4.6 Linear Programming duality


 Ernest Hudson
 5 years ago
 Views:
Transcription
1 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal objective function value. Example: The value of a maximum feasible flow is equal to the capacity of a cut (separating the source s and the sink t) of minimum capacity. E. Amaldi Foundations of Operations Research Politecnico di Milano 1
2 Motivation: estimate of the optimal value Given max z = 4x 1 + x 2 + 5x 3 + 3x 4 x 1 x 2 x 3 + 3x 4 1 (I) 5x 1 + x 2 + 3x 3 + 8x 4 55 (II) x 1 + 2x 2 + 3x 3 5x 4 3 (III) x i 0 i =1,, 4 find an estimate of the optimal value z *. Any feasible solution is a lower bound. Lower bounds: (0,0,1,0) z * 5 (2,1,1,1/3) z * 15 (3,0,2,0) z * 22 Even if we are lucky, we are not sure it is the optimal solution! E. Amaldi Foundations of Operations Research Politecnico di Milano 2
3 Upper bounds: By multiplying 5x 1 + x 2 + 3x 3 + 8x 4 55 (II) by 5/3, we obtain an inequality that dominates the objective function: 4x 1 + x 2 + 5x 3 + 3x 4 25/3x 1 + 5/3x 2 + 5x /3x 4 275/3 feasible solution z * 275/3. By adding constraints (II) and (III), we obtain: 4x 1 + 3x 2 + 6x 3 + 3x 4 58 z * 58 better upper bound. Linear combinations with nonnegative multipliers of inequality constraints yields valid inequalities E. Amaldi Foundations of Operations Research Politecnico di Milano 3
4 General strategy: Linearly combine the constraints with nonnegative multiplicative factors ( ith constraint multiplied by y i 0 ). first case: y 1 =0, y 2 =5/3, y 3 =0 second case: y 1 =0, y 2 =1, y 3 =1 In general, such linear combination of (I), (II), (III) reads y 1 (x 1 x 2 x 3 +3x 4 ) + y 2 (5x 1 + x 2 + 3x 3 + 8x 4 ) + y 3 (x 1 + 2x 2 + 3x 3 5x 4 ) y y 2 + 3y 3 E. Amaldi Foundations of Operations Research Politecnico di Milano 4
5 which is equivalent to: (y 1 + 5y 2 y 3 ) x 1 + (y 1 + y 2 + 2y 3 ) x 2 + (y 1 + 3y 2 + 3y 3 ) x 3 + (3y 1 + 8y 2 5y 3 ) x 4 y y 2 + 3y 3 (*) Observation: y i 0 so that the inequality direction is unchanged. In order to use the left hand side of (*) as upper bound on z = 4x 1 + x 2 + 5x 3 + 3x 4 E. Amaldi Foundations of Operations Research Politecnico di Milano 5
6 z = 4x 1 + x 2 + 5x 3 + 3x 4 we must have y 1 + 5y 2 y 3 4 y 1 + y 2 + 2y 3 1 y 1 + 3y 2 + 3y 3 5 3y 1 + 8y 2 5y 3 3 y i 0, i =1, 2, 3. In such a case, any feasible solution x satisfies 4x 1 + x 2 + 5x 3 + 3x 4 y y 2 + 3y 3 In particular: z * y y 2 + 3y 3 E. Amaldi Foundations of Operations Research Politecnico di Milano 6
7 Since we look for the best possible upper bound on z * : (D) min y y 2 + 3y 3 Original problem: max z = 4x 1 + x 2 + 5x 3 + 3x 4 y 1 + 5y 2 y 3 4 y 1 + y 2 + 2y 3 1 y 1 + 3y 2 + 3y 3 5 3y 1 + 8y 2 5y 3 3 y i 0 i =1, 2, 3 x 1 x 2 x 3 + 3x 4 1 (I) 5x 1 + x 2 + 3x 3 + 8x 4 55 (II) x 1 + 2x 2 + 3x 3 5x 4 3 (III) x i 0 i =1,, 4 Definition: The problem (D) is the dual problem, while the original problem is the primal problem. E. Amaldi Foundations of Operations Research Politecnico di Milano 7
8 In matrix form: max z = c T x Primal (P) Ax b x 0 min w=b T y Dual (D) A T y c y 0 or y T A c T E. Amaldi Foundations of Operations Research Politecnico di Milano 8
9 Dual problem max z = c T x min w=b T y (P) Ax b x 0 (D) A T y c y 0 Dual of an LP in standard form? min z=c T x Ax = b x 0 E. Amaldi Foundations of Operations Research Politecnico di Milano 9
