solutions [A much harder problem not compulsory!] Suppose x is a positive real number. Prove, by contradiction, that x + 1 x 2. Assume, by the way of contradiction, that x + 1 x < 2. and then as (x 1) 2 < 0. But squares cannot be negative a contradiction. Hence our assumption that x + 1 x < 2 Since x is positive, we can multiply the both sides of this inequality by x and get x < 2x, which can be rearranged as x 2 2x + 1 < 0 was false, which means that x + 1 x 2 for all positive real numbers x.

15 0N1 Mathematics Solutions 8 1. Solve the inequalities expressing the answers as segments, intervals, rays, halflines, the whole line or as the empty set. (i) 2x + 1 x + 2 x 1, or x [1, + [. (vi) 2x < x < 3x or x ] 1 3, + [. (vii) x > x (ii) x + 1 < x + 2 x R. Indeed, since 1 < 2, adding an arbitrary x to the both sides, we see that x + 1 < x + 2 is true for all x R. (iii) x + 1 > x + 2 x (that is, no solution). Indeed, if the inequality holds for some real number x then, subtracting x from the both sides of the inequality, we get 1 > 2, an obvious contradiction. (iv) 2x < x x ], 0[. (v) x < 2x x ]0, + [. Indeed, the equation can be rearranged as 0 < 3x, and, after dividing the both sides by 3, as 0 < x. x ], 0[. 2. Solve the inequalities expressing the answers as Boolean combinations (that is unions, intersections, etc.) of segments, intervals, rays, half-lines. (i) x < x 2 x ], 0[ ]1, + [. (ii) x x 3 x [ 1, 0] [1, + [. There are at least two possible approaches to this inequality and at least two ways to solve it. Solution 1. The inequality could be much simplified if we divide both its sides by x. This operation has to be done with care. We have to consider as a separate case the possibility when x = 0 and we cannot divide by x. We have treat separately the cases x > 0 and x < 0 when we can divide by x, but remember that division by x > 0 does not change the direction of inequality, but division by x < 0 changes the direction of inequality.

16 0N1 Mathematics Solutions 8 16 So we have to consider three cases: x = 0, x < 0 and x > 0. Case 0. x = 0 Substituting x = 0 into the inequality x x 3, we see that = 0 is true, hence 0 belongs to the solution set. Case 1. x < 0 When dividing the both sides of the inequality x x 3 by x < 0 we have to change the direction of the inequality, so we get 1 x 2 which has the solution set [ 1, 1] (or 1 x 1). But we have to remember our assumption x < 0 (or x ], 0[ ), so in this case the solutions form the set ], 0[ [ 1, 1] =] 1, 0[. Case 2. x > 0 Division by x does not change the direction of inequality, so we get 1 x 2 which has the solution set ], 1] [1, + [. But we have to remember our assumption x > 0 (or x ]0 + [ ), so in this case the solutions form the set (], 1] [1, + [ ) ]0+ [ = [1, + [. Now we have to assemble the three Cases 0, 1, and 2 together: the solution set of is x x 3 { 0 } ] 1, 0[ [1, + [ = ] 1, 0] [1, + [. Solution 2. This approach is more general and works for many inequalities between polynomial expressions. We rearrange as x x 3 0 x 3 x and factorise the RHS of the inequality: 0 x 3 x = x(x 2 1) = x(x + 1)(x 1). The expression x(x + 1)(x 1) is zero, positive, or negative depending of whether the individual factor x, x+1, and x 1 are zero, positive or negative. They turn into zero when x = 0, x = 1, or x = +1; it is easy to check that, in theses cases, x x 3, so the points x = 0, x = 1, x = +1 belong to the solution set. The three points x = 1, 0, 1 divide the real line R into 4 intervals ], 1[, ] 1, 0[, ]0, 1[, ]1, + [ ; at each of these intervals the quantities x + 1, x, and x 1 are either positive or negative but have their signs unchanged. we can easily make a list. If x ], 1[, all three of x+1, x, and x 1 are negative, so their product is negative: (x + 1)x(x 1) < 0. (just take x = 2). If we move the point x further in the positive direction and go over the boundary point x = 1, x + 1 changes sign, but x and x 1 do not, so the sign of the product (x + 1)x(x 1) changes:

