In the Beginning The first ISA appears on the IBM System 360 In the good old days
|
|
|
- Dora Stewart
- 9 years ago
- Views:
Transcription
1 RISC vs CISC 66
2 In the Beginning The first ISA appears on the IBM System 360 In the good old days Initially, the focus was on usability by humans. Lots of user-friendly instructions (remember the x86 addressing modes). Memory was expensive, so code-density mattered. Many processors were microcoded -- each instruction actually triggered the execution of a builtin function in the CPU. Simple hardware to execute complex instructions (but CPIs are very, very high)...so... Many, many different instructions, lots of bells and whistles Variable-length instruction encoding to save space.... their success had some downsides... ISAs evolved organically. They got messier, and more complex. 67
3 Things Changed In the modern era Compilers write code, not humans. Memory is cheap. Code density is unimportant. Low CPI should be possible, but only for simple instructions We learned a lot about how to design ISAs, how to let them evolve gracefully, etc. So, architects started with with a clean slate... 68
4 Reduced Instruction Set Computing (RISC) Simple, regular ISAs, mean simple CPUs, and simple CPUs can go fast. Fast clocks. Low CPI. Simple ISAs will also mean more instruction (increasing IC), but the benefits should outweigh this. Compiler-friendly, not user-friendly. Simple, regular ISAs, will be easy for compilers to use A few, simple, flexible, fast operations that compiler can combine easily. Separate memory access and data manipulation Instructions access memory or manipulate register values. Not both. Load-store architectures (like MIPS) 69
5 Instruction Formats Arithmetic: Register[rd] = Register[rs] + Register[rt] Register indirect jumps: PC = PC + Register[rs] Arithmetic: Register[rd] = Register[rs] + Imm Branches: If Register[rs] == Register[rt], goto PC + Immediate Memory: Memory[Register[rs] + Immediate] = Register[rt] Register[rt] = Memory[Register[rs] + Immediate] Direct jumps: PC = Address Syscalls, break, etc. 70
6 RISC Characteristics of MIPS All instructions have <= 1 arithmetic op <= 1 memory access <= 2 register reads <= 1 register write <= 1 branch It needs a small, fixed amount of hardware. Instructions operate on memory or registers not both Load/Store Architecture Decoding is easy Uniform opcode location Uniform register location Always 4 bytes -> the location of the next PC is to know. Uniform execution algorithm Fetch Decode Execute Memory Write Back Compiling is easy No complex instructions to reason about No special registers The HW is simple A skilled undergrad can build one in 10 weeks. 33 instructions can run complex programs.
7 CISC: x86 x86 is the prime example of CISC (there were many others long ago) Many, many instruction formats. Variable length. Many complex rules about which register can be used when, and which addressing modes are valid where. Very complex instructions Combined memory/arithmetic. Special-purpose registers. Many, many instructions. Implementing x86 correctly is almost intractable 74
8 Mostly RISC: ARM ARM is somewhere in between Four instruction formats. Fixed length. General purpose registers (except the condition codes) Moderately complex instructions, but they are still regular -- all instructions look more or less the same. ARM targeted embedded systems Code density is important Performance (and clock speed) is less critical Both of these argue for more complex instructions. But they can still be regular, easy to decode, and crafted to minimize hardware complexity Implementing an ARM processor is also tractable for 141L, but it would be harder than MIPS 75
9 RISCing the CISC Everyone believes that RISC ISAs are better for building fast processors. So, how do Intel and AMD build fast x86 processors? Despite using a CISC ISA, these processors are actually RISC processors The preceding inside was a dramatization. MIPS Internally, instructions they convert were used x86 instructions for clarity into and MIPS-like because micro-ops I (uops), and feed them to a RISC-style processor x86 Code movb $0x05, %al movl -4(%ebp), %eax movl %eax, -4(%ebp) movl %R0, -4(%R1,%R2,4) movl %R0, %R1 had some laying around. No x86 instruction were harmed uops in the production of this slide. ori $t0, $t0, 5 lw $t0, -4($t1) sw $t0, -4($t1) slr $at, $t2, 2 add $at, $at, $t1 sw $t0, k($at) ori $t0, $t0, $zero 76
