# Introduction. Appendix D Mathematical Induction D1

Size: px
Start display at page:

Transcription

1 Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to find a linear or quadratic model. Introduction In this section, you will study a form of mathematical proof called mathematical induction. It is important that you clearly see the logical need for it, so take a look at the problem below. S S 3 S S S Judging from the pattern formed by these first five sums, it appears that the sum of the first n odd integers is S n n n. Although this particular formula is valid, it is important for you to see that recognizing a pattern and then simply jumping to the conclusion that the pattern must be true for all values of n is not a logically valid method of proof. There are many examples in which a pattern appears to be developing for small values of n and then at some point the pattern fails. One of the most famous cases of this was the conjecture by the French mathematician Pierre de Fermat (0 5), who speculated that all numbers of the form F n n, are prime. For n 0,,, 3, and, the conjecture is true. F 0 3, F 5, F 7, F 3 57, F 5,537 The size of the next Fermat number F 5,9,97,97 is so great that it was difficult for Fermat to determine whether it was prime or not. However, another well-known mathematician, Leonhard Euler ( ), later found the factorization F 5,9,97,97,700,7 n 0,,,... which proved that F 5 is not prime and therefore Fermat s conjecture was false. Just because a rule, pattern, or formula seems to work for several values of n, you cannot simply decide that it is valid for all values of n without going through a legitimate proof. Mathematical induction is one method of proof.

2 D Appendix D Mathematical Induction The Principle of Mathematical Induction Let P n be a statement involving the positive integer n. If. P is true, and. the truth of P k implies the truth of P k for every positive integer k, then P n must be true for all positive integers n. It is important to recognize that both parts of the Principle of Mathematical Induction are necessary. To apply the Principle of Mathematical Induction, you need to be able to determine the statement for a given statement P k. Example Using to Find Find for each statement. a. P k : S k k k b. P k : S k k 3 k 3 c. P k : 3 k k SOLUTION a. Replace k by k. b. c. P k P k : S k k k k k P k : 3 k k 3 k k 3 P k P k P k Simplify. P k : S k k ) ] 3 k k 3 k Checkpoint Find for P k : S k kk. P k FIGURE D. A well-known illustration used to explain why the Principle of Mathematical Induction works is the unending line of dominoes shown in Figure D.. If the line actually contains infinitely many dominoes, then it is clear that you could not knock the entire line down by knocking down only one domino at a time. However, suppose it were true that each domino would knock down the next one as it fell. Then you could knock them all down simply by pushing the first one and starting a chain reaction. Mathematical induction works in the same way. If the truth of P k implies the truth of P k and if P is true, then the chain reaction proceeds as follows: P implies P, P implies P 3, implies P, and so on. P 3

3 Using Mathematical Induction Appendix D Mathematical Induction D3 Example Using Mathematical Induction Use mathematical induction to prove the formula STUDY TIP When using mathematical induction to prove a summation formula (such as the one in Example ), it is helpful to think of S k as S k S k a k, where a k is the k th term of the original sum. S n n n for all integers n. SOLUTION Mathematical induction consists of two distinct parts. First, you must show that the formula is true when n.. When n, the formula is valid, because S. The second part of mathematical induction has two steps. The first step is to assume that the formula is valid for some integer k. The second step is to use this assumption to prove that the formula is valid for the next integer, k.. Assuming that the formula S k k k is true, you must show that the formula S k k is true. S k k k k k S k k Group terms to form S k. k k Replace S k by k. k Factor. Combining the results of parts () and (), you can conclude by mathematical induction that the formula is valid for all integers n. Checkpoint Use mathematical induction to prove the formula S n n 3 for all integers n. nn 7 It occasionally happens that a statement involving natural numbers is not true for the first k positive integers but is true for all values of n k. In these instances, you use a slight variation of the Principle of Mathematical Induction in which you verify P k rather than P. This variation is called the Extended Principle of Mathematical Induction. To see the validity of this variation, note from Figure D. that all but the first k dominoes can be knocked down by knocking over the kth domino. This suggests that you can prove a statement P n to be true for n k by showing that P k is true and that P k implies P k. In Exercises of this section, you are asked to apply this extension of mathematical induction.