17 0N1 Mathematics Solutions 8 17 if x ] 1, 0[, we have (x + 1)x(x 1) > 0. Similarly, at x = 0 the quantity x changes the sign but x+1 and x 1 do not, and the sign of the product (x + 1)x(x 1) changes again: if x ]0, 1[, we have (x + 1)x(x 1) < 0. Similarly, after another change of signs at x = 1 we have if x ]1, + [, we have (x + 1)x(x 1) > 0. Now the solution set of the inequality x 3 x = (x + 1)x(x 1) 0 is the union (iii) x x 2 { 1 } ] 1, 0[ { 0 } { 1 } ]1, + [ = [ 1, 0] [1, + [. x [ 1, 0]. (i) 2x + 1 x + 2 The negation is 2x + 1 < x + 2, it is equivalent to x < 1 and has the solution set ], 1[. (ii) 2x + 1 > x + 2 The negation is 2x + 1 x + 2, it is equivalent to x 1 and has the solution set ], 1]. (iii) x > x + 1 The negation is x x + 1 and has the solution set [ 1 2, + [. 5. Solve the systems of simultaneous inequalities: 3. Write the negations of the following inequalities. (i) 2x + 1 x + 2 (i) x x 1 0 2x + 1 < x + 2. (ii) 2x + 1 > x + 2 2x + 1 x + 2 (iii) x > x + 1 x x + 1 x [ 1, 1]. Indeed, the system can be rearranged as x 1 x 1, therefore the solution set is { x : 1 x 1 } = [ 1, 1]. 4. Find solution sets for the negations of the following inequalities.

18 0N1 Mathematics Solutions 8 18 (ii) (iii) x x 1 0 The solution set is empty, since the two inequalities can be rearranged as x 1 1 x and contradict each other since they imply and 1 x 1 1 1, an obvious absurdity. x + 1 x + 2 x 0 The first inequality, x + 1 x + 2, holds for all x R, therefore it is only the second inequality that (iv) (iv) matters. Hence the solution is x 0, and the solution set is [0, + [. x + 2 x + 1 x 0 The first inequality, x + 2 x + 1, has no solution, therefore the system of simultaneous inequalities which includes it also has no solution. 2x + 2 x + 1 x 1 The system is equivalent to x 1 x 1 and therefore has solution x = 1. The following three problems are much harder and not compulsory. They are loosely related to the harmonic mean and geometric mean discussed in Lectures 15 16, and well be discussed later. But if the rest of homework is too easy for you, you may wish to have a try now. No solution are provided for time being, 6. In the Manchester Airport, connections between terminals have segments where passengers have to walk on their own, and segments where a travelator, or a moving walkway, is provided. A passenger is in a hurry, but needs to tie his shoe-strings. What is speedier: to stop on the usual pedestrian walkway and tie the shoe-strings, or tie the shoe-strings while standing, instead of walking, on a moving walkway? Hint: Buy a stop-watch and take bus 43 to Manchester Airport.

19 0N1 Mathematics Solutions A paddle-steamer takes five days to travel from St Louis to New Orleans, and seven days for the return journey. Assuming that the rate of flow of the current is constant, calculate how long it takes for a raft to drift from St Louis to New Orleans. Hint: The answer involves essentially the same expression as the formula for geometric mean but with a twist. 8. Two persons set out at sunrise and each walked with a constant speed. One went from A to B, and the other went from B to A. They met at noon, and continuing without a stop, they arrived respectively at B at 4pm and at A at 9pm. At what time was sunrise on that day? Hint: Can you imagine that the geometric mean appears in the answer?