10 VLIWing the CISC We can also get rid of x86 in software. Transmeta did this. They built a processor that was completely hidden behind a soft implementation of the x86 instruction set. Their system would translate x86 instruction into an internal VLIW instruction set and execute that instead. Originally, their aim was high performance. That turned out to be hard, so they focused low power instead. Transmeta eventually lost to Intel Once Intel decided it cared about power (in part because Transmeta made the case for low-power x86 processors), it started producing very efficient CPUs. 77
11 The End
Instruction Set Architecture. or How to talk to computers if you aren t in Star Trek
Instruction Set Architecture or How to talk to computers if you aren t in Star Trek The Instruction Set Architecture Application Compiler Instr. Set Proc. Operating System I/O system Instruction Set Architecture
Intel 8086 architecture
Intel 8086 architecture Today we ll take a look at Intel s 8086, which is one of the oldest and yet most prevalent processor architectures around. We ll make many comparisons between the MIPS and 8086
Overview. CISC Developments. RISC Designs. CISC Designs. VAX: Addressing Modes. Digital VAX
Overview CISC Developments Over Twenty Years Classic CISC design: Digital VAX VAXÕs RISC successor: PRISM/Alpha IntelÕs ubiquitous 80x86 architecture Ð 8086 through the Pentium Pro (P6) RJS 2/3/97 Philosophy
Processor Architectures
ECPE 170 Jeff Shafer University of the Pacific Processor Architectures 2 Schedule Exam 3 Tuesday, December 6 th Caches Virtual Memory Input / Output OperaKng Systems Compilers & Assemblers Processor Architecture
Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University [email protected].
Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University [email protected] Review Computers in mid 50 s Hardware was expensive
LSN 2 Computer Processors
LSN 2 Computer Processors Department of Engineering Technology LSN 2 Computer Processors Microprocessors Design Instruction set Processor organization Processor performance Bandwidth Clock speed LSN 2
Instruction Set Design
Instruction Set Design Instruction Set Architecture: to what purpose? ISA provides the level of abstraction between the software and the hardware One of the most important abstraction in CS It s narrow,
CS 152 Computer Architecture and Engineering. Lecture 22: Virtual Machines
CS 152 Computer Architecture and Engineering Lecture 22: Virtual Machines Krste Asanovic Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~krste
Instruction Set Architecture
Instruction Set Architecture Consider x := y+z. (x, y, z are memory variables) 1-address instructions 2-address instructions LOAD y (r :=y) ADD y,z (y := y+z) ADD z (r:=r+z) MOVE x,y (x := y) STORE x (x:=r)
Introducción. Diseño de sistemas digitales.1
Introducción Adapted from: Mary Jane Irwin ( www.cse.psu.edu/~mji ) www.cse.psu.edu/~cg431 [Original from Computer Organization and Design, Patterson & Hennessy, 2005, UCB] Diseño de sistemas digitales.1
İSTANBUL AYDIN UNIVERSITY
İSTANBUL AYDIN UNIVERSITY FACULTY OF ENGİNEERİNG SOFTWARE ENGINEERING THE PROJECT OF THE INSTRUCTION SET COMPUTER ORGANIZATION GÖZDE ARAS B1205.090015 Instructor: Prof. Dr. HASAN HÜSEYİN BALIK DECEMBER
Computer Organization and Components
Computer Organization and Components IS5, fall 25 Lecture : Pipelined Processors ssociate Professor, KTH Royal Institute of Technology ssistant Research ngineer, University of California, Berkeley Slides
Computer Architectures
Computer Architectures 2. Instruction Set Architectures 2015. február 12. Budapest Gábor Horváth associate professor BUTE Dept. of Networked Systems and Services [email protected] 2 Instruction set architectures
Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2
Lecture Handout Computer Architecture Lecture No. 2 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3 Computer Systems Design and Architecture 2.1, 2.2, 3.2 Summary 1) A taxonomy of
CPU Organization and Assembly Language
COS 140 Foundations of Computer Science School of Computing and Information Science University of Maine October 2, 2015 Outline 1 2 3 4 5 6 7 8 Homework and announcements Reading: Chapter 12 Homework:
ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM
ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM 1 The ARM architecture processors popular in Mobile phone systems 2 ARM Features ARM has 32-bit architecture but supports 16 bit
EC 362 Problem Set #2
EC 362 Problem Set #2 1) Using Single Precision IEEE 754, what is FF28 0000? 2) Suppose the fraction enhanced of a processor is 40% and the speedup of the enhancement was tenfold. What is the overall speedup?
