MCS 563 Spring 2014 Analytic Symbolic Computation Wednesday 9 April. Hilbert Polynomials
|
|
|
- MargaretMargaret Bradford
- 9 years ago
- Views:
Transcription
1 Hilbert Polynomials For a monomial ideal, we derive the dimension counting the monomials in the complement, arriving at the notion of the Hilbert polynomial. The first half of the note is derived from [1, Chapter 9]. Following [2], cone decompositions of a ideal bound the complexity of Gröbner bases. 1 Dimension of the Variety of a Monomial Ideal The variety of a monomial ideal I is a union of coordinate planes. The dimension of this variety is the highest dimension over all planes in this union. For n variables, this dimension equals n m, where m is the minimal number of variables occurring in a generator x a of I. If I is zero dimensional, then the number of monomials not in I (visualized as the number of dots under the staircase representation of I equals the multiplicity of 0 V (I. For positive dimension I, we count the monomials not in I. For I = x a1 1 xa2 2, the complement of I consists of (a 1 + a 2 lines of monomials: { x i 1x j 2 i = 0, 1,..., a 1 1, j = 0, 1,...,a 2 1 }. For a monomial ideal I generated by more than one monomial, see for example Figure 1, we take as b 1 and b 2 the respective smallest powers of x 1 and x 2 of the generators of I and count (b 1 + b 2 lines of monomials in addition to the finite number of monomials under the staircase, counting upwards starting at (b 1, b 2. Figure 1: Black dots correspond to the generators of the monomial ideal I = x 3 1x 5 2, x 5 1x 3 2, x 6 1x 2 2. Empty circles belong to the complement of I. Observe that dividing all generators by x 3 1 x2 2 will give an ideal that has 0 as a 7-fold solution. For degree d 9, the number of monomials in the complement of I of degree d equals 5d+2 = (d+1+d+(d 1+(d+1+d+7 6 as shown by counting the monomials on the diagonal lines on the right staircase. The calculation explained in the caption of Figure 1 generalizes for any monomial ideal in two variables, leading to a linear polynomial in the degree d. This polynomial is the Hilbert polynomial. Theorem 1.1 Consider a monomial ideal I in a polynomial ring of n variables with dimv (I = d. The number of monomials not in I of degree s, for s sufficiently large, is a polynomial of degree d in s with positive coefficient of s d. To gain some intuition for why Theorem 1.1 might hold, consider ideals generated by one monomial. For example in 3 variables, consider I = x a3 3 and count all monomials not in I of degree s. These monomials lie in a 3 planes perpendicular to the third coordinate axis. Every plane holds s(s + 1/2 monomials s, so the polynomial is a 3 s(s + 1/2. For I = x a1 1 xa2 2 xa3 2, we have (a 1 + a 2 + a 3 planes of monomials not in I. For monomial ideals in 3 variables generated by more than one monomial, imagine a 3-dimensional generalization of Figure 1. As in 2 variables, we define powers b i as the smallest powers of x i in the generators of the monomial ideal. Then we count the monomials in the complement of x b1 1 xb2 2 xb3 3. For sufficiently large degrees, we add the finite number of monomials under the staircase, starting the count at (b 1, b 2, b 3. Jan Verschelde UIC, Dept of Math, Stat & CS Lecture 34, page 1
