Definition of interface Liquid-gas and liquid-liquid interfaces (surface tension, spreading, adsorption and orientation at interfaces)
|
|
|
- Kristina Byrd
- 9 years ago
- Views:
Transcription
1 Definition of interface Liquid-gas and liquid-liquid interfaces (surface tension, spreading, adsorption and orientation at interfaces)
2 Definition of interface How can we define the interface? How we can detect the surface of a condensed phase?
3 Definition of interface If two homogeneous bulk phases meet there is a region of finite thickness where the properties changed. That region is called interface. At a molecular level the thickness of the interfacial region is not zero, and it is significant! The properties of interfacial region can be important for colloid systems, especially for dispersions, where the surface to volume ratio is not negligible.
4 Fluid interfaces The attractive forces acting on molecules at the surface are anisotropic, the net force is oriented toward the liquid phase. As a consequence, liquids tend to reduce their surface. Energy is required to increase the surface to overcome the attraction.
5 Surface tension The energy (G) required to increase the surface (A) isothermally and reversibly by a unit amount is called surface tension (γ). dg da npt,, The unit of surface tension is J/m 2. This definition are applied only for pure liquid. Surface tension value is always positive because of the attraction.
6 Surface tension The surface tension (γ) can also be defined as a force (F) acting to any imaginary line of unit length (l), on the liquid surface if the force is perpendicular to the line. F 2l The unit of surface tension is N/m. This definition is valid for any liquid. =F/2l
7 Factors having influence on surface tension 1. Chemical nature liquid Surface tension (mn/m, 20 o C) Water 72.8 Benzene 28.9 Acetic acid 27.6 Acetone 23.7 Ethanol 22.3 n-hexane 18.4 n-octane 21.8 n-octanol 27.5 Mercury 485
8 Factors having influence on 1. Chemical nature liquid surface tension Interfacial tension: surface tension at the interface of two liquids. It depends on the asymmetry of the two phases. Interfacial tension against the water (mn/m, 20 o C) Benzene 35.0 n-hexane 51.1 n-octane 50.8 n-octanol 8.5 mercury 375 It is only an estimation!!
9 Factors having influence on 2. Temperature surface tension The secondary interactions depend on temperature, at higher temperature the attraction is weaker. Eötvös-law (Hungarian physicist): V 2 3 m Ramsey and Shields law: V 2 3 m const const E ( T T ) Not valid for associating or dissocating compounds! E c ( T c T γ: surface tension (N/m), V m : molar volume (m 3 /mol), T: temperature (K), T c : critical temperature (K), const E : Eötvös constant (2.1 x 10-7 J/(K mol 2/3 ) 6)
10 Factors having influence on 3. Presence of solute surface tension A, Ions, small polar molecules. These compounds prefer being solvated (hydrated), so they tend to move inside the liquid phase where they can be solvated from all direction. Thus more solvent molecule goes toward the surface, which increase the surface tension. Surface inactive (capillary inactive compounds) (N/m) c(mol/m 3 )
11 Factors having influence on 3. Presence of solute surface tension B, Amphiphilic molecules (having polar and non-polar parts). These molecules are oriented on the surface (gas-liquid or liquid-liquid surface. The polar ends are oriented toward the polar solvent, while the non-polar parts are pointed toward the gas, or the non-polar liquid phase. This orientation makes possible the smoothest change of polarity between the phases (Hardy-Harkins rule).
12 Factors having influence on 3. Presence of solute surface tension B, Amphiphilic molecules (having polar and non-polar parts)..