Chapter 2 Logic Gates and Introduction to Computer Architecture
Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are
Property of ISA vs. Uarch?
More ISA Property of ISA vs. Uarch? ADD instruction s opcode Number of general purpose registers Number of cycles to execute the MUL instruction Whether or not the machine employs pipelined instruction
Computer Organization and Architecture
Computer Organization and Architecture Chapter 11 Instruction Sets: Addressing Modes and Formats Instruction Set Design One goal of instruction set design is to minimize instruction length Another goal
Week 1 out-of-class notes, discussions and sample problems
Week 1 out-of-class notes, discussions and sample problems Although we will primarily concentrate on RISC processors as found in some desktop/laptop computers, here we take a look at the varying types
A Unified View of Virtual Machines
A Unified View of Virtual Machines First ACM/USENIX Conference on Virtual Execution Environments J. E. Smith June 2005 Introduction Why are virtual machines interesting? They allow transcending of interfaces
Instruction Set Architecture (ISA)
Instruction Set Architecture (ISA) * Instruction set architecture of a machine fills the semantic gap between the user and the machine. * ISA serves as the starting point for the design of a new machine
Administration. Instruction scheduling. Modern processors. Examples. Simplified architecture model. CS 412 Introduction to Compilers
CS 4 Introduction to Compilers ndrew Myers Cornell University dministration Prelim tomorrow evening No class Wednesday P due in days Optional reading: Muchnick 7 Lecture : Instruction scheduling pr 0 Modern
Central Processing Unit (CPU)
Central Processing Unit (CPU) CPU is the heart and brain It interprets and executes machine level instructions Controls data transfer from/to Main Memory (MM) and CPU Detects any errors In the following
ARM Architecture. ARM history. Why ARM? ARM Ltd. 1983 developed by Acorn computers. Computer Organization and Assembly Languages Yung-Yu Chuang
ARM history ARM Architecture Computer Organization and Assembly Languages g Yung-Yu Chuang 1983 developed by Acorn computers To replace 6502 in BBC computers 4-man VLSI design team Its simplicity it comes
18-447 Computer Architecture Lecture 3: ISA Tradeoffs. Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 1/18/2013
18-447 Computer Architecture Lecture 3: ISA Tradeoffs Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 1/18/2013 Reminder: Homeworks for Next Two Weeks Homework 0 Due next Wednesday (Jan 23), right
CSE 141 Introduction to Computer Architecture Summer Session I, 2005. Lecture 1 Introduction. Pramod V. Argade June 27, 2005
CSE 141 Introduction to Computer Architecture Summer Session I, 2005 Lecture 1 Introduction Pramod V. Argade June 27, 2005 CSE141: Introduction to Computer Architecture Instructor: Pramod V. Argade ([email protected])
EE282 Computer Architecture and Organization Midterm Exam February 13, 2001. (Total Time = 120 minutes, Total Points = 100)
EE282 Computer Architecture and Organization Midterm Exam February 13, 2001 (Total Time = 120 minutes, Total Points = 100) Name: (please print) Wolfe - Solution In recognition of and in the spirit of the
Instruction Set Architecture
CS:APP Chapter 4 Computer Architecture Instruction Set Architecture Randal E. Bryant adapted by Jason Fritts http://csapp.cs.cmu.edu CS:APP2e Hardware Architecture - using Y86 ISA For learning aspects
Q. Consider a dynamic instruction execution (an execution trace, in other words) that consists of repeats of code in this pattern:
Pipelining HW Q. Can a MIPS SW instruction executing in a simple 5-stage pipelined implementation have a data dependency hazard of any type resulting in a nop bubble? If so, show an example; if not, prove
Design Cycle for Microprocessors
Cycle for Microprocessors Raúl Martínez Intel Barcelona Research Center Cursos de Verano 2010 UCLM Intel Corporation, 2010 Agenda Introduction plan Architecture Microarchitecture Logic Silicon ramp Types
a storage location directly on the CPU, used for temporary storage of small amounts of data during processing.