10 Standard form: (P) min z = c T x Ax = b x 0 with A an mn matrix max c T x A b A x b x 0 dual A x b A T  min (b T b T ) y 1 y 2 y 1 y 2 (A T A T ) c y 1 0, y 2 0 y = y 1 y 2 E. Amaldi Foundations of Operations Research Politecnico di Milano 10
11  min (b T b T ) y 1 y 2 y 1 y 2 (A T A T ) c y 1 0, y 2 0 (D) max w=b T y A T y c y R m y y 2 y 1 unrestricted in sign! min b T (y 2 y 1 ) A T (y 2 y 1 ) c y 1 0, y 2 0 E. Amaldi Foundations of Operations Research Politecnico di Milano 11
12 Property: The dual of the dual problem coincides with the primal problem. max (P) z = c T x Ax b x 0 min (D) w=b T y A T y c y 0 Observation: it doesn't matter which one is a maximum or minimum problem. E. Amaldi Foundations of Operations Research Politecnico di Milano 12
13 General transformation rules Primal (min) Dual (max) m constraints n variables coefficients obj. fct right hand side A equality constraints unrestriced variables inequality constraints ( ) variables 0 ( 0) m variables n constraints right hand side coefficients obj. fct E. Amaldi Foundations of Operations Research Politecnico di Milano 13 A T unrestriced variables equality constraints variables 0 ( 0) inequality constraints ( )
14 Example: (P) max x 1 + x 2 x 1 x 2 2 3x 1 + 2x 2 12 x 1, x 2 0 max x 1 + x 2 x 1  x 2 23x 12x 212 x 1, x 2 0 dual min 2y 112y 2 y 13y 2 1 y 12y 2 1 y 1, y 2 0 E. Amaldi Foundations of Operations Research Politecnico di Milano 14
15 Example: using the above rules (P) max x 1 + x 2 x 1 x x 1 + 2x 2 12 x 1, x 2 0 dual min 2y y 2 y 1 + 3y 2 1 y 1 + 2y 2 1 y 1 0, y 2 0 y~ 1 y 1 min 2y 112y ~ 2 y 13y ~ 2 1 y 12y ~ 2 1 y 1 0, y~ 2 0 E. Amaldi Foundations of Operations Research Politecnico di Milano 15
16 Exercize: (P) min 10x x x 3 2x 1 x 2 1 x 2 + x 3 2 x 1 x 3 = 3 x 1 0, x 2 0, x 3 unrestricted Dual? E. Amaldi Foundations of Operations Research Politecnico di Milano 16
17 Weak duality theorem min (P) z = c T x Ax b x 0 max (D) w=b T y A T y c y 0 X {x : Ax b, x 0} ø and Y {y : A T y c, y 0} ø, For each feasible solution x X of (P) and each feasible solution y Y of (D) we have b T y c T x. E. Amaldi Foundations of Operations Research Politecnico di Milano 17
18 Proof Given x X and y Y, we have Ax b, x 0 and A T y c, y 0 which imply that b T y x T A T y x T c = c T x x T A T c E. Amaldi Foundations of Operations Research Politecnico di Milano 18
19 Consequence: If x * is a feasible solution for the primal problem (P) ( x * X ), y * is a feasible solution (D) ( y * Y ), and the values of the respective objective functions coincide then c T x * = b T y *, x * is optimal for (P) and y * is optimal for (D). E. Amaldi Foundations of Operations Research Politecnico di Milano 19
20 Strong duality theorem If X = {x : Ax b, x 0} ø and min{c T x : x X}isfinite, there exist x * X and y * Y such that c T x * = b T y *. min{ c T x : x X } = max{ b T y : y Y } optimum z = c T x x X feasible for (P) z * = w * w = b T y y Y feasible for (D) E. Amaldi Foundations of Operations Research Politecnico di Milano 20
21 Proof Derive an optimal solution of (D) from one of (P) Given min c T x max y T b (P) Ax = b x 0 (D) y T A c T y R m and x* is an optimal feasible solution of (P) x x* = * B with x * N x * B = B 1 b x * N = 0 provided (after a finite of iterations) by the Simplex algorithm with Bland's rule. E. Amaldi Foundations of Operations Research Politecnico di Milano 21