4 D Appendix D Mathematical Induction Example 3 Using Mathematical Induction Use mathematical induction to prove the formula S n 3... n for all integers n. SOLUTION. When n, the formula is valid, because. Assuming that nn n S you must show that S k To do this, write the following. S k S k a k kk k k 3. S k 3... k k k k kk k k k kk k k k 7k k k k 3 kk k 3... k k By assumption Add expressions. Factor out k. Simplify. Completely factor. Combining the results of parts () and (), you can conclude by mathematical induction that the formula is valid for all integers n. (k k k 3 Checkpoint 3 Use mathematical induction to prove the formula S n n for all integers n. 3nn When proving a formula by mathematical induction, the only statement that you need to verify is P. As a check, however, it is a good idea to try verifying some of the other statements. For instance, in Example 3, try verifying and S 3. S

5 Appendix D Mathematical Induction D5 Sums of Powers of Integers The formula in Example 3 is one of a collection of useful summation formulas. This and other formulas dealing with the sums of various powers of the first n positive integers are shown. Sums of Powers of Integers n 3... n nn nn n n 3 n n 3... n nn n 3n 3n n 5 n n n n Each of these formulas for sums can be proven by mathematical induction. Example Finding a Sum of Powers of Integers Find 7 n n SOLUTION Using the formula for the sum of the cubes of the first n positive integers, you obtain the following. 7 n n 9 78 Check this sum by adding the numbers, as shown below Checkpoint 7 7 Find 0 n n

6 D Appendix D Mathematical Induction Example 5 Proving an Inequality by Mathematical Induction Prove that n < n for all positive integers n. SOLUTION. For n and n, the formula is true, because < and <.. Assuming that k < k you need to show that k < k. For n k, you have k k > k k. By assumption Because k k k > k for all k >, it follows that k > k > k or k < k. Combining the results of parts () and (), you can conclude by mathematical induction that n < n for all positive integers n. Checkpoint 5 Prove that n! > n for all integers n > 3. Pattern Recognition Although choosing a formula on the basis of a few observations does not guarantee the validity of the formula, pattern recognition is important. Once you have a pattern that you think works, you can try using mathematical induction to prove your formula. Finding a Formula for the nth Term of a Sequence To find a formula for the nth term of a sequence, consider these guidelines.. Calculate the first several terms of the sequence. It is often a good idea to write the terms in both simplified and factored forms.. Try to find a recognizable pattern for the terms and write a formula for the nth term of the sequence. This is your hypothesis or conjecture. You might try computing one or two more terms in the sequence to test your hypothesis. 3. Use mathematical induction to prove your hypothesis.

7 Appendix D Mathematical Induction D7 Example Finding a Formula for a Finite Sum Find a formula for the finite sum SOLUTION Begin by writing out the first few sums. S S 3 3 From this sequence, it appears that the formula for the kth sum is k k. To prove the validity of this hypothesis, use mathematical induction, as shown below. Note that you have already verified the formula for n, so you can begin by assuming that the formula is valid for n k and trying to show that it is valid for n k. S k k k k k k k So, the hypothesis is valid. Checkpoint k k k k kk k k k k k nn S S S k By assumption Add fractions. Distributive Property Factor numerator. Simplify. kk kk k k Find a formula for the finite sum n