20 0N1 Mathematics Solutions 9 1. (Based on Exercise 4.3 of Schaum s Intermediate Algebra) Graph the following lines using the intercept method. (a) x y = 2 (b) x + y = 2 (c) 3x + 4y = 12 (d) 2x + 4y = 8 (e) 2y 3x = 6 (f) 2x + 3y = 4 in two groups that lie on opposite sides of the line. B is one side, A, C, D, E are on another. Relative position of a point x, y with respect to a line 2x + 3y = 5 depends on the sign +, 0 of the value of the linear function 2x + 3y 5 at this point. A simple calculation shows that f(x, y) is positive at B and negative at A, C, D, E. 3. Graph the following linear inequalities in two variables x and y. (a) x 1 3 (b) 2x + y < 2 (c) x 3y > 3 (d) y 2 See Figure 2 at page Graph the following systems of simultaneous linear inequalities in variables x and y. (a) x 1, y 1 (b) x 1, y 1, x + y 3 (c) x 1, y 1, x + y 2 (d) x 1, y 1, x + y < 2 See Figure 3 at page 23. See Figure 1 at page Solve inequalities involving the absolute 2. Given a line 2x + 3y = 5, separate the value { points x if x 0 x = x if x < 0 A( 2, 1), B(1, 2), C(1, 2), D(1, 0), E(100, 1001) and express the answers in the interval form. (a) 2x < 8 x ] 4, 4[ (b) 2x < 8 x ] 4, 4[ (c) 2x > 8 x R (d) x + 1 > 1 x ], 2[ ]0, + [ (e) x + 1 > x x R (f) x 1 x x ], 1 2 ]

21 0N1 Mathematics Solutions 9 21 Figure 1: Graphical solutions to Question 9.1.

22 0N1 Mathematics Solutions 9 22 Figure 2: Graphical solutions to Question 9.3.

23 0N1 Mathematics Solutions 9 23 Figure 3: Graphical solutions to Question 9.4.

24 0N1 Mathematics Exercises 10 Solutions Solve the following quadratic inequalities (a) x 2 + 6x + 9 < 0 No solution. (b) x 2 + 4x x = 2. (c) x 2 4x + 3 < 0 x ]1, 3[. (d) x 2 + 3x x ], 2] [ 1, + [. 2. The following inequalities can be rearranged into quadratic or linear inequalities. Solve them. Warning: if you multiply /divide both part of an inequality by a number, take into account the sign of this number! (a) x(x + 2) > 3 x ], 3[ ]1, + [. After opening the brackets and rearrangement, we have an equivalent inequality x 2 + 2x 3 > 0. After completing the square, we have x 2 + 2x 3 = x 2 + 2x = (x + 1) 2 4 = (x + 1) = [(x + 1) + 2] [(x + 1) 2] = (x + 3)(x 1). Hence our inequality is equivalent to (x + 3)(x 1) > 0. which has solution x ], 3[ ]1, + [. (b) x + 4 x 4 x > 0, or x ]0, + [. We need to multiply the both part of the inequality by x. When x < 0, this will lead to change in the direction of the inequality. But for x < 0 4 < 0, too, so in that case x x + 4 x < 0 and x < cannot be a solution of the original inequality. We also have to exclude the case x = 0 since division by zero is not permitted. So if x is a solution then x > 0 and we can multiply the both parts of the inequality by x without changing the direction of the inequality, obtaining x x 2 4x (x 2) 2 0 But the last inequality holds for all real x. Hence our solutions are bound only by restriction made in the process of rearrangements, x > 0, and therefore the solution set is ]0, + [ (c) 1 x > x Since the expression on LHS involves division by x, the value x = 0 should be excluded from the solution set. Case 1: x < 0. Multiplying by x, we change the direction of the inequality and get 1 < x 2 which is equivalent to x 2 1 > 0 or, which is the same (x + 1)(x 1) > 0

