Everest. Leaders in Vacuum Booster Technology
|
|
|
- Hilary McCormick
- 9 years ago
- Views:
Transcription
1 This article has been compiled to understand the process of Solvent Recovery process generally carried out at low temperatures and vacuum. In many chemical processes solute is to be concentrated to high degrees of purity and the relatively volatile solvent is to be recovered for reuse. Initially in the solution, when the solute concentrations are low the process of solvent evaporation is relatively fast but as the solute concentration increases, the process becomes slow and demands higher temperatures or lower pressures to continue. In most of the processes the increase in temperature is limited and therefore the pressures must be reduced to continue the process. To understand the phenomenon, we start from basics. Vapor Pressure: - Vapor pressure of liquid or solution is the pressure exerted by the vapors in equilibrium with the liquid or solution, at a particular temperature. Liquids with higher Vapor pressure have low boiling temperatures and liquids with lower vapor pressures have higher boiling points. If pure liquid or a solution is taken in an evacuated vessel placed in a thermostat, at any particular temperature, the amount of vapor in the space above keeps on increasing and finally becomes constant, on attaining equilibrium state - i.e. when rate of evaporation becomes equal to rate of condensation. The pressure Vp thus exerted is the Vapor Pressure of liquid/solution at that temperature.
2 Vapor Pressure largely depends upon. 1. Nature of liquid : Volatile Non volatile 2. Temperature. 3. Molar concentrations of a solution. Vapor pressure of a solution-raoults law. a) For Volatile Solution: Let us consider a mixture of two completely miscible volatile liquids A & B having mole fraction x A & x B respectively. Let their partial Vapor pressures at any certain temperature T, be P A & P B, and pº A & pº B be their vapor pressures in pure state, corresponding to temperature T. According to Raoults law: In a solution, vapor pressure of a component (at given temp.) is equal to the whole fraction of that component in the solution multiplied by the vapor pressure of that component in the pure state. Therefore, P A = x A pº A & P B = x B pº B XA = 1 XB = 0 XA = 0 XB = 1
3 So Ps, Total pressure of solution (according to Daltons law of partial pressure) is equal to the sum of partial pressures. Ps = P A + P B = x A pº A + x B pº B = (1- x B ) pº A + x B pº B (since x A = 1- x B ) = (pº B - pºa) x B + pº A..(I) When x A = 1 i.e liquid is pure A, then the total pressure,ps = pº A When x B = 1 i.e liquid is pure B, then the tota pressure, Ps = pº B In such condition where both the product are volatile, there would always be presence of vapors of both and therefore for their separation fractional distillation is required. b) For Non-Volatile Solution : For condition where solvent is relatively volatile and solute is non-volatile. In case of solvent recovery / product concentration, product A can be taken as non-volatile solute in volatile solvent B. That is, the vapor pressure pº A, at any given temperature is relatively very low in comparison to pº B or in other words the Boiling point of A is relatively higher than product B. The equation (I) can be re written as, Ps = pº B. x B (II) Ignoring pº A, being relatively small. Initially the vapor pressure, Ps of the solution, when molar concentration of B is relatively high, is close to p B (vapor pressure of pure B at the specific temperature T) As the solvent evaporates, molar concentration of B drops resulting in drop of the vapor pressure of the mixture (increase in boiling temperature). This indicates that as the process of concentration proceeds, the amount of solvent present in the solution reduces and for maintaining the same evaporation rates either the pressure must be reduced or temperature increased. In case any of the above is not done, the rate of evaporation / solvent recovery would fall drastically. If a solution contains, W A kg of solute of Mol Wt. M A dissolved in W B kg of solvent of Mol. Wt M B have, WB/MB XB = WA/MA +WB/MB Substituting the above in eq.ii WB/MB Where, Pº B = Vap. Pressure of Pure Solvent, P S = Vap. Pressure of Solution. W A = mass of solute, MA = Molecular Wt. Of Solute W B = Mass of solvent, MB = Molecular Wt. Of Solvent PS =. pº B WA/MA +WB/MB