13 Factors having influence on 3. Presence of solute surface tension B, Amphiphilic molecules (having polar and non-polar parts). The interaction between the amphiphiles are weaker compare to the solvent, so the orientation of these molecules decreases the surface tension. Surface active (capillary active) compounds. (N/m) c(mol/m 3 )
14 Effect of solute concentration on the surface excess The Gibbs-isotherm: Describes the relation between the solute concentration (c) and the surface excess(γ) at a given temperature. Γ: Surface excess (mol/m 2 ) A: surface of a molecule occupied: (m 2 /each) R: gas constant (8.314 J/Kmol) T: Temperature (K) c: concentration (mol/m 3 ) B: constant
15 Effect of solute concentration on the surface excess The Gibbs-equation: Describes the relation between the solute concentration (c), the surface tension and the surface excess(γ) at a given temperature. Γ: Surface excess (mol/m 2 ) R: gas constant (8.314 J/Kmol) T: Temperature (K) c: concentration (mol/m 3 ) γ :surfacetension(n/m)
16 Surface tension: the consequences If the gravitational force is smaller than the surface tension acts, the object can float on the surface although the density is higher.
17 Surface tension: the consequences
18 Surface tension: the consequences The Laplace pressure air p 1 The liquid tends to reduce the surface, so: p 2 >p 1 p 2 Laplace equation: 2 p r Consequence: The pressure is always higher at the concave side.
19 Surface tension: the consequences The Laplace pressure p 2 4 p 1 p r Double interface! The pressure difference can be extremely high at small radius! Radius 1mm 0.1mm 1μm 10nm Δp (kpa) What happens if we open the tap between the bubbles? v=kvrsahuvs3m
20 Surface tension: the consequences Meniscus The shape of the fluid surface in a tube depends on the adhesion and cohesion. If the adhesion (liquid-solid attraction) is stronger than the cohesion (interaction of liquid particles) the meniscus is concave, otherwise it is convex. r<0 r= r>0 (the centre is outside) (the centre is inside)
21 Surface tension: the consequences Kelvin equation It has already been seen that the pressure over the curved surface is different compared to the flat one. Thus the vapor pressure of the liquid also depends on the shape of the surface. ln p p r V m RT 2 r p r, p : vapor pressure over the curved and flat surface (Pa), V m :molar volume (m 3 /mol), γ: surface tension (N/m), R: gas constant (J/Kmol), r: radius of the capillary(m), T: temperature (K)
22 Surface tension: the consequences Capillary condensation In case of porous materials (solid phase with capillaries) the vapor can condense even at higher temperature if the fluid (condensed liquid) phase wets the surface. This phenomena can be explained by the Kelvin equation. (Wetting means r<0, so the ln(p r /p ) is negative, therefore p r <p and if p r <p out then the vapor condenses)
23 Surface tension: the consequences Capillary action A, r<0 Concave meniscus The pressure inside the liquid is smaller compared to the flat surface. The fluid phase is pushed into the capillary to balance the pressure difference B, r>0 Convex meniscus The pressure inside the liquid is higher compared to the flat surface. The fluid phase is pushed out from the capillary to balance the pressure difference.
24 Surface tension: the consequences The shape of the meniscus The shape of the liquid surface depends on the ratio of the adhesion and cohesion. If the cohesion is stronger than the adhesion the meniscus is concave (r<0, water, aqueous solutions, polar solvents), while if the adhesion is stronger than the cohesion, the meniscus is convex (r>0, mercury)
25 Measurement of surface tension Wilhelm plate du Nouy ring The difference in pressure (see the Kelvin eq.) is in equilibrium with the fluid pressure. Measuring the capillary rising or depression makes possible to calculate of surface tension 1 2 hgrcap Measurement of force needed to remove a plate or ring from the liquid F 2l
26 Spreading, wetting, contact angle Contact angle (measured in the liquid phase) Θ= Θ1+ Θ2 Θ Perfect wetting (spreading): Θ=0 o Partial wetting: 0 o < Θ < 90 o Non wetting: 90 o < Θ <180 o Perfectly non wetted Θ=180 o
27 Spreading, wetting, contact angle Wettability depends on adhesion /cohesion. When the forces of adhesion are greater than the forces of cohesion, the liquid tends to wet the surface (or spread on the other liquid), when the forces of adhesion are less by comparison to those of cohesion, the liquid tends to "refuse" the surface. In this people speak of wettability between liquids and solids. For example, water wets clean glass, but it does not wet wax.