25 0N1 Mathematics Exercises 10 Solutions 25 Therefore x + 1 and x 1 have to be of the same sign. Since we assume that x < 0, x 1 < 0 and x + 1 < 0. But x 1 < x + 1, therefore x 1 < 0 x + 1 < 0 is the same as x + 1 < 0 which is the same as x < 1. Hence in Case 1 the solution is x ], 1[. Case 2: x > 0. Multiplying by x, we get 1 > x 2 which is equivalent to x 2 1 < 0 or, which is the same (x + 1)(x 1) < 0 Therefore x + 1 and x 1 have to be of different signs, which is possible only if 1 < x < 1. Since we assume that x > 0, this means that 0 < x < 1 x ]0, 1[. Combining these two cases, we see that the total of the solution set is x ], 1[ ]0, 1[. (e) x 2 x 4 Warning: Previously the solution was incorrect, the solution below is correct now. x [ 1, 1]. Indeed, x = 0 belongs to the solution set. Let us look for other solutions: if x 0, we can divide the both parts of the inequality by the positive number x 2 without changing the direction of the inequality, and get x 2 1. We solved this inequality before, its solution set is [ 1, 1]; it contains 0, so we have not lost solutions when divided by x 2. (f) x + 1 x 1 x ], 0[. 3. Determine which of the following points A((3, 2), B(1, 2), C((1, 1) lie inside of the triangle formed by the lines 2x+y = 1, 2y x = 2, 3x+y = 6. B(1, 2). 4. Sketch the solution sets of the following systems of simultaneous inequalities in variables x and y. (d) x 2 x 3 x [0] [1, + [. Obviously, x = 0 is a solution. If x 0, we can divide the both parts of the inequality by the positive number x 2 and get 1 < x, that is, x [1, + [. (a) 1 x 2, 1 y 1 (b) 1 x + y 2 (c) x y 2x (d) x 2 y 1 (e) 0 y x 2 See Figure 4.

26 0N1 Mathematics Exercises 10 Solutions 26 Figure 4: Graphical solutions to Question 10.4.

27 0N1 Mathematics Exercises 11 Solutions 27 Some of these problems were discussed in the lectures, but still worth looking. 1. Prove, by induction on n, that n < 2 n for every positive integer n. Basis of induction. 1 < 2 = 2 1, therefore the basis of induction holds. Inductive step. Assume that the statement is true for n = k, k < 2 k. Adding 1 to the both sides of this inequality, we get k + 1 < 2 k + 1 < 2 k + 2 k = 2 k Prove, by induction on n, that (2n 1) = n 2 for every positive integer n. Was explained in a lecture. 3. Prove, by induction on n, that n = 1 n(n + 1) 2 for every positive integer n. Solution. Let p n be the statement n = 1 n(n + 1). 2 Then p 1 is the statement This is clearly true. 1 = Suppose p n is true for n = k, i.e. Then k = 1 k(k + 1) k + (k + 1) = ( k) + (k + 1) = 1 k(k + 1) + (k + 1) 2 = 1 2 k(k + 1) + 1 2(k + 1) 2 = 1 (k + 1)(k + 2). 2 Therefore k + (k + 1) = 1 (k + 1)((k + 1) + 1) Prove, by induction on n, that if q 1 then 1 + q + q q n 1 + q n = 1 qn+1 1 q for every positive integer n. Was explained in a lecture. 4. Let x be any real number 1. Prove by induction that (1 + x) n 1 + nx, for all n 1.