4 Subtracting each side from 1 and simplifying we get WA/MA pº B PS = pº B.. (III) WA/MA +WB/MB Since ( Pº B P S ) = lowering of vapor pressure of solution, expression III can be expressed as The relative lowering of vapor pressure of a solution, containing non volatile solute, is equal to the mole fraction of the solute in the solution. Example : Let us take solution of Solute A (Mol. Wt 45) in solvent Acetone (Mol. Wt. 58) in which the concentration of solute A is 1%. The vapor pressure of Pure Acetone at 25ºC is, say, 195mm Hg.(abs). Now Vapor Pressure of Solution P S at temp 25º would be less than P S by amount, = [1/45 / {1/ /58}] x195 = 2.5 mm Hq. P S = = mm Hq. Now when the solvent evaporates, say 90gm is evaporated the concentrations then are now 1gm and 9gm for solute and solvent respectively. The vapor pressure drop would be = [1/45 / (1/45 + 9/58)]x 195 = 24.4 mmhg. (The pressures must be dropped by at least 25 mmhg or temperatures raised to new boiling point levels, to enable evaporation to continue.) Further, when say 98gm of solvent has evaporated and the concentration is 1gm of solute and 1gm of solvent, the drop in vapor pressure would be Drop in Vp = [1/45 / (1/45 + 1/58)]x 195 = mmhq. P S = = 85.2 mmhg This explains why lower and lower vacuums are required in a process where solvent evaporation is done to achieve fine concentrations and purity levels.
5 Deviations from Raoults law Liquid mixtures that obey Raoults Law are quite rare. When they do exist they are made up from two components that are chemically very similar such as heptane and hexane or benzene and methylbenzene. This is because in an ideal mixture the intermolecular attraction between different molecules is the same as the attraction between identical molecules. This means that when the two liquids are mixed together there is no change in the intermolecular bonding present in either of the two pure liquids. Sometimes when two liquids are mixed together, heat is released and the total volume is less than that of the individual components. This suggests that the two liquids attract one another quite strongly. E.g. propanone and trichloromethane. Similarly sometimes when two liquids are mixed together, heat is absorbed and the total volume is greater than that of the individual components. This suggests that there has been a disruption of the intermolecular bonds present in one component when the liquids are mixed.e.g. water and ethanol. Ethanol interferes with the strong hydrogen bonding in the water. Since the intermolecular bonding has been decreased each of the components will vaporize more readily, (lower boiling point), and the vapor pressure will be increased. There is a slight increase in volume when the liquids are mixed and since bonds are broken an endothermic enthalpy change is observed. This is known as positive deviation and leads to a vapor pressure composition diagram shown below. Very large positive deviations lead to a maximum vapor pressure.
6 Mechanical Vacuum Boosters :- Mechanical Vacuum Boosters are dry pump that meet many of the ideal pump requirements. They work on positive displacement principle. As it s name suggests, it is used to boost the performance of water ring/oil ring/rotating vane/piston and in some cases even steam or water ejectors. It is used in combination with any one of the above mentioned pumps, to overcome their limitations. Vacuum booster pumps offer very desirable characteristics, making them the most cost effective and power efficient alternative. The major advantages are:- 1.) The Vacuum Booster is a dry pump. 2.) It does not use any pumping fluid. Hence it pumps vapor or gases with equal ease. Small amounts of condensed fluid can also be pumped. 3.) It has very low pump friction losses, hence requires relatively low power for high volumetric speeds. 4.) It can be started instantly. Makes it highly suited for batch processes. Typically, their speeds at low vacuums are times higher than corresponding vane pumps/ring pumps of equivalent power. The vacuum booster can be used to generate vacuum upto the range of Torr and yet maintain high volumetric speeds at such low pressure. At these pressures the rotary oil and water ring pumps are not effective, as their pumping speed falls drastically when approaching their ultimate levels. Mechanical boosters can be easily integrated into all existing pumping set-up to boost the process performance. Typical arrangement is described under where the booster is installed after the condenser.