28 Spreading, wetting, contact angle
29 Spreading, wetting, contact angle In equilibrium: 2 1 cos1 12 cos 2 GS LS GL cos Spreading (or wetting) if Θ < 90 o 2 ( 1 12) 0 GS ( ) 0 LS GL S lower ( ) interphase upper 0
30 Adhesion and cohesion Adhesion: γ A + γ B -γ AB Cohesion: 2γ A S=adhesion-cohesion= γ A + γ B -γ AB -2γ A = γ B -(γ A +γ AB )
Fluid Mechanics: Static s Kinematics Dynamics Fluid
Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three
SURFACE TENSION. Definition
SURFACE TENSION Definition In the fall a fisherman s boat is often surrounded by fallen leaves that are lying on the water. The boat floats, because it is partially immersed in the water and the resulting
Why? Intermolecular Forces. Intermolecular Forces. Chapter 12 IM Forces and Liquids. Covalent Bonding Forces for Comparison of Magnitude
1 Why? Chapter 1 Intermolecular Forces and Liquids Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature for such a small molecule? Why does ice float on water?
Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)
Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)
Surface Tension. the surface tension of a liquid is the energy required to increase the surface area a given amount
Tro, Chemistry: A Molecular Approach 1 Surface Tension surface tension is a property of liquids that results from the tendency of liquids to minimize their surface area in order to minimize their surface
Calorimetry: Heat of Vaporization
Calorimetry: Heat of Vaporization OBJECTIVES INTRODUCTION - Learn what is meant by the heat of vaporization of a liquid or solid. - Discuss the connection between heat of vaporization and intermolecular
Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.
Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular
Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134)
Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) 1. Helium atoms do not combine to form He 2 molecules, What is the strongest attractive
KINETIC MOLECULAR THEORY OF MATTER
KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,
10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory
The first scheduled quiz will be given next Tuesday during Lecture. It will last 5 minutes. Bring pencil, calculator, and your book. The coverage will be pp 364-44, i.e. Sections 0.0 through.4. 0.7 Theory
A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension
A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives Have a working knowledge of the basic
Soil Suction. Total Suction
Soil Suction Total Suction Total soil suction is defined in terms of the free energy or the relative vapor pressure (relative humidity) of the soil moisture. Ψ = v RT ln v w 0ω v u v 0 ( u ) u = partial
Chapter 11 Properties of Solutions
Chapter 11 Properties of Solutions 11.1 Solution Composition A. Molarity moles solute 1. Molarity ( M ) = liters of solution B. Mass Percent mass of solute 1. Mass percent = 1 mass of solution C. Mole
vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K
Thermodynamics: Examples for chapter 6. 1. The boiling point of hexane at 1 atm is 68.7 C. What is the boiling point at 1 bar? The vapor pressure of hexane at 49.6 C is 53.32 kpa. Assume that the vapor
VAPORIZATION IN MORE DETAIL. Energy needed to escape into gas phase GAS LIQUID. Kinetic energy. Average kinetic energy
30 VAPORIZATION IN MORE DETAIL GAS Energy needed to escape into gas phase LIQUID Kinetic energy Average kinetic energy - For a molecule to move from the liquid phase to the gas phase, it must acquire enough
5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C
1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )
48 Practice Problems for Ch. 17 - Chem 1C - Joseph
48 Practice Problems for Ch. 17 - Chem 1C - Joseph 1. Which of the following concentration measures will change in value as the temperature of a solution changes? A) mass percent B) mole fraction C) molality
Thermodynamics of Mixing
Thermodynamics of Mixing Dependence of Gibbs energy on mixture composition is G = n A µ A + n B µ B and at constant T and p, systems tend towards a lower Gibbs energy The simplest example of mixing: What
Chemistry 13: States of Matter
Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties
7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter
7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed
States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.
CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas
10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory
Week lectures--tentative 0.7 Kinetic-Molecular Theory 40 Application to the Gas Laws 0.8 Molecular Effusion and Diffusion 43 Graham's Law of Effusion Diffusion and Mean Free Path 0.9 Real Gases: Deviations
Experiment 446.1 SURFACE TENSION OF LIQUIDS. Experiment 1, page 1 Version of June 17, 2016
Experiment 1, page 1 Version of June 17, 2016 Experiment 446.1 SURFACE TENSION OF LIQUIDS Theory To create a surface requires work that changes the Gibbs energy, G, of a thermodynamic system. dg = SdT
CHAPTER 12. Gases and the Kinetic-Molecular Theory
CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids
Contact Angle and Surface Energy Measurements on Steel
Contact Angle and Surface Energy Measurements on Steel July 19, 2003 Four precision steel coupons were tested on an FTA200 for contact angle and surface energy. The samples were ground smooth and appeared
CHEM 120 Online Chapter 7
CHEM 120 Online Chapter 7 Date: 1. Which of the following statements is not a part of kinetic molecular theory? A) Matter is composed of particles that are in constant motion. B) Particle velocity increases
Chapter 13 Solution Dynamics. An Introduction to Chemistry by Mark Bishop
Chapter 13 Solution Dynamics An Introduction to Chemistry by Mark Bishop Chapter Map Why Changes Happen Consider a system that can switch freely between two states, A and B. Probability helps us to predict
The Properties of Water
1 Matter & Energy: Properties of Water, ph, Chemical Reactions EVPP 110 Lecture GMU Dr. Largen Fall 2003 2 The Properties of Water 3 Water - Its Properties and Its Role in the Fitness of Environment importance
Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1
Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tall-form beaker, 10 ml graduated cylinder, -10 to 110 o C thermometer, thermometer clamp, plastic pipet, long
Chapter 12 - Liquids and Solids
Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative
CHEM 36 General Chemistry EXAM #1 February 13, 2002
CHEM 36 General Chemistry EXAM #1 February 13, 2002 Name: Serkey, Anne INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show
CHAPTER 7: CAPILLARY PRESSURE
CHAPTER 7: CAPILLARY PRESSURE Objective To measure capillary pressure of unconsolidated sand packs. Introduction Capillary pressure is important in reservoir engineering because it is a major factor controlling
Molar Mass of Polyvinyl Alcohol by Viscosity
Molar Mass of Polyvinyl Alcohol by Viscosity Introduction Polyvinyl Alcohol (PVOH) is a linear polymer (i. e., it has little branching) of Ethanol monomer units: -CH 2 -CHOH- Unlike most high molar mass
= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm
Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by
Lecture 24 - Surface tension, viscous flow, thermodynamics
Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms
13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory
Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation,
KINETIC THEORY OF MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature
1 KINETIC TERY F MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature TE STATES F MATTER 1. Gas a) ideal gas - molecules move freely - molecules have
Chapter 13: Properties of Solutions
Chapter 13: Properties of Solutions Problems: 9-10, 13-17, 21-42, 44, 49-60, 71-72, 73 (a,c), 77-79, 84(a-c), 91 solution: homogeneous mixture of a solute dissolved in a solvent solute: solvent: component(s)
The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.
The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed
EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor
EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,
Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.
Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite
A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.
I. MOLECULES IN MOTION: A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. 1) theory developed in the late 19 th century to
Chapter 13 - LIQUIDS AND SOLIDS
Chapter 13 - LIQUIDS AND SOLIDS Problems to try at end of chapter: Answers in Appendix I: 1,3,5,7b,9b,15,17,23,25,29,31,33,45,49,51,53,61 13.1 Properties of Liquids 1. Liquids take the shape of their container,
ESSAY. Write your answer in the space provided or on a separate sheet of paper.
Test 1 General Chemistry CH116 Summer, 2012 University of Massachusetts, Boston Name ESSAY. Write your answer in the space provided or on a separate sheet of paper. 1) Sodium hydride reacts with excess
WORKSHEET: ph and Water 23 Lab Instructor: Lab Day & Time: Student name(s): drain cleaner flat soda pop window cleaner ammonia.