28 0N1 Mathematics Exercises 11 Solutions 28 Basis of induction. When n = 1, is true. (1 + x) 1 = 1 + x x Inductive step. Assume that the statement is true for n = k, Then (1 + x) k 1 + kx. (1 + x) k+1 = (1 + x) k (1 + x) (1 + kx) (1 + x) = 1 + x + kx + kx 2 = 1 = (k + 1)x + kx (k + 1)x. 5. Recall that, for a positive integer n, n! = (n 1) n is the product of all integers from 1 to n, so that 1! = 1, 2! = 1 2 = 2,, 3! = 2 3 = 6, etc. Prove by induction that, for all integers n 4, n! > 2 n. Basis of induction. When k = 4, 4! = = 24 > 16 = 2 4. Inductive step. If k! > 2 k, then multiplying both sides of inequality by k 1, we get k! (k +1) > 2 k (k +1) > 2 k 2 = 2 k Prove by induction on n that for each n 3, the angles of any n-gon in the plane have the sum equal to (n 2)π radians. Hint. Check that for a triangle (n = 3), then cut from an n-gone a triangle. The following two problems are harder and not compulsory. 7. Prove that, for all integers n > 10, n 3 < 2 n. Let p k be the statement k 3 < 2 k Basis of induction. Please notice that the inequality is false if n 10, so the induction starts at the first true statement p 11, for k = 11, 11 3 = 1331 < 2048 = 2 11 ; that is true, and therefore p 11, the basis of induction, is true. Inductive step. Assume that the k 11 and that the statement p k, k 3 < 2 k, is true. we want to prove that is, that is a consequence of for every k > 10. p k p k+1, (k + 1) 3 < 2 k+1 k 3 < 2 k, Now that p k is true, that k > 10, and compute: (k + 1) 3 = k 3 (k + 1)3 k ( 3 k + 1 = k 3 k ) 3

29 0N1 Mathematics Exercises 11 Solutions 29 ( = k ) 3 k ( < k ) 3 10 (we used here that k > 10) = k 3 (1.1) 3 = k < k 3 2 < 2 k 2 (by p k k 3 < 2 k ) = 2 k+1. This proves p k+1, hence proves the inductive step p k p k+1 for k > 10. Hence all statements p k for k > 10 are true. 8. Let x be a real number such that x + 1 x is an integer. Prove by induction that then x n + 1 x n is an integer for all positive integers n. This problem is much harder than the previous problems. Denote z n = x n + 1 x n Basis of induction. The case n = 1 is given as the assumption of the problem. It is also useful to check the statement in the case n = 0: z z 0 = = 2 is an integer. Inductive step. Assume that z l = x l + 1 x l is an integer for all l k. We want to prove that z k+1 is also an integer. Multiplying z k by z 1, we see that z k z 1 = (x k + 1x ) k ( x + 1 ) x is an integer. We can rearrange the expression on the RHS further: z k z 1 = (x k + 1x ) k ( x + 1 ) x = x k x + x k 1 x + 1 x x + 1 k x 1 k x = x k+1 + x k x + 1 k 1 x k+1 = So we get ( x k x k+1 = z k+1 + z k 1. which means that ) + z k z 1 = z k+1 + z k 1, z k+1 = z k z 1 z k 1. ( x k x k 1 Since z k 1 is an integer by the inductive assumption, we see that z k+1 is an integer. )

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information

Answer Key for California State Standards: Algebra I

Answer Key for California State Standards: Algebra I Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Predicate Logic. Example: All men are mortal. Socrates is a man. Socrates is mortal.

Predicate Logic. Example: All men are mortal. Socrates is a man. Socrates is mortal. Predicate Logic Example: All men are mortal. Socrates is a man. Socrates is mortal. Note: We need logic laws that work for statements involving quantities like some and all. In English, the predicate is

More information

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives 6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

More information

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality. 8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

More information

Mathematical Induction. Mary Barnes Sue Gordon

Mathematical Induction. Mary Barnes Sue Gordon Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by

More information

Year 9 set 1 Mathematics notes, to accompany the 9H book.