22 Let us consider y T c T B B 1 y is a feasible solution of (D): c T N = c T N (c T B B 1 )N = c T N y T N 0 T reduced costs of the nonbasic variables optimality of x * y T N c T N E. Amaldi Foundations of Operations Research Politecnico di Milano 22
23 c T B = c T B (c T B B 1 )B = c T B y T B = 0 T y T B c T B reduced costs of the basic variables I y is an optimal solution of (D): y T b= (c T B B 1 )b= c T B (B 1 b) = c T B x * B = c T x * Hence y = y * E. Amaldi Foundations of Operations Research Politecnico di Milano 23
24 Corollary For any pair of primaldual problems (P) and (D), only four cases can arise: P D optimal solution unbounded LP Infeasible LP optimal solution 1) unbounded LP infeasible LP 2) 3) 4) E. Amaldi Foundations of Operations Research Politecnico di Milano 24
25 Strong duality theorem 1) Weak duality theorem 2) and 3) 4) can arise: (P) min 4x 1 2x 2 x 1 + x 2 2 x 1 x 2 1 x 1, x 2 0 (D) max 2y 1 + y 2 y 1 + y 24 y 1 y 22 y 1, y 2 0 empty feasible regions E. Amaldi Foundations of Operations Research Politecnico di Milano 25
26 Economic interpretation The primal and dual problems correspond to two complementary point of views on the same market. Diet problem: n aliments j=1,, n m nutrients i=1,, m (vitamines, ) a ij b i c j quantity of ith nutrient in one unit of jth aliment requirement of ith nutrient cost of one unit of jth aliment E. Amaldi Foundations of Operations Research Politecnico di Milano 26
27 min n j= 1 c j x j (P) n j= 1 a ij x j b i i = 1,..., m x j 0 j = 1,...,n max m i= 1 b i y i (D) m i= 1 a ij y y i i c 0 j j = 1,..., n i = 1,...,m E. Amaldi Foundations of Operations Research Politecnico di Milano 27
28 Interpretation of the dual problem: A company that produces pills of the m nutrients needs to decide the nutrient unit prices y i so as to maximize income. If the costumer buys nutrient pills he will buy b i units for each i, 1 i m. The price of the nutrient pills must be competitive: m i= 1 aij yi c j j = 1,...,n cost of the pills that are equivalent to 1 unit of jth aliment E. Amaldi Foundations of Operations Research Politecnico di Milano 28
29 If both linear programs (P) and (D) admit a feasible solution, the strong duality theorem implies that z * = w * An equilibrium exists (two alternatives with the same cost). Observation: Strong connection with Game theory (zerosum games). E. Amaldi Foundations of Operations Research Politecnico di Milano 29
30 Optimality conditions Given min z = c T x (P) X Ax b x 0 (D) max w=b T y Y y T A c T y 0 two feasible solutions x * X and y * Y are optimal y * T b= c T x * If x j and y i are unknown, it is a single equation in n+m unknowns! E. Amaldi Foundations of Operations Research Politecnico di Milano 30
31 Since y *T b y *T Ax * c T x *, we have Ax * c T y *T b= y *T Ax * and y *T Ax * = c T x * therefore y *T (Ax * b) = 0 and (c T y *T A) x * = 0 0 T 0 0 T 0 m+n equations in n+m unknowns necessary and sufficient optimality conditions! E. Amaldi Foundations of Operations Research Politecnico di Milano 31
32 Complementary slackness conditions x * X and y * Y are optimal solutions of, respectively, (P) and (D) if and only if ith row of A slack s i of ith constraint of (P) y * i (a T i x * b i ) = 0 i = 1,, m (c T j y *T A j ) x * j = 0 j = 1,, n slack of jth constraint of (D) jth column of A At optimality, the product of each variable with the corresponding slack variable of the relative dual is = 0. E. Amaldi Foundations of Operations Research Politecnico di Milano 32