7 Post Condenser Installation ( 1.) Evaporator ( 2) Gauge (3) Condenser ( 4) Mechanical Booster (5) backup Pump Most often the combination of vacuum Booster and backing pump results in reduced power consumption per unit of pumping speed as they provide high pumping speeds at low pressures. With a suitable Water ring pump/water ejector as backup pump, the blank off pressure of the order of few torr can easily be achieved. However, the working pressures are, in this arrangement, governed by the condenser temperature since the working vacuum would be in equilibrium to the vapor pressures corresponding to the condenser outlet temperatures. This arrangement would be suitable for processes where there is considerable difference in the evaporator and condenser temperatures. During selection of Booster, the pumping speed of booster selected is 3-10 times higher than the backing pump which results in gas/vapor compression at the discharge end of Booster. Due to vapor compression action at the discharge of the booster, the pressure at the discharge of booster (or inlet of backing pump) is maintained high, resulting in low back streaming of backing pump fluid. A suitable secondary condenser installed between the booster outlet and backing pump inlet would trap all the escaped vapors resulting in better solvent recovery. For processes where lower pressures would interfere with the condensation in the condenser or demand chill water. The Booster can be installed between the evaporator and the condenser. The booster would reduce pressures at the evaporator and raise pressures at the condenser making an ideal condition since low pressures in the evaporator would enhance the evaporation process and high pressures in the condenser would increase condenser efficiency
8 6 Pre Condenser Installation (1.) Evaporator (2) Gauge (3) Condenser (4) Mechanical Booster (5) Backup Pump (6) Bypass valve High bottom product purity and maximum solvent recovery both can be effectively achieved. In cases where the evaporator temperatures are close to the boiling point of solvent, the booster can be initially bypassed, as the condenser would maintain the required differential pressures for vapor flow. However, as the concentration increases BP of the solution increases and the need for reduced pressures becomes essential for process to continue. At this stage the booster can be operated to create lower pressure in the evaporator and relatively higher pressure in the condenser creating higher differential pressures, which would speed up the entire process. Considerable reduction in process time, higher product purity and better solvent recovery can easily be achieved. Calculating the Pump Capacity: - Base on the fundamental gas laws PV= RT, an expression can be derived for Volumetric Flow Rates required for pumping different vapors/ gases at any range of pressures and temperatures. V = R. Tgas / P Q 1 /M 1 + Q 2 /M 2. Q n /M n Where V = Inlet Volume flow rate m 3 /hr. R = Universal gas Constant, mbar m 3 / Kgmol x ºK Tgas = Gas/Vapor abs. Temp,in ºK P = Process ab. Pressure in mbar Q 1, Q 2, Q 3 = Gas / Vapor flow rate, in Kg/hr. M 1, M 2,M 3 = Molar mass, in Kg/mol. of gas /vapor. Example:- To calculate the size of booster capable of handling 10 kg/hr of Water vapor (mol Wt 18) and 2 kg/hr of Non-condensable gas load (Air mol wt. 29) at 69 Deg C and 10 mbar (7.6Torr) is
9 = 83.14*342 / 10 *{10/18+2/29} = 1775 m3/hr The booster capacity should be 1775 m3/hr in case the same is to be installed between the evaporator and the condenser and would be about 200m3/hr incase the same is installed after the condenser. (Since the condensable load would get condensed in the condenser) On understanding the specific process requirements, various combinations can be worked out for optimum results. Proper selection of booster should ultimately result in:- 1.) Better product quality 2.) Faster process cycle 3.) Efficient solvent recovery 4.) Reduced energy consumption. (Article written by technical team of Everest Transmission The only successful manufacturer of Mechanical Vacuum Boosters in India) EVEREST TRANSMISSION B-44, Mayapuri Industrial Area, Phase-1, New Delhi , India. Telefax: , , , [email protected] Web:
Surface Tension. the surface tension of a liquid is the energy required to increase the surface area a given amount
Tro, Chemistry: A Molecular Approach 1 Surface Tension surface tension is a property of liquids that results from the tendency of liquids to minimize their surface area in order to minimize their surface
Sample Test 1 SAMPLE TEST 1. CHAPTER 12
13 Sample Test 1 SAMPLE TEST 1. CHAPTER 12 1. The molality of a solution is defined as a. moles of solute per liter of solution. b. grams of solute per liter of solution. c. moles of solute per kilogram
Molar Mass of Butane
Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine the molar mass of butane using Dalton s Law of Partial Pressures
48 Practice Problems for Ch. 17 - Chem 1C - Joseph
48 Practice Problems for Ch. 17 - Chem 1C - Joseph 1. Which of the following concentration measures will change in value as the temperature of a solution changes? A) mass percent B) mole fraction C) molality
The Ideal Solution. ChemActivity T15
ChemActivity T15 The Ideal Solution Focus Question: An equi-molar mixture of benzene and toluene is prepared. What will be the composition of the vapor in equilibrium with this solution? Model 1: Benzene
Distillation vaporization sublimation. vapor pressure normal boiling point.