CS143 Handout 18 Summer 2008 30 July, 2008 Processor Architectures Handout written by Maggie Johnson and revised by Julie Zelenski. Architecture Vocabulary Let s review a few relevant hardware definitions:
Chapter 5 Instructor's Manual
The Essentials of Computer Organization and Architecture Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003 Chapter 5 Instructor's Manual Chapter Objectives Chapter 5, A Closer Look at Instruction
Instruction Set Architecture (ISA) Design. Classification Categories
Instruction Set Architecture (ISA) Design Overview» Classify Instruction set architectures» Look at how applications use ISAs» Examine a modern RISC ISA (DLX)» Measurement of ISA usage in real computers
Reduced Instruction Set Computer (RISC)
Reduced Instruction Set Computer (RISC) Focuses on reducing the number and complexity of instructions of the ISA. RISC Goals RISC: Simplify ISA Simplify CPU Design Better CPU Performance Motivated by simplifying
CISC, RISC, and DSP Microprocessors
CISC, RISC, and DSP Microprocessors Douglas L. Jones ECE 497 Spring 2000 4/6/00 CISC, RISC, and DSP D.L. Jones 1 Outline Microprocessors circa 1984 RISC vs. CISC Microprocessors circa 1999 Perspective:
Pipelining Review and Its Limitations
Pipelining Review and Its Limitations Yuri Baida [email protected] [email protected] October 16, 2010 Moscow Institute of Physics and Technology Agenda Review Instruction set architecture Basic
More on Pipelining and Pipelines in Real Machines CS 333 Fall 2006 Main Ideas Data Hazards RAW WAR WAW More pipeline stall reduction techniques Branch prediction» static» dynamic bimodal branch prediction
ELE 356 Computer Engineering II. Section 1 Foundations Class 6 Architecture
ELE 356 Computer Engineering II Section 1 Foundations Class 6 Architecture History ENIAC Video 2 tj History Mechanical Devices Abacus 3 tj History Mechanical Devices The Antikythera Mechanism Oldest known
CS:APP Chapter 4 Computer Architecture. Wrap-Up. William J. Taffe Plymouth State University. using the slides of
CS:APP Chapter 4 Computer Architecture Wrap-Up William J. Taffe Plymouth State University using the slides of Randal E. Bryant Carnegie Mellon University Overview Wrap-Up of PIPE Design Performance analysis
Introduction to RISC Processor. ni logic Pvt. Ltd., Pune
Introduction to RISC Processor ni logic Pvt. Ltd., Pune AGENDA What is RISC & its History What is meant by RISC Architecture of MIPS-R4000 Processor Difference Between RISC and CISC Pros and Cons of RISC
CS352H: Computer Systems Architecture
CS352H: Computer Systems Architecture Topic 9: MIPS Pipeline - Hazards October 1, 2009 University of Texas at Austin CS352H - Computer Systems Architecture Fall 2009 Don Fussell Data Hazards in ALU Instructions
An Introduction to the ARM 7 Architecture
An Introduction to the ARM 7 Architecture Trevor Martin CEng, MIEE Technical Director This article gives an overview of the ARM 7 architecture and a description of its major features for a developer new
CS:APP Chapter 4 Computer Architecture Instruction Set Architecture. CS:APP2e
CS:APP Chapter 4 Computer Architecture Instruction Set Architecture CS:APP2e Instruction Set Architecture Assembly Language View Processor state Registers, memory, Instructions addl, pushl, ret, How instructions
ARM Microprocessor and ARM-Based Microcontrollers
ARM Microprocessor and ARM-Based Microcontrollers Nguatem William 24th May 2006 A Microcontroller-Based Embedded System Roadmap 1 Introduction ARM ARM Basics 2 ARM Extensions Thumb Jazelle NEON & DSP Enhancement
Review: MIPS Addressing Modes/Instruction Formats
Review: Addressing Modes Addressing mode Example Meaning Register Add R4,R3 R4 R4+R3 Immediate Add R4,#3 R4 R4+3 Displacement Add R4,1(R1) R4 R4+Mem[1+R1] Register indirect Add R4,(R1) R4 R4+Mem[R1] Indexed
Microprocessor and Microcontroller Architecture
Microprocessor and Microcontroller Architecture 1 Von Neumann Architecture Stored-Program Digital Computer Digital computation in ALU Programmable via set of standard instructions input memory output Internal
Pentium vs. Power PC Computer Architecture and PCI Bus Interface
Pentium vs. Power PC Computer Architecture and PCI Bus Interface CSE 3322 1 Pentium vs. Power PC Computer Architecture and PCI Bus Interface Nowadays, there are two major types of microprocessors in the