8 D8 Appendix D Mathematical Induction Finite Differences The first differences of a sequence are found by subtracting consecutive terms. The second differences are found by subtracting consecutive first differences. The first and second differences of the sequence 3, 5, 8,, 7, 3,... are as shown. n: a n : First differences: Second differences: For this sequence, the second differences are all the same nonzero number. When this happens, the sequence has a perfect quadratic model. When the first differences are all the same, the sequence has a linear model. That is, it is arithmetic Example 7 Finding an Appropriate Model Decide whether the sequence,,, 8, 78,,... can be represented perfectly by a linear or a quadratic model. If so, find the model. SOLUTION Find the first and second differences of the sequence. n: 3 5 a n : 8 78 First differences: Second differences: Because the second differences are all the same, the sequence can be represented perfectly by a quadratic model of the form a n an bn c. By substituting,, and 3 for n, you can obtain a system of three linear equations in three variables. a a b c a a b c a 3 a3 b3 c Substitute for n. Substitute for n. Substitute 3 for n. You now have a system of three equations in a, b, and c. a b c Equation a b c Equation 9a 3b c Equation 3 Using the techniques discussed in Chapter 5, you can find that the solution of this system is a, b, and c 8. So, the quadratic model is a n n n 8. Checkpoint 7 Decide whether the sequence 3, 8, 7, 30, 7, 8,... can be represented perfectly by a linear or a quadratic model. If so, find the model.

9 Appendix D Mathematical Induction D9 Example 8 Finding an Appropriate Model Decide whether the sequence, 9,, 3, 30, 37,... can be represented perfectly by a linear or a quadratic model. If so, find the model. SOLUTION Find the first differences of the sequence. n: 3 5 a n : First differences: Because, the first differences are all the same, the sequence can be represented perfectly by a linear model of the form a n an b. By substituting and for n, you can obtain a system of two linear equations in two variables. a a b a a b 9 Substitute for n. Substitute for n. You now have a system of two equations in a and b. a b Equation a b 9 Equation Using the techniques discussed in Chapter 5, you can find that the solution of this system is a 7 and b 5. So, the linear model is a n 7n 5. Checkpoint 8 Decide whether the sequence, 0,, 8,,,... can be represented perfectly by a linear or a quadratic model. If so, find the model. SUMMARIZE. State the principle of mathematical induction (page D). For examples of using the principle of mathematical induction to prove a formula, see Examples and 3.. Make a list of the formulas for the sums of powers of integers (page D5). For an example that uses a formula to find a sum of powers of integers, see Example. 3. Describe the guidelines for finding a formula for the nth term of a sequence (page D). For an example of finding a formula for the nth term of a sequence, see Example.. Describe how to use the finite differences of a sequence to determine whether the sequence can be represented perfectly by a linear or a quadratic model (page D8). For examples of using finite differences to find models, see Examples 7 and 8.

10 D0 Appendix D Mathematical Induction SKILLS WARM UP D The following warm-up exercises involve skills that were covered in earlier sections. You will use these skills in the exercise set for this section. In Exercises, find the sum k 3 5 j j. k k3 j In Exercises 5 0, simplify the expression. k 3 3k k 3 k 3 8. k k k k 50 k i i Exercises D Using to find In Exercises, find for the given P k. See Example P k. P k kk k k 3 3. k P. P k k k k k Using Mathematical Induction In Exercises 5 8, use mathematical induction to prove the formula for every positive integer n. See Examples and n nn n nn P k n ii i P k n n n 3 n nn n n 3 n n n n n i 5 n n n n i n i nn n 3n 3n i 30 nn n 3 nn P k n 3 n 5n n n 3n n n 8. Finding a Sum of Powers of Integers In Exercises 9 8, find the sum using the formulas for the sums of powers of integers. See Example. 9. n n n. 7. i 8i 3 8. Checking Solutions In Exercises 9 3, determine whether the inequality is true for n,, 3, and. 9. n < n n n 3. n n 3 3. n 3 < n n 33. n n 3. < n! n n n Proving an Inequality by Mathematical Induction In Exercises 35 38, prove the inequality for the indicated integer values of n. See Example n! > n, n n i 0 n n n 5 n n n i i i 3... n > n, x y n y n, n n 50 n n 0 n 3 n 8 n 5 n 0 n 3 n n 5 j 3 j j 3 n > n, 38. < x n and 0 < x < y n 7 n