Distillation Distillation is an important commercial process that is used in the purification of a large variety of materials. However, before we begin a discussion of distillation, it would probably be
Chemistry 13: States of Matter
Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties
CHEM 120 Online Chapter 7
CHEM 120 Online Chapter 7 Date: 1. Which of the following statements is not a part of kinetic molecular theory? A) Matter is composed of particles that are in constant motion. B) Particle velocity increases
vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K
Thermodynamics: Examples for chapter 6. 1. The boiling point of hexane at 1 atm is 68.7 C. What is the boiling point at 1 bar? The vapor pressure of hexane at 49.6 C is 53.32 kpa. Assume that the vapor
Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.
Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular
ORGANIC LABORATORY TECHNIQUES 10 10.1. NEVER distill the distillation flask to dryness as there is a risk of explosion and fire.
ORGANIC LABORATORY TECHNIQUES 10 10.1 DISTILLATION NEVER distill the distillation flask to dryness as there is a risk of explosion and fire. The most common methods of distillation are simple distillation
Thermodynamics of Mixing
Thermodynamics of Mixing Dependence of Gibbs energy on mixture composition is G = n A µ A + n B µ B and at constant T and p, systems tend towards a lower Gibbs energy The simplest example of mixing: What
EXERCISES. 16. What is the ionic strength in a solution containing NaCl in c=0.14 mol/dm 3 concentration and Na 3 PO 4 in 0.21 mol/dm 3 concentration?
EXERISES 1. The standard enthalpy of reaction is 512 kj/mol and the standard entropy of reaction is 1.60 kj/(k mol) for the denaturalization of a certain protein. Determine the temperature range where
Lecture 9 Solving Material Balances Problems Involving Non-Reactive Processes
CHE 31. INTRODUCTION TO CHEMICAL ENGINEERING CALCULATIONS Lecture 9 Solving Material Balances Problems Involving Non-Reactive Processes Component and Overall Material Balances Consider a steady-state distillation
Vacuum and Compressor Systems for the Chemical Process Industry
Vacuum and Compressor Systems for the Chemical Process Industry Vacuum Pumps & Compressors Proven technology built from experience Gardner Denver Nash has been serving process industries such as petroleum,
Calorimetry: Heat of Vaporization
Calorimetry: Heat of Vaporization OBJECTIVES INTRODUCTION - Learn what is meant by the heat of vaporization of a liquid or solid. - Discuss the connection between heat of vaporization and intermolecular
Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1
Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tall-form beaker, 10 ml graduated cylinder, -10 to 110 o C thermometer, thermometer clamp, plastic pipet, long
CHEM 36 General Chemistry EXAM #1 February 13, 2002
CHEM 36 General Chemistry EXAM #1 February 13, 2002 Name: Serkey, Anne INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show
5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C
1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )
Why? Intermolecular Forces. Intermolecular Forces. Chapter 12 IM Forces and Liquids. Covalent Bonding Forces for Comparison of Magnitude
1 Why? Chapter 1 Intermolecular Forces and Liquids Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature for such a small molecule? Why does ice float on water?
Chapter 12 - Liquids and Solids
Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative
Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.
Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite
PV (0.775 atm)(0.0854 L) n = = = 0.00264 mol RT -1-1
catalyst 2 5 g ¾¾¾¾ 2 4 g 2 g DH298 = rxn DS298 C H OH( ) C H ( ) + H O( ) 45.5 kj/mol ; = 126 J/(K mol ) ethanol ethene water rxn 1 atm 760 torr PV (0.775 atm)(0.0854 L) n = = = 0.00264 mol RT -1-1 (0.08206
6. 2. Unit 6: Physical chemistry of spectroscopy, surfaces and chemical and phase equilibria
6. 2 Phase equilibria Many industrial processes involve several phases in equilibrium gases, liquids, solids and even different crystalline forms of the solid state. Predicting the number of phases present
States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.
CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas
1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion
Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic
EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor
EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,
CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)
CHEM 15 HOUR EXAM III 28-OCT-99 NAME (please print) 1. a. given: Ni (s) + 4 CO (g) = Ni(CO) 4 (g) H Rxn = -163 k/mole determine H f for Ni(CO) 4 (g) b. given: Cr (s) + 6 CO (g) = Cr(CO) 6 (g) H Rxn = -26
CHAPTER 12. Gases and the Kinetic-Molecular Theory
CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids
Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)
Gases States of Matter States of Matter Kinetic E (motion) Potential E(interaction) Distance Between (size) Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large
Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide
Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide 2.1 Introduction In order to appreciate the impact of the properties of liquid sulphur dioxide and liquid sulphur trioxide
VACUUM REFRIGERATION SYSTEMS
VACUUM REFRIGERATION SYSTEMS CHILL VACTOR The Croll-Reynolds CHILL-VACTOR is a chiller that uses a vapor flashing process. Water has a pressure-temperature relationship which is its boiling point. If its
Experiment 1: Colligative Properties
Experiment 1: Colligative Properties Determination of the Molar Mass of a Compound by Freezing Point Depression. Objective: The objective of this experiment is to determine the molar mass of an unknown
Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.
Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.
CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION
CHAPTER 4 THE CAUIU-CAPEYRON EQUATION Before starting this chapter, it would probably be a good idea to re-read ections 9. and 9.3 of Chapter 9. The Clausius-Clapeyron equation relates the latent heat
UNDERSTANDING REFRIGERANT TABLES
Refrigeration Service Engineers Society 1666 Rand Road Des Plaines, Illinois 60016 UNDERSTANDING REFRIGERANT TABLES INTRODUCTION A Mollier diagram is a graphical representation of the properties of a refrigerant,
13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory
Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation,
Exp 13 Volumetric Analysis: Acid-Base titration
Exp 13 Volumetric Analysis: Acid-Base titration Exp. 13 video (time: 47:17 minutes) Titration - is the measurement of the volume of a standard solution required to completely react with a measured volume
Test Review # 9. Chemistry R: Form TR9.13A
Chemistry R: Form TR9.13A TEST 9 REVIEW Name Date Period Test Review # 9 Collision theory. In order for a reaction to occur, particles of the reactant must collide. Not all collisions cause reactions.
In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..
Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set
CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING
CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,
Bomb Calorimetry. Example 4. Energy and Enthalpy
Bomb Calorimetry constant volume often used for combustion reactions heat released by reaction is absorbed by calorimeter contents need heat capacity of calorimeter q cal = q rxn = q bomb + q water Example
Chapter 10. Can You... 1. draw the Lewis structure for a given covalently bonded molecule?
Chapter 10 Can You... 1. draw the Lewis structure for a given covalently bonded molecule? e.g. SF 6 and CH 3 Cl 2. identify and count the number of non-bonding and bonding domains within a given covalently
Chapter 7 : Simple Mixtures
Chapter 7 : Simple Mixtures Using the concept of chemical potential to describe the physical properties of a mixture. Outline 1)Partial Molar Quantities 2)Thermodynamics of Mixing 3)Chemical Potentials
Chapter 11 Properties of Solutions
Chapter 11 Properties of Solutions 11.1 Solution Composition A. Molarity moles solute 1. Molarity ( M ) = liters of solution B. Mass Percent mass of solute 1. Mass percent = 1 mass of solution C. Mole