Year 9 set 1 Mathematics notes, to accompany the 9H book. Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H

More information

LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL

LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables

More information

Chapter 9. Systems of Linear Equations

Chapter 9. Systems of Linear Equations Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

Algebra I. In this technological age, mathematics is more important than ever. When students

Algebra I. In this technological age, mathematics is more important than ever. When students In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,

More information

Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

Method To Solve Linear, Polynomial, or Absolute Value Inequalities: Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

More information

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,

More information

SECTION 10-2 Mathematical Induction

SECTION 10-2 Mathematical Induction 73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

More information

MATH 10034 Fundamental Mathematics IV

MATH 10034 Fundamental Mathematics IV MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

More information

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook. Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

More information

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned

More information

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

More information

VISUAL ALGEBRA FOR COLLEGE STUDENTS. Laurie J. Burton Western Oregon University

VISUAL ALGEBRA FOR COLLEGE STUDENTS. Laurie J. Burton Western Oregon University VISUAL ALGEBRA FOR COLLEGE STUDENTS Laurie J. Burton Western Oregon University VISUAL ALGEBRA FOR COLLEGE STUDENTS TABLE OF CONTENTS Welcome and Introduction 1 Chapter 1: INTEGERS AND INTEGER OPERATIONS

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

The Point-Slope Form

The Point-Slope Form 7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

More information

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce

More information

Mathematical Induction

Mathematical Induction Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

More information

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions. Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

More information

parent ROADMAP MATHEMATICS SUPPORTING YOUR CHILD IN HIGH SCHOOL

parent ROADMAP MATHEMATICS SUPPORTING YOUR CHILD IN HIGH SCHOOL parent ROADMAP MATHEMATICS SUPPORTING YOUR CHILD IN HIGH SCHOOL HS America s schools are working to provide higher quality instruction than ever before. The way we taught students in the past simply does

More information

Mathematics Review for MS Finance Students

Mathematics Review for MS Finance Students Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

More information

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

More information

MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

More information

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

More information

SOLVING TRIGONOMETRIC EQUATIONS

SOLVING TRIGONOMETRIC EQUATIONS Mathematics Revision Guides Solving Trigonometric Equations Page 1 of 17 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C2 Edexcel: C2 OCR: C2 OCR MEI: C2 SOLVING TRIGONOMETRIC

More information

LAKE ELSINORE UNIFIED SCHOOL DISTRICT

LAKE ELSINORE UNIFIED SCHOOL DISTRICT LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:

More information

Math 115 Spring 2011 Written Homework 5 Solutions

Math 115 Spring 2011 Written Homework 5 Solutions . Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence

More information

Factoring Trinomials: The ac Method

Factoring Trinomials: The ac Method 6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For

More information

Introduction. Appendix D Mathematical Induction D1

Introduction. Appendix D Mathematical Induction D1 Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to

More information

Examples of Tasks from CCSS Edition Course 3, Unit 5

Examples of Tasks from CCSS Edition Course 3, Unit 5 Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can

More information

Understanding Basic Calculus

Understanding Basic Calculus Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

More information

3.1 Solving Systems Using Tables and Graphs

3.1 Solving Systems Using Tables and Graphs Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

More information

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers. Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

Equations, Inequalities & Partial Fractions

Equations, Inequalities & Partial Fractions Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

More information

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of

More information

2.1. Inductive Reasoning EXAMPLE A

2.1. Inductive Reasoning EXAMPLE A CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers

More information

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 3 EQUATIONS This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

Section 1. Inequalities -5-4 -3-2 -1 0 1 2 3 4 5

Section 1. Inequalities -5-4 -3-2 -1 0 1 2 3 4 5 Worksheet 2.4 Introduction to Inequalities Section 1 Inequalities The sign < stands for less than. It was introduced so that we could write in shorthand things like 3 is less than 5. This becomes 3 < 5.

More information

UNCORRECTED PAGE PROOFS

UNCORRECTED PAGE PROOFS number and and algebra TopIC 17 Polynomials 17.1 Overview Why learn this? Just as number is learned in stages, so too are graphs. You have been building your knowledge of graphs and functions over time.