WORKSHEET: ph and Water 23 Lab Instructor: Lab Day & Time: Student name(s): DATA AND ANALYSIS ph Substance ph Value Substance ph Value Substance ph Value pure water apple juice dish soap sugar water beer
Lecture 12: Heterogeneous Nucleation: a surface catalyzed process
Lecture 1: Heterogeneous Nucleation: a surface catalyzed process Today s topics What is heterogeneous nucleation? What implied in real practice of materials processing and phase transformation? Heterogeneous
CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry
CHEMISTRY Matter and Change 13 Table Of Contents Chapter 13: Gases Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry State the relationships among pressure, temperature,
The Role of Interfacial Tension Measurement in the Oil Industry
The Role of Interfacial Tension Measurement in the Oil Industry Carole Moules, Camtel Ltd Abstract This paper concentrates on the principles and measurement of interfacial tension and its value in predicting
The polarity of water molecules results in hydrogen bonding [3]
GUIDED READING - Ch. 3 PROPERTIES OF WATER NAME: Please print out these pages and HANDWRITE the answers directly on the printouts. Typed work or answers on separate sheets of paper will not be accepted.
Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.
Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.
H 2O gas: molecules are very far apart
Non-Covalent Molecular Forces 2/27/06 3/1/06 How does this reaction occur: H 2 O (liquid) H 2 O (gas)? Add energy H 2O gas: molecules are very far apart H 2O liquid: bonding between molecules Use heat
Phase diagram of water. Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure.
Phase diagram of water Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure. WATER Covers ~ 70% of the earth s surface Life on earth
Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent.
TYPES OF SOLUTIONS A solution is a homogeneous mixture of two substances: a solute and a solvent. Solute: substance being dissolved; present in lesser amount. Solvent: substance doing the dissolving; present
1.4.6-1.4.8 Gas Laws. Heat and Temperature
1.4.6-1.4.8 Gas Laws Heat and Temperature Often the concepts of heat and temperature are thought to be the same, but they are not. Perhaps the reason the two are incorrectly thought to be the same is because
David A. Katz Department of Chemistry Pima Community College
Solutions David A. Katz Department of Chemistry Pima Community College A solution is a HOMOGENEOUS mixture of 2 or more substances in a single phase. One constituent t is usually regarded as the SOLVENT
Chapter 10 Liquids & Solids
1 Chapter 10 Liquids & Solids * 10.1 Polar Covalent Bonds & Dipole Moments - van der Waals constant for water (a = 5.28 L 2 atm/mol 2 ) vs O 2 (a = 1.36 L 2 atm/mol 2 ) -- water is polar (draw diagram)
Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons.
The Nature of Molecules Chapter 2 Energy and Metabolism Chapter 6 Chemical Bonds Molecules are groups of atoms held together in a stable association. Compounds are molecules containing more than one type
Chapter 5 Student Reading
Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.
Partner: Jack 17 November 2011. Determination of the Molar Mass of Volatile Liquids
Partner: Jack 17 November 2011 Determination of the Molar Mass of Volatile Liquids Purpose: The purpose of this experiment is to determine the molar mass of three volatile liquids. The liquid is vaporized
Unit 3: States of Matter Practice Exam
Page 1 Unit 3: States of Matter Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Two gases with unequal masses are injected into opposite
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
A.P. Chemistry Practice Test: Ch. 11, Solutions Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Formation of solutions where the process is
FUNDAMENTALS OF ENGINEERING THERMODYNAMICS
FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant
Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)
Gases States of Matter States of Matter Kinetic E (motion) Potential E(interaction) Distance Between (size) Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large
Chapter 3: Water and Life
Name Period Chapter 3: Water and Life Concept 3.1 Polar covalent bonds in water result in hydrogen bonding 1. Study the water molecules at the right. On the central molecule, label oxygen (O) and hydrogen
Determination of Molar Mass by Boiling Point Elevation of Urea Solution
Determination of Molar Mass by Boiling Point Elevation of Urea Solution CHRISTIAN E. MADU, PhD AND BASSAM ATTILI, PhD COLLIN COLLEGE CHEMISTRY DEPARTMENT Purpose of the Experiment Determine the boiling
Extension of COSMO-RS to interfacial phenomena
Extension of COSMO-RS to interfacial phenomena Martin P. Andersson et al. Nano-Science Center Department of Chemistry University of Copenhagen Denmark Presentation at the 4th COSMO-RS symposium Mar 2015
To calculate the value of the boiling point constant for water. To use colligative properties to determine the molecular weight of a substance.