2. Why does the solubility of alcohols decrease with increased carbon chain length?
Colligative properties 1 1. What does the phrase like dissolves like mean. 2. Why does the solubility of alcohols decrease with increased carbon chain length? Alcohol in water (mol/100g water) Methanol
Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version
Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing point depression describes the process where the temperature at which a liquid freezes is lowered by adding another
Vapor Pressure Curves
Why? Vapor Pressure Curves The vapor pressure of a substance depends on the temperature (higher temperature leads to higher vapor pressure). A liquid boils when the vapor pressure equals the atmospheric
10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory
Week lectures--tentative 0.7 Kinetic-Molecular Theory 40 Application to the Gas Laws 0.8 Molecular Effusion and Diffusion 43 Graham's Law of Effusion Diffusion and Mean Free Path 0.9 Real Gases: Deviations
The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10
Our Atmosphere The Gas Laws 99% N 2 and O 2 78% N 2 80 70 Nitrogen Chapter 10 21% O 2 1% CO 2 and the Noble Gases 60 50 40 Oxygen 30 20 10 0 Gas Carbon dioxide and Noble Gases Pressure Pressure = Force
Chapter 13 Properties of Solutions
Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 13 Properties of are homogeneous mixtures of two or more pure substances. In a solution,
The Molar Mass of a Gas
The Molar Mass of a Gas Goals The purpose of this experiment is to determine the number of grams per mole of a gas by measuring the pressure, volume, temperature, and mass of a sample. Terms to Know Molar
= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C
Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.
Lecture 1: Physical Equilibria The Temperature Dependence of Vapor Pressure
Lecture 1: Physical Equilibria The Temperature Dependence of Vapor Pressure Our first foray into equilibria is to examine phenomena associated with two phases of matter achieving equilibrium in which the
THE KINETIC THEORY OF GASES
Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure
Chapter 13. Properties of Solutions
Sample Exercise 13.1 (p. 534) By the process illustrated below, water vapor reacts with excess solid sodium sulfate to form the hydrated form of the salt. The chemical reaction is Na 2 SO 4(s) + 10 H 2
μ α =μ β = μ γ = =μ ω μ α =μ β =μ γ = =μ ω Thus for c components, the number of additional constraints is c(p 1) ( ) ( )
Phase Diagrams 1 Gibbs Phase Rule The Gibbs phase rule describes the degrees of freedom available to describe a particular system with various phases and substances. To derive the phase rule, let us begin
Air Eliminators and Combination Air Eliminators Strainers
Description Air Eliminators and Combination Air Eliminator Strainers are designed to provide separation, elimination and prevention of air in piping systems for a variety of installations and conditions.
Final Exam CHM 3410, Dr. Mebel, Fall 2005
Final Exam CHM 3410, Dr. Mebel, Fall 2005 1. At -31.2 C, pure propane and n-butane have vapor pressures of 1200 and 200 Torr, respectively. (a) Calculate the mole fraction of propane in the liquid mixture
David A. Katz Department of Chemistry Pima Community College
Solutions David A. Katz Department of Chemistry Pima Community College A solution is a HOMOGENEOUS mixture of 2 or more substances in a single phase. One constituent t is usually regarded as the SOLVENT
VAPORIZATION IN MORE DETAIL. Energy needed to escape into gas phase GAS LIQUID. Kinetic energy. Average kinetic energy
30 VAPORIZATION IN MORE DETAIL GAS Energy needed to escape into gas phase LIQUID Kinetic energy Average kinetic energy - For a molecule to move from the liquid phase to the gas phase, it must acquire enough
We will study the temperature-pressure diagram of nitrogen, in particular the triple point.