33 Economic interpretation for the diet problem n a j1 ij x * j b i y * i 0 If the optimal diet includes an excess of ith nutrient, the costumer is not willing to pay y * i > 0. y * i 0 n a j1 ij x * j b i If the company selects a price y * i > 0, the costumer must not have an excess of ith nutrient. E. Amaldi Foundations of Operations Research Politecnico di Milano 33
34 m i1 y * i a ij c j x * j 0 it is not convenient for the costumer to buy aliment j price of the pills equivalent to the nutrients contained in one unit of jth aliment is lower than the price of the aliment. x * j 0 m i1 y * i a ij c If costumer includes the jth aliment in optimal diet, the company must have selected competitive prices y * i (the price of the nutrients in pills contained in a unit of jth aliment is not lower than c j ). j E. Amaldi Foundations of Operations Research Politecnico di Milano 34
35 Example: (P) min 13x x 2 + 6x 3 s.t. 5x 1 + x 2 + 3x 3 = 8 3x 1 + x 2 = 3 x 1, x 2, x 3 0 (D) max 8y 1 + 3y 2 s.t. 5y 1 + 3y 2 13 y 1 + y y 1 6 Verify that the feasible x * = (1, 0, 1) is an optimal, non degenerate solution of (P). Suppose it is true and derives, via the complementary slackness conditions, the corresponding optimal solution of (D). E. Amaldi Foundations of Operations Research Politecnico di Milano 35
36 Since (P) is in standard form, the conditions y i * (a T i x * b i ) = 0 are automatically satisfied i, 1 i 2. The condition (c T j y *T A j ) x * j = 0 is satisfied for j = 2 because x * 2= 0. Since x * 1 > 0 and x * 3 > 0, we obtain the conditions: 5y 1 + 3y 2 = 13 3y 1 = 6 and hence the optimal solution y * 1 = 2 and y * 2 = 1 of (D) with b T y * =19 = c T x *. E. Amaldi Foundations of Operations Research Politecnico di Milano 36
. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2
4. Basic feasible solutions and vertices of polyhedra Due to the fundamental theorem of Linear Programming, to solve any LP it suffices to consider the vertices (finitely many) of the polyhedron P of the
More information1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.
Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S
More informationLECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method
LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right
More informationDuality in Linear Programming
Duality in Linear Programming 4 In the preceding chapter on sensitivity analysis, we saw that the shadowprice interpretation of the optimal simplex multipliers is a very useful concept. First, these shadow
More informationIEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2
IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3
More information5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition
More informationPractical Guide to the Simplex Method of Linear Programming
Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear
More informationOptimization in R n Introduction
Optimization in R n Introduction Rudi Pendavingh Eindhoven Technical University Optimization in R n, lecture Rudi Pendavingh (TUE) Optimization in R n Introduction ORN / 4 Some optimization problems designing
More informationChapter 4. Duality. 4.1 A Graphical Example
Chapter 4 Duality Given any linear program, there is another related linear program called the dual. In this chapter, we will develop an understanding of the dual linear program. This understanding translates
More informationWhat is Linear Programming?
Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to
More informationMathematical finance and linear programming (optimization)
Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may
More informationLinear Programming Notes VII Sensitivity Analysis
Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization
More informationLinear Programming: Chapter 11 Game Theory
Linear Programming: Chapter 11 Game Theory Robert J. Vanderbei October 17, 2007 Operations Research and Financial Engineering Princeton University Princeton, NJ 08544 http://www.princeton.edu/ rvdb RockPaperScissors
More informationOPRE 6201 : 2. Simplex Method
OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2
More information1 Solving LPs: The Simplex Algorithm of George Dantzig
Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.
More informationLinear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.
1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that
More informationChapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints
Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and
More informationOperation Research. Module 1. Module 2. Unit 1. Unit 2. Unit 3. Unit 1
Operation Research Module 1 Unit 1 1.1 Origin of Operations Research 1.2 Concept and Definition of OR 1.3 Characteristics of OR 1.4 Applications of OR 1.5 Phases of OR Unit 2 2.1 Introduction to Linear
More information3. Linear Programming and Polyhedral Combinatorics
Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the
More information56:171 Operations Research Midterm Exam Solutions Fall 2001
56:171 Operations Research Midterm Exam Solutions Fall 2001 True/False: Indicate by "+" or "o" whether each statement is "true" or "false", respectively: o_ 1. If a primal LP constraint is slack at the
More informationProximal mapping via network optimization
L. Vandenberghe EE236C (Spring 234) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:
More informationLinear Programming Notes V Problem Transformations
Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material
More information3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max
SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,
More informationNonlinear Programming Methods.S2 Quadratic Programming
Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective
More informationEquilibrium computation: Part 1
Equilibrium computation: Part 1 Nicola Gatti 1 Troels Bjerre Sorensen 2 1 Politecnico di Milano, Italy 2 Duke University, USA Nicola Gatti and Troels Bjerre Sørensen ( Politecnico di Milano, Italy, Equilibrium
More informationSolving Linear Programs
Solving Linear Programs 2 In this chapter, we present a systematic procedure for solving linear programs. This procedure, called the simplex method, proceeds by moving from one feasible solution to another,
More informationSpecial Situations in the Simplex Algorithm
Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the
More informationLinear Programming. March 14, 2014
Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1
More information2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
More informationLinear Programming I
Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins
More informationNonlinear Optimization: Algorithms 3: Interiorpoint methods
Nonlinear Optimization: Algorithms 3: Interiorpoint methods INSEAD, Spring 2006 JeanPhilippe Vert Ecole des Mines de Paris JeanPhilippe.Vert@mines.org Nonlinear optimization c 2006 JeanPhilippe Vert,
More informationLinear Programming in Matrix Form
Linear Programming in Matrix Form Appendix B We first introduce matrix concepts in linear programming by developing a variation of the simplex method called the revised simplex method. This algorithm,
More information26 Linear Programming
The greatest flood has the soonest ebb; the sorest tempest the most sudden calm; the hottest love the coldest end; and from the deepest desire oftentimes ensues the deadliest hate. Th extremes of glory
More informationLinear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.
Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.