11 Appendix D Mathematical Induction D Finding a Formula for a Finite Sum In Exercises 39, find a formula for the sum of the first n terms of the sequence. See Example. 39., 5, 9, 3, ,, 9,,...., 9 0, 8 00, ,.... 3, 9, 7, 8 8,... 3.,,, 0,..., nn,.... 3, 3, 5, 5,..., n n,... Proving Properties In Exercises 5 5, use mathematical induction to prove the given property for all positive integers n. 5. ab n a n b n. 7. If x then x x x. 0,. x. 0,..., x n 0, 3 x n x x x 3... x n. 8. If x > 0, then lnx x x. x.. > 0,..., x n > 0, 3 x n ln x ln x ln x 3... ln xn. 9. Generalized Distributive Law: xy y... y n xy xy... xy n 50. a bi n and a bi n are complex conjugates for all n. 5. A factor of n 3 3n n is A factor of n 3 n is Writing In your own words, explain what is meant by a proof by mathematical induction. 5. Think About It What conclusion can be drawn from the given information about the sequence of statements P n? (a) P 3 is true and P k implies P k. (b) P, P, P 3,..., P 50 are all true. (c) P, P, and P 3 are all true, but the truth of P k does not imply the truth of P k. (d) P is true and implies P k. P k Finding an Appropriate Model In Exercises 55 0, decide whether the sequence can be represented perfectly by a linear or a quadratic model. If so, find the model. See Examples 7 and , 3,, 9, 37, 5,... 5., 9,, 3, 30, 37, , 5, 30, 5, 78,, ,,, 30, 8, 70, ,,, 3,, 33,... 0., 8, 3,, 7, 0,... a b n an b n a 0 0 Using Finite Differences In Exercises 70, write the first five terms of the sequence, where a f. Then calculate the first and second differences of the sequence. Does the sequence have either a linear model or a quadratic model? If so, find the model.. f 0. f a n a n 3 a n n a n 3. f 3. f 3 a n a n n a n a n 5. a 0 0. a 0 a n a n n a n a n 7. f 8. f 0 a n a n a n a n n 9. a a n a n n a n a n Finding a Quadratic Model In Exercises 7 7, find a quadratic model for the sequence with the indicated terms. 7. a 0 3, a 3, a 5 7. a 0 7, a, a a 0, a 8, a a 0 3, a 5, a Think About It When the second differences of a sequence are all zero, can the sequence be represented perfectly by a linear model? Explain. 7. HOW DO YOU SEE IT? The table shows the distance d s (in feet) required to stop a truck from the moment the brakes are applied at a speed of s miles-per-hour on dry, level pavement. The first and second differences of the sequence of terms d s are shown below the table. (Source: Virginia Transportation Research Council) Speed, s Distance, d s First differences: Second differences: (a) Will a linear or a quadratic model fit the data best? Explain. (b) When you drive a truck, do you assume an equal risk for each 0 mile-per-hour increase in speed? Explain your reasoning.

### SECTION 10-2 Mathematical Induction

73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

### Math 115 Spring 2011 Written Homework 5 Solutions

. Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence

### Basic Proof Techniques

Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document

### MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.

MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P

### Mathematical Induction

Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,

### k, then n = p2α 1 1 pα k

Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

### Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

### Math 55: Discrete Mathematics

Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What

### 1.2. Successive Differences

1. An Application of Inductive Reasoning: Number Patterns In the previous section we introduced inductive reasoning, and we showed how it can be applied in predicting what comes next in a list of numbers

### HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

### 3. Mathematical Induction

3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

### CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

### CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

### IB Maths SL Sequence and Series Practice Problems Mr. W Name

IB Maths SL Sequence and Series Practice Problems Mr. W Name Remember to show all necessary reasoning! Separate paper is probably best. 3b 3d is optional! 1. In an arithmetic sequence, u 1 = and u 3 =

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

### Handout #1: Mathematical Reasoning

Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or

### Solutions for Practice problems on proofs

Solutions for Practice problems on proofs Definition: (even) An integer n Z is even if and only if n = 2m for some number m Z. Definition: (odd) An integer n Z is odd if and only if n = 2m + 1 for some

### Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

### 9.2 Summation Notation

9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

### Mathematical Induction. Lecture 10-11

Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

### Homework until Test #2

MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

### Every Positive Integer is the Sum of Four Squares! (and other exciting problems)

Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer

### Sample Induction Proofs

Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given

### 4/1/2017. PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY

PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY 1 Oh the things you should learn How to recognize and write arithmetic sequences

Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of

### Primes in Sequences. Lee 1. By: Jae Young Lee. Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov

Lee 1 Primes in Sequences By: Jae Young Lee Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov Lee 2 Jae Young Lee MA341 Number Theory PRIMES IN SEQUENCES

### Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

### The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

### Core Maths C1. Revision Notes

Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

### APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS

APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS Now that we are starting to feel comfortable with the factoring process, the question becomes what do we use factoring to do? There are a variety of classic

### 8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### Trigonometric Functions and Equations

Contents Trigonometric Functions and Equations Lesson 1 Reasoning with Trigonometric Functions Investigations 1 Proving Trigonometric Identities... 271 2 Sum and Difference Identities... 276 3 Extending

### Algebra I. In this technological age, mathematics is more important than ever. When students

In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,

### A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents

Appendix A. Exponents and Radicals A11 A. Exponents and Radicals What you should learn Use properties of exponents. Use scientific notation to represent real numbers. Use properties of radicals. Simplify

### 1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

### Theorem3.1.1 Thedivisionalgorithm;theorem2.2.1insection2.2 If m, n Z and n is a positive

Chapter 3 Number Theory 159 3.1 Prime Numbers Prime numbers serve as the basic building blocs in the multiplicative structure of the integers. As you may recall, an integer n greater than one is prime

### Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)

Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.

### SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me

SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines

### Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents

### 2 When is a 2-Digit Number the Sum of the Squares of its Digits?

When Does a Number Equal the Sum of the Squares or Cubes of its Digits? An Exposition and a Call for a More elegant Proof 1 Introduction We will look at theorems of the following form: by William Gasarch

### LAKE ELSINORE UNIFIED SCHOOL DISTRICT

LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:

### WRITING PROOFS. Christopher Heil Georgia Institute of Technology

WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this

### Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

### Notes on Determinant

ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

### Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes)

NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 8 Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain

### a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

### Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

### This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

### Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

### Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014

Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014 3.4: 1. If m is any integer, then m(m + 1) = m 2 + m is the product of m and its successor. That it to say, m 2 + m is the

### Solving Rational Equations

Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

### 3. INNER PRODUCT SPACES

. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

### Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm

MTHSC 412 Section 2.4 Prime Factors and Greatest Common Divisor Greatest Common Divisor Definition Suppose that a, b Z. Then we say that d Z is a greatest common divisor (gcd) of a and b if the following

### Mathematical Induction. Mary Barnes Sue Gordon

Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by

### ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,

### Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

### CS 103X: Discrete Structures Homework Assignment 3 Solutions

CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering

### 10.2 Series and Convergence

10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### Page 331, 38.4 Suppose a is a positive integer and p is a prime. Prove that p a if and only if the prime factorization of a contains p.

Page 331, 38.2 Assignment #11 Solutions Factor the following positive integers into primes. a. 25 = 5 2. b. 4200 = 2 3 3 5 2 7. c. 10 10 = 2 10 5 10. d. 19 = 19. e. 1 = 1. Page 331, 38.4 Suppose a is a

### POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

### 8 Divisibility and prime numbers

8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

### SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property

498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1

### Lecture 13 - Basic Number Theory.

Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted

### Properties of Real Numbers

16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

### Assignment 5 - Due Friday March 6

Assignment 5 - Due Friday March 6 (1) Discovering Fibonacci Relationships By experimenting with numerous examples in search of a pattern, determine a simple formula for (F n+1 ) 2 + (F n ) 2 that is, a

### WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly

### SCORE SETS IN ORIENTED GRAPHS

Applicable Analysis and Discrete Mathematics, 2 (2008), 107 113. Available electronically at http://pefmath.etf.bg.ac.yu SCORE SETS IN ORIENTED GRAPHS S. Pirzada, T. A. Naikoo The score of a vertex v in

### CHAPTER 2: METHODS OF PROOF

CHAPTER 2: METHODS OF PROOF Section 2.1: BASIC PROOFS WITH QUANTIFIERS Existence Proofs Our first goal is to prove a statement of the form ( x) P (x). There are two types of existence proofs: Constructive

### Mathematical Induction

Mathematical Induction In logic, we often want to prove that every member of an infinite set has some feature. E.g., we would like to show: N 1 : is a number 1 : has the feature Φ ( x)(n 1 x! 1 x) How

### MATH 289 PROBLEM SET 4: NUMBER THEORY

MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides

### U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions

Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.

### Vocabulary. Term Page Definition Clarifying Example. biconditional statement. conclusion. conditional statement. conjecture.

CHAPTER Vocabulary The table contains important vocabulary terms from Chapter. As you work through the chapter, fill in the page number, definition, and a clarifying example. biconditional statement conclusion

### If n is odd, then 3n + 7 is even.

Proof: Proof: We suppose... that 3n + 7 is even. that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. that 3n + 7 is even. Since n is odd, there exists an integer k so that

### Factoring Polynomials

UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

### Negative Integer Exponents

7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Equations, Inequalities & Partial Fractions

Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

### ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

### Grade 7/8 Math Circles Sequences and Series

Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Sequences and Series November 30, 2012 What are sequences? A sequence is an ordered

### Lesson 9: Radicals and Conjugates

Student Outcomes Students understand that the sum of two square roots (or two cube roots) is not equal to the square root (or cube root) of their sum. Students convert expressions to simplest radical form.

### Answer: The relationship cannot be determined.

Question 1 Test 2, Second QR Section (version 3) In City X, the range of the daily low temperatures during... QA: The range of the daily low temperatures in City X... QB: 30 Fahrenheit Arithmetic: Ranges

### MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

### Welcome to Math 19500 Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013

Welcome to Math 19500 Video Lessons Prof. Department of Mathematics The City College of New York Fall 2013 An important feature of the following Beamer slide presentations is that you, the reader, move

### STUDENT S SOLUTIONS MANUAL ELEMENTARY NUMBER THEORY. Bart Goddard. Kenneth H. Rosen AND ITS APPLICATIONS FIFTH EDITION. to accompany.

STUDENT S SOLUTIONS MANUAL to accompany ELEMENTARY NUMBER THEORY AND ITS APPLICATIONS FIFTH EDITION Bart Goddard Kenneth H. Rosen AT&T Labs Reproduced by Pearson Addison-Wesley from electronic files supplied

### Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may

Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition

### The thing that started it 8.6 THE BINOMIAL THEOREM

476 Chapter 8 Discrete Mathematics: Functions on the Set of Natural Numbers (b) Based on your results for (a), guess the minimum number of moves required if you start with an arbitrary number of n disks.

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### Lesson 9: Radicals and Conjugates

Student Outcomes Students understand that the sum of two square roots (or two cube roots) is not equal to the square root (or cube root) of their sum. Students convert expressions to simplest radical form.

### Grade Level Year Total Points Core Points % At Standard 9 2003 10 5 7 %

Performance Assessment Task Number Towers Grade 9 The task challenges a student to demonstrate understanding of the concepts of algebraic properties and representations. A student must make sense of the

### Chapter 7 - Roots, Radicals, and Complex Numbers

Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

### Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

### So let us begin our quest to find the holy grail of real analysis.

1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

### I remember that when I

8. Airthmetic and Geometric Sequences 45 8. ARITHMETIC AND GEOMETRIC SEQUENCES Whenever you tell me that mathematics is just a human invention like the game of chess I would like to believe you. But I