2 Proposition 1.1 For a monomial ideal I in a polynomial ring of n variables of dimension d, denote by h(s the number of monomials not in I of degree s, for s sufficiently large, then h(s = d ( a d i i=0 s d i, a i Z, a d > 0. (1 Sketch of Proof. That deg(h(s = d follows from Theorem 1.1. Furthermore h(s returns natural numbers when evaluated at natural values for s. Counting the number of monomials for d + 1 consecutive sufficiently large values of s leads to a special interpolation problem, solved by Gregory-Newton interpolation. The coefficients of the Gregory-Newton interpolating polynomial are binomial coefficients. 2 The Dimension of a Variety Given a term order >, a Gröbner basis G for an ideal I in K[x] gives a basis for the initial ideal in > (I as { LT > (g g G }. With G we have sufficiently many leading monomials for the division (or normal form algorithm to give a unique outcome. If the Hilbert polynomial for in > (I is the same as the Hilbert polynomial for I, then with a Gröbner basis we have an algorithm to compute dim(v (I. To reduce the dimension computation to counting monomials, we restrict our consideration to polynomials of bounded degree. Denote by K[x] s = { f K[x] deg(f s } and I s = { f I deg(f s } and in > (I s = { f in > (I deg(f s }. (2 With this notation, we can formally describe the If sentence as deg(h I (s = dimk[x] s /I s (3 = dimk[x] s /in > (I s (4 = deg(h in> (I (5 The equation between (3 and (4 means that the quotient rings have the same number of basis elements. Justifying this equation can happen via a Gröbner basis G > for I. An argument by contradiction assumes a different number of basis elements for the quotient rings, which then conflicts with the property of G > a Gröbner basis for I. 3 Using Macaulay 2 i1 : R = QQ[x,y]; i2 : I = ideal(x^3*y^5,x^5*y^3,x^6*y^2; i3 : h = hilbertpolynomial I o3 = 5*P 0 o3 : ProjectiveHilbertPolynomial i4 : H = hilbertpolynomial(i, Projective=>false o4 = 5 o4 : QQ[i] Jan Verschelde UIC, Dept of Math, Stat & CS Lecture 34, page 2
3 To interpret the results for our running example, we must know that Macaulay2 computes the projective Hilbert function. Let h a I (s and hp I (s be the respective affine and projective Hilbert functions. The relationship between h a I and hp I is summarized below. Theorem 3.1 h p I (s = ha I (s ha I (s 1 For our running example, we can thus explain the outcome obtained with Macaulay2 as follows: h p I (s = ha I (s ha I (s 1 = 5s + 2 (5(s = 5s + 2 (5s = 5s + 2 5s = 5. 4 The Complexity of Gröbner Bases In [2], the following theorem is proven: Theorem 4.1 Let I = f 1, f 2,...,f N be an ideal in K[x] and let d = N max i=1 deg(f i. For any term order >, the degree of polynomials required in a Gröbner basis for I with respect to > is bounded by ( d 2 2 n d. (6 As the Hilbert function counts the number of monomials in the complement of the ideal, it provides a measure for the monomials in a Gröbner basis of the ideal. 5 Cone Decompositions Let u be a subset of X = {x 1, x 2,...,x n } and f K[x] a homogeneous polynomial. The set is a cone spanned by f in u. C(f,u = { fg g K[u] } (7 The name for C(f,u is justified by a graphical representation for two variables. For example C(x 2 y 3, is just one dot at (2, 3. The cone C(x 2 y 3, {x} are all multiples for x 2 y 3, depicted as a ray extending in the left x-direction. The cone C(x 2 y 3, {x, y} is a proper cone extending both to the left and right direction. Figure 2 illustrates a collection of cones and a cone decomposition of a monomial ideal. Let {f 1, f 2,..., f r } be a set of homogeneous polynomials with {u 1,u 2,...,u r } a set of subsets of X. Then P = {(f 1,u 1, (f 2,u 2,..., (f r,u r } is a cone decomposition of R, a subring of K[x] if R = C(f 1,u 1 C(f 2,u 2 C(f r,u r, (8 i.e.: the cones C(f i,u i form a direct decomposition of R. The right of Figure 2 shows a cone decomposition of a monomial ideal. Lemma 5.1 provides an algorithm to split K[x] relative to an ideal I. Lemma 5.1 Let I be a monomial ideal, f K[x], and B is a basis for I : f. Then Jan Verschelde UIC, Dept of Math, Stat & CS Lecture 34, page 3