Lecture 7: Machine-Level Programming I: Basics Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com
CSCI-UA.0201-003 Computer Systems Organization Lecture 7: Machine-Level Programming I: Basics Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com Some slides adapted (and slightly modified)
CHAPTER 4 MARIE: An Introduction to a Simple Computer
CHAPTER 4 MARIE: An Introduction to a Simple Computer 4.1 Introduction 195 4.2 CPU Basics and Organization 195 4.2.1 The Registers 196 4.2.2 The ALU 197 4.2.3 The Control Unit 197 4.3 The Bus 197 4.4 Clocks
CHAPTER 7: The CPU and Memory
CHAPTER 7: The CPU and Memory The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint slides
WAR: Write After Read
WAR: Write After Read write-after-read (WAR) = artificial (name) dependence add R1, R2, R3 sub R2, R4, R1 or R1, R6, R3 problem: add could use wrong value for R2 can t happen in vanilla pipeline (reads
ASSEMBLY PROGRAMMING ON A VIRTUAL COMPUTER
ASSEMBLY PROGRAMMING ON A VIRTUAL COMPUTER Pierre A. von Kaenel Mathematics and Computer Science Department Skidmore College Saratoga Springs, NY 12866 (518) 580-5292 [email protected] ABSTRACT This paper
Pipeline Hazards. Arvind Computer Science and Artificial Intelligence Laboratory M.I.T. Based on the material prepared by Arvind and Krste Asanovic
1 Pipeline Hazards Computer Science and Artificial Intelligence Laboratory M.I.T. Based on the material prepared by and Krste Asanovic 6.823 L6-2 Technology Assumptions A small amount of very fast memory
MICROPROCESSOR AND MICROCOMPUTER BASICS
Introduction MICROPROCESSOR AND MICROCOMPUTER BASICS At present there are many types and sizes of computers available. These computers are designed and constructed based on digital and Integrated Circuit
RISC AND CISC. Computer Architecture. Farhat Masood BE Electrical (NUST) COLLEGE OF ELECTRICAL AND MECHANICAL ENGINEERING
COLLEGE OF ELECTRICAL AND MECHANICAL ENGINEERING NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY (NUST) RISC AND CISC Computer Architecture By Farhat Masood BE Electrical (NUST) II TABLE OF CONTENTS GENERAL...
Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit.
Objectives The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Identify the components of the central processing unit and how they work together and interact with memory Describe how
Execution Cycle. Pipelining. IF and ID Stages. Simple MIPS Instruction Formats
Execution Cycle Pipelining CSE 410, Spring 2005 Computer Systems http://www.cs.washington.edu/410 1. Instruction Fetch 2. Instruction Decode 3. Execute 4. Memory 5. Write Back IF and ID Stages 1. Instruction
Addressing The problem. When & Where do we encounter Data? The concept of addressing data' in computations. The implications for our machine design(s)
Addressing The problem Objectives:- When & Where do we encounter Data? The concept of addressing data' in computations The implications for our machine design(s) Introducing the stack-machine concept Slide
Chapter 2 Topics. 2.1 Classification of Computers & Instructions 2.2 Classes of Instruction Sets 2.3 Informal Description of Simple RISC Computer, SRC
Chapter 2 Topics 2.1 Classification of Computers & Instructions 2.2 Classes of Instruction Sets 2.3 Informal Description of Simple RISC Computer, SRC See Appendix C for Assembly language information. 2.4
COMP 303 MIPS Processor Design Project 4: MIPS Processor Due Date: 11 December 2009 23:59
COMP 303 MIPS Processor Design Project 4: MIPS Processor Due Date: 11 December 2009 23:59 Overview: In the first projects for COMP 303, you will design and implement a subset of the MIPS32 architecture
Performance evaluation
Performance evaluation Arquitecturas Avanzadas de Computadores - 2547021 Departamento de Ingeniería Electrónica y de Telecomunicaciones Facultad de Ingeniería 2015-1 Bibliography and evaluation Bibliography
More MIPS: Recursion. Computer Science 104 Lecture 9
More MIPS: Recursion Computer Science 104 Lecture 9 Admin Homework Homework 1: graded. 50% As, 27% Bs Homework 2: Due Wed Midterm 1 This Wed 1 page of notes 2 Last time What did we do last time? 3 Last
Systems I: Computer Organization and Architecture
Systems I: Computer Organization and Architecture Lecture : Microprogrammed Control Microprogramming The control unit is responsible for initiating the sequence of microoperations that comprise instructions.