Colligative Properties of Solutions: A Study of Boiling Point Elevation Amina El-Ashmawy, Collin County Community College (With contributions by Timm Pschigoda, St. Joseph High School, St. Joseph, MI)
Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages 385 389)
13 STATES OF MATTER SECTION 13.1 THE NATURE OF GASES (pages 385 389) This section introduces the kinetic theory and describes how it applies to gases. It defines gas pressure and explains how temperature
Answer, Key Homework 6 David McIntyre 1
Answer, Key Homework 6 David McIntyre 1 This print-out should have 0 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making
Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K
Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K Kinetic Molecular Theory of Gases 1. Large number of atoms/molecules in random motion 2.
Sample Test 1 SAMPLE TEST 1. CHAPTER 12
13 Sample Test 1 SAMPLE TEST 1. CHAPTER 12 1. The molality of a solution is defined as a. moles of solute per liter of solution. b. grams of solute per liter of solution. c. moles of solute per kilogram
Surface Area and Porosity
Surface Area and Porosity 1 Background Techniques Surface area Outline Total - physical adsorption External Porosity meso micro 2 Length 1 Å 1 nm 1 µm 1 1 1 1 1 mm macro meso micro metal crystallite 1-1
1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion
Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic
Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part.
Part B 2 Allow a total of 15 credits for this part. The student must answer all questions in this part. 51 [1] Allow 1 credit for 3 Mg(s) N 2 (g) Mg 3 N 2 (s). Allow credit even if the coefficient 1 is
When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
Chemistry B11 Chapter 6 Solutions and Colloids
Chemistry B11 Chapter 6 Solutions and Colloids Solutions: solutions have some properties: 1. The distribution of particles in a solution is uniform. Every part of the solution has exactly the same composition
Chapter 13 - Solutions
Chapter 13 - Solutions 13-1 Types of Mixtures I. Solutions A. Soluble 1. Capable of being dissolved B. Solution 1. A homogeneous mixture of two or more substances in a single phase C. Solvent 1. The dissolving
Chapter 6 An Overview of Organic Reactions
John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 6 An Overview of Organic Reactions Why this chapter? To understand organic and/or biochemistry, it is necessary to know: -What occurs -Why and
HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases
UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius
PV (0.775 atm)(0.0854 L) n = = = 0.00264 mol RT -1-1
catalyst 2 5 g ¾¾¾¾ 2 4 g 2 g DH298 = rxn DS298 C H OH( ) C H ( ) + H O( ) 45.5 kj/mol ; = 126 J/(K mol ) ethanol ethene water rxn 1 atm 760 torr PV (0.775 atm)(0.0854 L) n = = = 0.00264 mol RT -1-1 (0.08206
Polarity and Properties Lab PURPOSE: To investigate polar and non-polar molecules and the affect of polarity on molecular properties.
Name!!!! date Polarity and Properties Lab PURPOSE: To investigate polar and non-polar molecules and the affect of polarity on molecular properties. STATION 1: Oil and water do not mix. We all know that.