4 C(x 2 y, {y} C(x 3 y, {x, y} C(y 2, Figure 2: At the left we see three cones: C(y 2, is one dot, C(x 2 y 3, {y} is a ray, and the cone C(x 3 y, {x, y} has dimension 2. At the right we see the cone decomposition for I = x 4 y, xy 3, y 5 as the collection of cones {C(x 4 y, {x}, C(x 4 y 2, {x}, C(xy 3, {x, y}, C(xy 3, {x, y}, C(y 5, {y}}. 1. C(f,u I 1 B. 2. C(f,u I = B { u a a N u }. Proof B 1 I : f f I C(f, X I. 2. Assume C(f,u I =, then for any monomial u a : fu a C(f,u fu a I (9 u a I : f (10 u a B. (11 Assume B { u a a N u } =. Then for any u a : u a I : f, otherwise B would have to contain a divisor of u a of the form u b. So u a I : f fu a I. By the definition of C(f,u, every polynomial in C(f,u is of the form fu a and hence not in I. The Hilbert function of C(f,u depends only on deg(f and the size u of u: h C(f, (s = { 0 if s deg(f 1 if s = deg(f (12 and ( 0 if s < deg(f for u > 0 : h C(f,u (s = s deg(f + u 1 if s deg(f. u 1 For any cone decomposition P of R, the Hilbert function of R is h R (s = h C(f,u (s. (14 (f,u P In [2], the following expression for the Hilbert polynomial of an ideal I is derived: h I (s = ( s d + n 1 n 1 ( s d + n + n 1 + n ( s ai + i 1 i i=1 (13, (15 where the coefficients a i are the coefficients of the Hilbert polynomial of the cone decomposition. Applying the backward difference operator and other techniques leads to bounds on the coefficients of the Hilbert polynomial. Jan Verschelde UIC, Dept of Math, Stat & CS Lecture 34, page 4
5 6 Exercises 1. Use a computer algebra package to derive the Gregory-Newton interpolation formulas to interpolate (i, h i Z 2, for i = d, d + 1,...,d + n. Show that the interpolating polynomial is a linear combination of binomial coefficients. 2. Explore the command hilbertseries in Macaulay 2. References [1] D. Cox, J. Little, and D. O Shea. Ideals, Varieties and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer Verlag, second edition, [2] T. Dubé. The structure of polynomial ideals and Gröbner bases. SIAM J. Comput., 19(4: , Jan Verschelde UIC, Dept of Math, Stat & CS Lecture 34, page 5
Gröbner Bases and their Applications
Gröbner Bases and their Applications Kaitlyn Moran July 30, 2008 1 Introduction We know from the Hilbert Basis Theorem that any ideal in a polynomial ring over a field is finitely generated [3]. However,
Quotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar
On the representability of the bi-uniform matroid
On the representability of the bi-uniform matroid Simeon Ball, Carles Padró, Zsuzsa Weiner and Chaoping Xing August 3, 2012 Abstract Every bi-uniform matroid is representable over all sufficiently large
11 Multivariate Polynomials
CS 487: Intro. to Symbolic Computation Winter 2009: M. Giesbrecht Script 11 Page 1 (These lecture notes were prepared and presented by Dan Roche.) 11 Multivariate Polynomials References: MC: Section 16.6
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
Math 4310 Handout - Quotient Vector Spaces
Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22
FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 RAVI VAKIL CONTENTS 1. Discrete valuation rings: Dimension 1 Noetherian regular local rings 1 Last day, we discussed the Zariski tangent space, and saw that it
(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9
Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned
JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
Indiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
Algebra 3: algorithms in algebra
Algebra 3: algorithms in algebra Hans Sterk 2003-2004 ii Contents 1 Polynomials, Gröbner bases and Buchberger s algorithm 1 1.1 Introduction............................ 1 1.2 Polynomial rings and systems
LEARNING OBJECTIVES FOR THIS CHAPTER
CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. Finite-Dimensional
CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY
January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.
Vocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
ON THE EMBEDDING OF BIRKHOFF-WITT RINGS IN QUOTIENT FIELDS
ON THE EMBEDDING OF BIRKHOFF-WITT RINGS IN QUOTIENT FIELDS DOV TAMARI 1. Introduction and general idea. In this note a natural problem arising in connection with so-called Birkhoff-Witt algebras of Lie
3 Factorisation into irreducibles
3 Factorisation into irreducibles Consider the factorisation of a non-zero, non-invertible integer n as a product of primes: n = p 1 p t. If you insist that primes should be positive then, since n could
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
Computing divisors and common multiples of quasi-linear ordinary differential equations
Computing divisors and common multiples of quasi-linear ordinary differential equations Dima Grigoriev CNRS, Mathématiques, Université de Lille Villeneuve d Ascq, 59655, France [email protected]
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied
POLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
Vector and Matrix Norms
Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty
MATH1231 Algebra, 2015 Chapter 7: Linear maps
MATH1231 Algebra, 2015 Chapter 7: Linear maps A/Prof. Daniel Chan School of Mathematics and Statistics University of New South Wales [email protected] Daniel Chan (UNSW) MATH1231 Algebra 1 / 43 Chapter
From Factorial Designs to Hilbert Schemes
From Factorial Designs to Hilbert Schemes Lorenzo Robbiano Università di Genova Dipartimento di Matematica Lorenzo Robbiano (Università di Genova) Factorial Designs and Hilbert Schemes Genova, June 2015
fg = f g. 3.1.1. Ideals. An ideal of R is a nonempty k-subspace I R closed under multiplication by elements of R:
30 3. RINGS, IDEALS, AND GRÖBNER BASES 3.1. Polynomial rings and ideals The main object of study in this section is a polynomial ring in a finite number of variables R = k[x 1,..., x n ], where k is an
it is easy to see that α = a
21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore
Section 6.1 - Inner Products and Norms
Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,
The Geometry of Polynomial Division and Elimination
The Geometry of Polynomial Division and Elimination Kim Batselier, Philippe Dreesen Bart De Moor Katholieke Universiteit Leuven Department of Electrical Engineering ESAT/SCD/SISTA/SMC May 2012 1 / 26 Outline
Max-Min Representation of Piecewise Linear Functions
Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 43 (2002), No. 1, 297-302. Max-Min Representation of Piecewise Linear Functions Sergei Ovchinnikov Mathematics Department,
Higher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
FACTORIZATION OF TROPICAL POLYNOMIALS IN ONE AND SEVERAL VARIABLES. Nathan B. Grigg. Submitted to Brigham Young University in partial fulfillment
FACTORIZATION OF TROPICAL POLYNOMIALS IN ONE AND SEVERAL VARIABLES by Nathan B. Grigg Submitted to Brigham Young University in partial fulfillment of graduation requirements for University Honors Department
26 Ideals and Quotient Rings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 26 Ideals and Quotient Rings In this section we develop some theory of rings that parallels the theory of groups discussed
LAKE ELSINORE UNIFIED SCHOOL DISTRICT
LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:
Similarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
Computational algebraic geometry
Computational algebraic geometry Learning coefficients via symbolic and numerical methods Anton Leykin Georgia Tech AIM, Palo Alto, December 2011 Let k be a field (R or C). Ideals varieties Ideal in R
MATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC. 1. Introduction
Acta Math. Univ. Comenianae Vol. LXXXI, 1 (2012), pp. 71 77 71 CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC E. BALLICO Abstract. Here we study (in positive characteristic) integral curves
H/wk 13, Solutions to selected problems
H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS
POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).
ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath
International Electronic Journal of Algebra Volume 7 (2010) 140-151 ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP A. K. Das and R. K. Nath Received: 12 October 2009; Revised: 15 December
Orthogonal Diagonalization of Symmetric Matrices
MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding
3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
BANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
Solutions to Math 51 First Exam January 29, 2015
Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not
Figure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
Inner product. Definition of inner product
Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product
Row Ideals and Fibers of Morphisms
Michigan Math. J. 57 (2008) Row Ideals and Fibers of Morphisms David Eisenbud & Bernd Ulrich Affectionately dedicated to Mel Hochster, who has been an inspiration to us for many years, on the occasion
α = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
Understanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
Unique Factorization
Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon
s-convexity, model sets and their relation
s-convexity, model sets and their relation Zuzana Masáková Jiří Patera Edita Pelantová CRM-2639 November 1999 Department of Mathematics, Faculty of Nuclear Science and Physical Engineering, Czech Technical
T ( a i x i ) = a i T (x i ).
Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)
MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab
MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 is established to accommodate students desiring non-course based remediation in developmental mathematics. This structure will
Factorization Algorithms for Polynomials over Finite Fields
Degree Project Factorization Algorithms for Polynomials over Finite Fields Sajid Hanif, Muhammad Imran 2011-05-03 Subject: Mathematics Level: Master Course code: 4MA11E Abstract Integer factorization is
FIBER PRODUCTS AND ZARISKI SHEAVES
FIBER PRODUCTS AND ZARISKI SHEAVES BRIAN OSSERMAN 1. Fiber products and Zariski sheaves We recall the definition of a fiber product: Definition 1.1. Let C be a category, and X, Y, Z objects of C. Fix also
Algebra 1 Course Title
Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points
Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a
Mathematics 31 Pre-calculus and Limits
Mathematics 31 Pre-calculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals
Duality of linear conic problems
Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least
ISOMETRIES OF R n KEITH CONRAD
ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x
Orthogonal Projections and Orthonormal Bases
CS 3, HANDOUT -A, 3 November 04 (adjusted on 7 November 04) Orthogonal Projections and Orthonormal Bases (continuation of Handout 07 of 6 September 04) Definition (Orthogonality, length, unit vectors).
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us
Florida Algebra 1 End-of-Course Assessment Item Bank, Polk County School District
Benchmark: MA.912.A.2.3; Describe the concept of a function, use function notation, determine whether a given relation is a function, and link equations to functions. Also assesses MA.912.A.2.13; Solve
7. Some irreducible polynomials
7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of
KEANSBURG SCHOOL DISTRICT KEANSBURG HIGH SCHOOL Mathematics Department. HSPA 10 Curriculum. September 2007
KEANSBURG HIGH SCHOOL Mathematics Department HSPA 10 Curriculum September 2007 Written by: Karen Egan Mathematics Supervisor: Ann Gagliardi 7 days Sample and Display Data (Chapter 1 pp. 4-47) Surveys and
Mathematical Induction. Mary Barnes Sue Gordon
Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,
Matrix Representations of Linear Transformations and Changes of Coordinates
Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under
Chapter 20. Vector Spaces and Bases
Chapter 20. Vector Spaces and Bases In this course, we have proceeded step-by-step through low-dimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit
Recall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
1 Review of Least Squares Solutions to Overdetermined Systems
cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares
INCIDENCE-BETWEENNESS GEOMETRY
INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full
MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao [email protected]
Integer Polynomials June 9, 007 Yufei Zhao [email protected] We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing
3. Prime and maximal ideals. 3.1. Definitions and Examples.
COMMUTATIVE ALGEBRA 5 3.1. Definitions and Examples. 3. Prime and maximal ideals Definition. An ideal P in a ring A is called prime if P A and if for every pair x, y of elements in A\P we have xy P. Equivalently,
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document
SOLVING QUADRATIC EQUATIONS OVER POLYNOMIAL RINGS OF CHARACTERISTIC TWO
Publicacions Matemàtiques, Vol 42 (1998), 131 142. SOLVING QUADRATIC EQUATIONS OVER POLYNOMIAL RINGS OF CHARACTERISTIC TWO Jørgen Cherly, Luis Gallardo, Leonid Vaserstein and Ethel Wheland Abstract We
MATH10040 Chapter 2: Prime and relatively prime numbers
MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive
Math 1. Month Essential Questions Concepts/Skills/Standards Content Assessment Areas of Interaction
Binghamton High School Rev.9/21/05 Math 1 September What is the unknown? Model relationships by using Fundamental skills of 2005 variables as a shorthand way Algebra Why do we use variables? What is a
Linear Equations in One Variable
Linear Equations in One Variable MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this section we will learn how to: Recognize and combine like terms. Solve
Lecture 4: AC 0 lower bounds and pseudorandomness
Lecture 4: AC 0 lower bounds and pseudorandomness Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: Jason Perry and Brian Garnett In this lecture,
1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain
Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
Section 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
Algebra I. In this technological age, mathematics is more important than ever. When students
In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,
Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.
Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.
RINGS WITH A POLYNOMIAL IDENTITY
RINGS WITH A POLYNOMIAL IDENTITY IRVING KAPLANSKY 1. Introduction. In connection with his investigation of projective planes, M. Hall [2, Theorem 6.2]* proved the following theorem: a division ring D in