Management Challenge. Managing Hardware Assets. Central Processing Unit. What is a Computer System?
Management Challenge Managing Hardware Assets What computer processing and storage capability does our organization need to handle its information and business transactions? What arrangement of computers
The AVR Microcontroller and C Compiler Co-Design Dr. Gaute Myklebust ATMEL Corporation ATMEL Development Center, Trondheim, Norway
The AVR Microcontroller and C Compiler Co-Design Dr. Gaute Myklebust ATMEL Corporation ATMEL Development Center, Trondheim, Norway Abstract High Level Languages (HLLs) are rapidly becoming the standard
COMPUTER ORGANIZATION AND ARCHITECTURE. Slides Courtesy of Carl Hamacher, Computer Organization, Fifth edition,mcgrawhill
COMPUTER ORGANIZATION AND ARCHITECTURE Slides Courtesy of Carl Hamacher, Computer Organization, Fifth edition,mcgrawhill COMPUTER ORGANISATION AND ARCHITECTURE The components from which computers are built,
An Overview of Stack Architecture and the PSC 1000 Microprocessor
An Overview of Stack Architecture and the PSC 1000 Microprocessor Introduction A stack is an important data handling structure used in computing. Specifically, a stack is a dynamic set of elements in which
what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?
Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the
A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc
Other architectures Example. Accumulator-based machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc
Compilers I - Chapter 4: Generating Better Code
Compilers I - Chapter 4: Generating Better Code Lecturers: Paul Kelly ([email protected]) Office: room 304, William Penney Building Naranker Dulay ([email protected]) Materials: Office: room 562 Textbook
ELEC 5260/6260/6266 Embedded Computing Systems
ELEC 5260/6260/6266 Embedded Computing Systems Spring 2016 Victor P. Nelson Text: Computers as Components, 3 rd Edition Prof. Marilyn Wolf (Georgia Tech) Course Topics Embedded system design & modeling
picojava TM : A Hardware Implementation of the Java Virtual Machine
picojava TM : A Hardware Implementation of the Java Virtual Machine Marc Tremblay and Michael O Connor Sun Microelectronics Slide 1 The Java picojava Synergy Java s origins lie in improving the consumer
Architectures and Platforms
Hardware/Software Codesign Arch&Platf. - 1 Architectures and Platforms 1. Architecture Selection: The Basic Trade-Offs 2. General Purpose vs. Application-Specific Processors 3. Processor Specialisation
MACHINE ARCHITECTURE & LANGUAGE
in the name of God the compassionate, the merciful notes on MACHINE ARCHITECTURE & LANGUAGE compiled by Jumong Chap. 9 Microprocessor Fundamentals A system designer should consider a microprocessor-based
EECS 427 RISC PROCESSOR
RISC PROCESSOR ISA FOR EECS 427 PROCESSOR ImmHi/ ImmLo/ OP Code Rdest OP Code Ext Rsrc Mnemonic Operands 15-12 11-8 7-4 3-0 Notes (* is Baseline) ADD Rsrc, Rdest 0000 Rdest 0101 Rsrc * ADDI Imm, Rdest
Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level
System: User s View System Components: High Level View Input Output 1 System: Motherboard Level 2 Components: Interconnection I/O MEMORY 3 4 Organization Registers ALU CU 5 6 1 Input/Output I/O MEMORY
(Refer Slide Time: 00:01:16 min)
Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control
FLIX: Fast Relief for Performance-Hungry Embedded Applications
FLIX: Fast Relief for Performance-Hungry Embedded Applications Tensilica Inc. February 25 25 Tensilica, Inc. 25 Tensilica, Inc. ii Contents FLIX: Fast Relief for Performance-Hungry Embedded Applications...