K4. Triple Point of Nitrogen I. OBJECTIVE OF THE EXPERIMENT We will study the temperature-pressure diagram of nitrogen, in particular the triple point. II. BAKGROUND THOERY States of matter Matter is made
Phase Equilibrium: Fugacity and Equilibrium Calculations. Fugacity
Phase Equilibrium: Fugacity and Equilibrium Calculations (FEC) Phase Equilibrium: Fugacity and Equilibrium Calculations Relate the fugacity and the chemical potential (or the partial molar Gibbs free energy)
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
A.P. Chemistry Practice Test: Ch. 11, Solutions Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Formation of solutions where the process is
MOLECULAR WEIGHT BY BOILING POINT ELEVATION
MOLECULAR WEIGHT BY BOILING POINT ELEVATION BACKGROUND This experiment demonstrates the use of colligative properties. The goal is to measure the molecular weight of a non-volatile solute by determining
Chemistry 110 Lecture Unit 5 Chapter 11-GASES
Chemistry 110 Lecture Unit 5 Chapter 11-GASES I. PROPERITIES OF GASES A. Gases have an indefinite shape. B. Gases have a low density C. Gases are very compressible D. Gases exert pressure equally in all
Partner: Jack 17 November 2011. Determination of the Molar Mass of Volatile Liquids
Partner: Jack 17 November 2011 Determination of the Molar Mass of Volatile Liquids Purpose: The purpose of this experiment is to determine the molar mass of three volatile liquids. The liquid is vaporized
Melting Range 1 Experiment 2
Melting Range 1 Experiment 2 Background Information The melting range of a pure organic solid is the temperature range at which the solid is in equilibrium with its liquid. As heat is added to a solid,
UNIT 1 THERMOCHEMISTRY
UNIT 1 THERMOCHEMISTRY THERMOCHEMISTRY LEARNING OUTCOMES Students will be expected to: THERMOCHEMISTRY STSE analyse why scientific and technological activities take place in a variety individual and group
a) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L
hermodynamics: Examples for chapter 4. 1. One mole of nitrogen gas is allowed to expand from 0.5 to 10 L reversible and isothermal process at 300 K. Calculate the change in molar entropy using a the ideal
Chapter 4 Practice Quiz
Chapter 4 Practice Quiz 1. Label each box with the appropriate state of matter. A) I: Gas II: Liquid III: Solid B) I: Liquid II: Solid III: Gas C) I: Solid II: Liquid III: Gas D) I: Gas II: Solid III:
Air Water Vapor Mixtures: Psychrometrics. Leon R. Glicksman c 1996, 2010
Air Water Vapor Mixtures: Psychrometrics Leon R. Glicksman c 1996, 2010 Introduction To establish proper comfort conditions within a building space, the designer must consider the air temperature and the
7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.
CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,
Thermodynamics. Chapter 13 Phase Diagrams. NC State University
Thermodynamics Chapter 13 Phase Diagrams NC State University Pressure (atm) Definition of a phase diagram A phase diagram is a representation of the states of matter, solid, liquid, or gas as a function
13.3 Factors Affecting Solubility Solute-Solvent Interactions Pressure Effects Temperature Effects
Week 3 Sections 13.3-13.5 13.3 Factors Affecting Solubility Solute-Solvent Interactions Pressure Effects Temperature Effects 13.4 Ways of Expressing Concentration Mass Percentage, ppm, and ppb Mole Fraction,
FUNDAMENTALS OF ENGINEERING THERMODYNAMICS
FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant
Thermodynamics and Equilibrium
Chapter 19 Thermodynamics and Equilibrium Concept Check 19.1 You have a sample of 1.0 mg of solid iodine at room temperature. Later, you notice that the iodine has sublimed (passed into the vapor state).
Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed:
Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Your Name: Date: Partner(s) Names: Objectives: React magnesium metal with hydrochloric acid, collecting the hydrogen over water. Calculate the grams
Chemistry B11 Chapter 4 Chemical reactions
Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl
Optimization of Natural Gas Processing Plants Including Business Aspects
Page 1 of 12 Optimization of Natural Gas Processing Plants Including Business Aspects KEITH A. BULLIN, Bryan Research & Engineering, Inc., Bryan, Texas KENNETH R. HALL, Texas A&M University, College Station,
Performing Calculatons
Performing Calculatons There are three basic units for measurement in the organic laboratory mass, volume, and number, measured in moles. Most of the other types of measurements are combinations of them,
Materials 10-mL graduated cylinder l or 2-L beaker, preferably tall-form Thermometer
VAPOR PRESSURE OF WATER Introduction At very low temperatures (temperatures near the freezing point), the rate of evaporation of water (or any liquid) is negligible. But as its temperature increases, more
Unit 3: States of Matter Practice Exam
Page 1 Unit 3: States of Matter Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Two gases with unequal masses are injected into opposite
Description of a Basic Vacuum System
Description of a Basic Vacuum System Figure 1: Configuration of a basic vacuum system. The system, illustrated in Figure 1, contains the essential elements typically required to obtain high vacuum. The
Chapter 14 Solutions
Chapter 14 Solutions 1 14.1 General properties of solutions solution a system in which one or more substances are homogeneously mixed or dissolved in another substance two components in a solution: solute
Figure 56. Simple mixing process with process specification for the outlet stream.