More information

MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

More information

LEARNING OBJECTIVES FOR THIS CHAPTER

LEARNING OBJECTIVES FOR THIS CHAPTER CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. Finite-Dimensional

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

More information

Vocabulary Words and Definitions for Algebra

Vocabulary Words and Definitions for Algebra Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

More information

LINEAR EQUATIONS IN TWO VARIABLES

LINEAR EQUATIONS IN TWO VARIABLES 66 MATHEMATICS CHAPTER 4 LINEAR EQUATIONS IN TWO VARIABLES The principal use of the Analytic Art is to bring Mathematical Problems to Equations and to exhibit those Equations in the most simple terms that

More information

The degree of a polynomial function is equal to the highest exponent found on the independent variables.

The degree of a polynomial function is equal to the highest exponent found on the independent variables. DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

More information

MATH 21. College Algebra 1 Lecture Notes

MATH 21. College Algebra 1 Lecture Notes MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a

More information

Cubes and Cube Roots

Cubes and Cube Roots CUBES AND CUBE ROOTS 109 Cubes and Cube Roots CHAPTER 7 7.1 Introduction This is a story about one of India s great mathematical geniuses, S. Ramanujan. Once another famous mathematician Prof. G.H. Hardy

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

WRITING PROOFS. Christopher Heil Georgia Institute of Technology

WRITING PROOFS. Christopher Heil Georgia Institute of Technology WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this

More information

Determinants can be used to solve a linear system of equations using Cramer s Rule.

Determinants can be used to solve a linear system of equations using Cramer s Rule. 2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution

More information

FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project

FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project 9 10 YEARS The Improving Mathematics Education in Schools (TIMES) Project FACTORISATION NUMBER AND ALGEBRA Module 33 A guide for teachers - Years 9 10 June 2011 Factorisation (Number and Algebra : Module

More information

Sample Induction Proofs

Sample Induction Proofs Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given

More information

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system 1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

Practice Book. Practice. Practice Book

Practice Book. Practice. Practice Book Grade 10 Grade 10 Grade 10 Grade 10 Grade 10 Grade 10 Grade 10 Exam CAPS Grade 10 MATHEMATICS PRACTICE TEST ONE Marks: 50 1. Fred reads at 300 words per minute. The book he is reading has an average of

More information

Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I. Ronald van Luijk, 2012 Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

More information

Basic Proof Techniques

Basic Proof Techniques Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document

More information

Core Maths C1. Revision Notes

Core Maths C1. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

More information

Solving Rational Equations

Solving Rational Equations Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

More information

QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE

QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE MODULE - 1 Quadratic Equations 6 QUADRATIC EQUATIONS In this lesson, you will study aout quadratic equations. You will learn to identify quadratic equations from a collection of given equations and write

More information

Formal Languages and Automata Theory - Regular Expressions and Finite Automata -

Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March

More information

1.7 Graphs of Functions

1.7 Graphs of Functions 64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate was matched with only one y-coordinate. We spent most

More information

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

More information

Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only

Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: A-APR.3: Identify zeros of polynomials

More information

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

More information

INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

More information

Logo Symmetry Learning Task. Unit 5

Logo Symmetry Learning Task. Unit 5 Logo Symmetry Learning Task Unit 5 Course Mathematics I: Algebra, Geometry, Statistics Overview The Logo Symmetry Learning Task explores graph symmetry and odd and even functions. Students are asked to

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate

More information

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

This is a square root. The number under the radical is 9. (An asterisk * means multiply.) Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

More information

1.3 Polynomials and Factoring

1.3 Polynomials and Factoring 1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

More information

2013 MBA Jump Start Program

2013 MBA Jump Start Program 2013 MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Algebra Review Calculus Permutations and Combinations [Online Appendix: Basic Mathematical Concepts] 2 1 Equation of

More information

MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.

MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers. MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P

More information

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

More information

Factoring Quadratic Expressions

Factoring Quadratic Expressions Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

More information

SAT Subject Math Level 2 Facts & Formulas

SAT Subject Math Level 2 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information