How It All Works. Other M68000 Updates. Basic Control Signals. Basic Control Signals
CPU Architectures Motorola 68000 Several CPU architectures exist currently: Motorola Intel AMD (Advanced Micro Devices) PowerPC Pick one to study; others will be variations on this. Arbitrary pick: Motorola
System i Architecture Part 1. Module 2
Module 2 Copyright IBM Corporation 2008 1 System i Architecture Part 1 Module 2 Module 2 Copyright IBM Corporation 2008 2 2.1 Impacts of Computer Design Module 2 Copyright IBM Corporation 2008 3 If an
12. Introduction to Virtual Machines
12. Introduction to Virtual Machines 12. Introduction to Virtual Machines Modern Applications Challenges of Virtual Machine Monitors Historical Perspective Classification 332 / 352 12. Introduction to
VLIW Processors. VLIW Processors
1 VLIW Processors VLIW ( very long instruction word ) processors instructions are scheduled by the compiler a fixed number of operations are formatted as one big instruction (called a bundle) usually LIW
Course on Advanced Computer Architectures
Course on Advanced Computer Architectures Surname (Cognome) Name (Nome) POLIMI ID Number Signature (Firma) SOLUTION Politecnico di Milano, September 3rd, 2015 Prof. C. Silvano EX1A ( 2 points) EX1B ( 2
Chapter 5, The Instruction Set Architecture Level
Chapter 5, The Instruction Set Architecture Level 5.1 Overview Of The ISA Level 5.2 Data Types 5.3 Instruction Formats 5.4 Addressing 5.5 Instruction Types 5.6 Flow Of Control 5.7 A Detailed Example: The
on an system with an infinite number of processors. Calculate the speedup of
1. Amdahl s law Three enhancements with the following speedups are proposed for a new architecture: Speedup1 = 30 Speedup2 = 20 Speedup3 = 10 Only one enhancement is usable at a time. a) If enhancements
Stack machines The MIPS assembly language A simple source language Stack-machine implementation of the simple language Readings: 9.1-9.
Code Generation I Stack machines The MIPS assembly language A simple source language Stack-machine implementation of the simple language Readings: 9.1-9.7 Stack Machines A simple evaluation model No variables
Software Pipelining. for (i=1, i<100, i++) { x := A[i]; x := x+1; A[i] := x
Software Pipelining for (i=1, i
l C-Programming l A real computer language l Data Representation l Everything goes down to bits and bytes l Machine representation Language
198:211 Computer Architecture Topics: Processor Design Where are we now? C-Programming A real computer language Data Representation Everything goes down to bits and bytes Machine representation Language
CPU Performance Equation
CPU Performance Equation C T I T ime for task = C T I =Average # Cycles per instruction =Time per cycle =Instructions per task Pipelining e.g. 3-5 pipeline steps (ARM, SA, R3000) Attempt to get C down
A SystemC Transaction Level Model for the MIPS R3000 Processor
SETIT 2007 4 th International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 25-29, 2007 TUNISIA A SystemC Transaction Level Model for the MIPS R3000 Processor
EEM 486: Computer Architecture. Lecture 4. Performance
EEM 486: Computer Architecture Lecture 4 Performance EEM 486 Performance Purchasing perspective Given a collection of machines, which has the» Best performance?» Least cost?» Best performance / cost? Design
Computer organization
Computer organization Computer design an application of digital logic design procedures Computer = processing unit + memory system Processing unit = control + datapath Control = finite state machine inputs
This Unit: Putting It All Together. CIS 501 Computer Architecture. Sources. What is Computer Architecture?
This Unit: Putting It All Together CIS 501 Computer Architecture Unit 11: Putting It All Together: Anatomy of the XBox 360 Game Console Slides originally developed by Amir Roth with contributions by Milo
CSC 2405: Computer Systems II
CSC 2405: Computer Systems II Spring 2013 (TR 8:30-9:45 in G86) Mirela Damian http://www.csc.villanova.edu/~mdamian/csc2405/ Introductions Mirela Damian Room 167A in the Mendel Science Building [email protected]
Unit A451: Computer systems and programming. Section 2: Computing Hardware 1/5: Central Processing Unit
Unit A451: Computer systems and programming Section 2: Computing Hardware 1/5: Central Processing Unit Section Objectives Candidates should be able to: (a) State the purpose of the CPU (b) Understand the
The Java Virtual Machine and Mobile Devices. John Buford, Ph.D. [email protected] Oct 2003 Presented to Gordon College CS 311
The Java Virtual Machine and Mobile Devices John Buford, Ph.D. [email protected] Oct 2003 Presented to Gordon College CS 311 Objectives Review virtual machine concept Introduce stack machine architecture
Hardware Assisted Virtualization
Hardware Assisted Virtualization G. Lettieri 21 Oct. 2015 1 Introduction In the hardware-assisted virtualization technique we try to execute the instructions of the target machine directly on the host