Flowsheet Analysis One of the most useful functions of process simulators is the ability to manipulate and analyze the different design variables to determine the required value or study its effect on
Chemistry 101 Generating Hydrogen Gas
Chemistry 101 Generating Hydrogen Gas Objectives To experimentally verify the molar volume of hydrogen gas at STP To gain experience in collecting gas over water Discussion The molar volume of a gas is
R407C GUIDELINES FOR UTILIZATION OF. DATE: August 2009 REFERENCE DOCUMENT NO. RD-0005-E GUIDELINES FOR UTILIZATION OF R407C
GUIDELINES FOR UTILIZATION OF R407C 2009 Tecumseh Products Company. All rights reserved. Page 1 of 6 After many years of testing and investigation, R407C is recognized as a suitable alternative refrigerant
Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages 385 389)
13 STATES OF MATTER SECTION 13.1 THE NATURE OF GASES (pages 385 389) This section introduces the kinetic theory and describes how it applies to gases. It defines gas pressure and explains how temperature
VAPOR PRESSURE AS A FUNCTION OF TEMPERATURE. This laboratory covers material presented in section 11.8 of the 9 th Ed. of the Chang text.
VAPOR PRESSURE AS A FUNCTION OF TEMPERATURE Objectives: (1) Observe and measure the change in the vapor pressure (dependent variable) as a function of temperature (independent variable). (2) Analyze the
The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.
The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed
1.4.6-1.4.8 Gas Laws. Heat and Temperature
1.4.6-1.4.8 Gas Laws Heat and Temperature Often the concepts of heat and temperature are thought to be the same, but they are not. Perhaps the reason the two are incorrectly thought to be the same is because
Chapter 5 Student Reading
Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.
DEVELOPMENT OF A TWIN SCREW EXPRESSOR AS A THROTTLE VALVE REPLACEMENT FOR WATER-COOLED CHILLERS
DEVELOPMENT OF A TWIN SCREW EXPRESSOR AS A THROTTLE VALVE REPLACEMENT FOR WATER-COOLED CHILLERS J J Brasz, Carrier Corporation, Syracuse, NY, 13221, USA [email protected] I K Smith and N Stosic
Lecture 3: Models of Solutions
Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP4, Thermodynamics and Phase Diagrams, H. K. D. H. Bhadeshia Lecture 3: Models of Solutions List of Symbols Symbol G M
THE HUMIDITY/MOISTURE HANDBOOK
THE HUMIDITY/MOISTURE HANDBOOK Table of Contents Introduction... 3 Relative Humidity... 3 Partial Pressure... 4 Saturation Pressure (Ps)... 5 Other Absolute Moisture Scales... 8 % Moisture by Volume (%M
10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory
The first scheduled quiz will be given next Tuesday during Lecture. It will last 5 minutes. Bring pencil, calculator, and your book. The coverage will be pp 364-44, i.e. Sections 0.0 through.4. 0.7 Theory
Phase diagram of water. Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure.
Phase diagram of water Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure. WATER Covers ~ 70% of the earth s surface Life on earth
PART 1. Transport Processes: Momentum, Heat, and Mass
PART 1 Transport Processes: Momentum, Heat, and Mass CHAPTER 1 Introduction to Engineering Principles and Units 1.1 CLASSIFICATION OF TRANSPORT PROCESSES AND SEPARATION PROCESSES (UNIT OPERATIONS) 1.1A
Intermolecular and Ionic Forces
Intermolecular and Ionic Forces Introduction: Molecules are attracted to each other in the liquid and solid states by intermolecular, or attractive, forces. These are the attractions that must be overcome