Chapter 14 Solutions
Chapter 14 Solutions 1 14.1 General properties of solutions solution a system in which one or more substances are homogeneously mixed or dissolved in another substance two components in a solution: solute
Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6
Gases Petrucci, Harwood and Herring: Chapter 6 CHEM 1000A 3.0 Gases 1 We will be looking at Macroscopic and Microscopic properties: Macroscopic Properties of bulk gases Observable Pressure, volume, mass,
Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004
Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein
Intermolecular Forces
Intermolecular Forces: Introduction Intermolecular Forces Forces between separate molecules and dissolved ions (not bonds) Van der Waals Forces 15% as strong as covalent or ionic bonds Chapter 11 Intermolecular
Practice Test. 4) The planet Earth loses heat mainly by A) conduction. B) convection. C) radiation. D) all of these Answer: C
Practice Test 1) Increase the pressure in a container of oxygen gas while keeping the temperature constant and you increase the A) molecular speed. B) molecular kinetic energy. C) Choice A and choice B
2054-2. Structure and Dynamics of Hydrogen-Bonded Systems. 26-27 October 2009. Hydrogen Bonds and Liquid Water
2054-2 Structure and Dynamics of Hydrogen-Bonded Systems 26-27 October 2009 Hydrogen Bonds and Liquid Water Ruth LYNDEN-BELL University of Cambridge, Department of Chemistry Lensfield Road Cambridge CB2
Heterogeneous Catalysis and Catalytic Processes Prof. K. K. Pant Department of Chemical Engineering Indian Institute of Technology, Delhi
Heterogeneous Catalysis and Catalytic Processes Prof. K. K. Pant Department of Chemical Engineering Indian Institute of Technology, Delhi Module - 03 Lecture 10 Good morning. In my last lecture, I was
In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..
Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set
EXPERIMENTAL METHODS IN COLLOIDS AND SURFACES
EXPERIMENTAL METHODS IN COLLOIDS AND SURFACES PARTICLE SURFACE AREA FROM GAS ADSORPTION TYPES OF ADSORPTION Physical adsorption: rapid, depends on adsorbate bulk concentration, multiple molecular layers
Thermodynamics and Equilibrium
Chapter 19 Thermodynamics and Equilibrium Concept Check 19.1 You have a sample of 1.0 mg of solid iodine at room temperature. Later, you notice that the iodine has sublimed (passed into the vapor state).
7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.
CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,
Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1. Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57, 61, 63, 67, 69, 71(a), 73, 75, 79
Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1 Text: Petrucci, Harwood, Herring 8 th Edition Suggest text problems Review questions: 1, 5!11, 13!17, 19!23 Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57,
Chapter 2 Polar Covalent Bonds: Acids and Bases
John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds: Acids and Bases Modified by Dr. Daniela R. Radu Why This Chapter? Description of basic ways chemists account for chemical
We will study the temperature-pressure diagram of nitrogen, in particular the triple point.
K4. Triple Point of Nitrogen I. OBJECTIVE OF THE EXPERIMENT We will study the temperature-pressure diagram of nitrogen, in particular the triple point. II. BAKGROUND THOERY States of matter Matter is made
Everest. Leaders in Vacuum Booster Technology
This article has been compiled to understand the process of Solvent Recovery process generally carried out at low temperatures and vacuum. In many chemical processes solute is to be concentrated to high
AP CHEMISTRY 2007 SCORING GUIDELINES. Question 2
AP CHEMISTRY 2007 SCORING GUIDELINES Question 2 N 2 (g) + 3 F 2 (g) 2 NF 3 (g) ΔH 298 = 264 kj mol 1 ; ΔS 298 = 278 J K 1 mol 1 The following questions relate to the synthesis reaction represented by the
AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1
Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol -1. Example
TEACHER BACKGROUND INFORMATION THERMAL ENERGY
TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to
Stability of Evaporating Polymer Films. For: Dr. Roger Bonnecaze Surface Phenomena (ChE 385M)
Stability of Evaporating Polymer Films For: Dr. Roger Bonnecaze Surface Phenomena (ChE 385M) Submitted by: Ted Moore 4 May 2000 Motivation This problem was selected because the writer observed a dependence