More informationThis exposition of linear programming
Linear Programming and the Simplex Method David Gale This exposition of linear programming and the simplex method is intended as a companion piece to the article in this issue on the life and work of George
More informationThe Equivalence of Linear Programs and ZeroSum Games
The Equivalence of Linear Programs and ZeroSum Games Ilan Adler, IEOR Dep, UC Berkeley adler@ieor.berkeley.edu Abstract In 1951, Dantzig showed the equivalence of linear programming problems and twoperson
More informationDuality in General Programs. Ryan Tibshirani Convex Optimization 10725/36725
Duality in General Programs Ryan Tibshirani Convex Optimization 10725/36725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T
More informationSimplex method summary
Simplex method summary Problem: optimize a linear objective, subject to linear constraints 1. Step 1: Convert to standard form: variables on righthand side, positive constant on left slack variables for
More informationStandard Form of a Linear Programming Problem
494 CHAPTER 9 LINEAR PROGRAMMING 9. THE SIMPLEX METHOD: MAXIMIZATION For linear programming problems involving two variables, the graphical solution method introduced in Section 9. is convenient. However,
More information0.1 Linear Programming
0.1 Linear Programming 0.1.1 Objectives By the end of this unit you will be able to: formulate simple linear programming problems in terms of an objective function to be maximized or minimized subject
More information9.4 THE SIMPLEX METHOD: MINIMIZATION
SECTION 9 THE SIMPLEX METHOD: MINIMIZATION 59 The accounting firm in Exercise raises its charge for an audit to $5 What number of audits and tax returns will bring in a maximum revenue? In the simplex
More informationSensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS
Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and
More informationLinear Programming Sensitivity Analysis
Linear Programming Sensitivity Analysis Massachusetts Institute of Technology LP Sensitivity Analysis Slide 1 of 22 Sensitivity Analysis Rationale Shadow Prices Definition Use Sign Range of Validity Opportunity
More information24. The Branch and Bound Method
24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NPcomplete. Then one can conclude according to the present state of science that no
More informationUniversity of Lille I PC first year list of exercises n 7. Review
University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients
More informationLinear Programming: Theory and Applications
Linear Programming: Theory and Applications Catherine Lewis May 11, 2008 1 Contents 1 Introduction to Linear Programming 3 1.1 What is a linear program?...................... 3 1.2 Assumptions.............................
More informationLinear programming and reductions
Chapter 7 Linear programming and reductions Many of the problems for which we want algorithms are optimization tasks: the shortest path, the cheapest spanning tree, the longest increasing subsequence,
More informationLinear Programming Problems
Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number
More informationChapter 2 Solving Linear Programs
Chapter 2 Solving Linear Programs Companion slides of Applied Mathematical Programming by Bradley, Hax, and Magnanti (AddisonWesley, 1977) prepared by José Fernando Oliveira Maria Antónia Carravilla A
More informationApproximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NPCompleteness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
More information1 Linear Programming. 1.1 Introduction. Problem description: motivate by mincost flow. bit of history. everything is LP. NP and conp. P breakthrough.
1 Linear Programming 1.1 Introduction Problem description: motivate by mincost flow bit of history everything is LP NP and conp. P breakthrough. general form: variables constraints: linear equalities
More informationUnit 1. Today I am going to discuss about Transportation problem. First question that comes in our mind is what is a transportation problem?
Unit 1 Lesson 14: Transportation Models Learning Objective : What is a Transportation Problem? How can we convert a transportation problem into a linear programming problem? How to form a Transportation
More informationInternational Doctoral School Algorithmic Decision Theory: MCDA and MOO
International Doctoral School Algorithmic Decision Theory: MCDA and MOO Lecture 2: Multiobjective Linear Programming Department of Engineering Science, The University of Auckland, New Zealand Laboratoire
More informationLecture 2: August 29. Linear Programming (part I)
10725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.
More informationModule1. x 1000. y 800.
Module1 1 Welcome to the first module of the course. It is indeed an exciting event to share with you the subject that has lot to offer both from theoretical side and practical aspects. To begin with,
More informationAdvanced Lecture on Mathematical Science and Information Science I. Optimization in Finance
Advanced Lecture on Mathematical Science and Information Science I Optimization in Finance Reha H. Tütüncü Visiting Associate Professor Dept. of Mathematical and Computing Sciences Tokyo Institute of Technology
More informationMATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all ndimensional column
More informationLinear Programming. April 12, 2005
Linear Programming April 1, 005 Parts of this were adapted from Chapter 9 of i Introduction to Algorithms (Second Edition) /i by Cormen, Leiserson, Rivest and Stein. 1 What is linear programming? The first
More informationOPTIMIZATION. Schedules. Notation. Index
Easter Term 00 Richard Weber OPTIMIZATION Contents Schedules Notation Index iii iv v Preliminaries. Linear programming............................ Optimization under constraints......................3
More informationReduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:
Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in
More informationLecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method
Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming
More informationChapter 6: Sensitivity Analysis
Chapter 6: Sensitivity Analysis Suppose that you have just completed a linear programming solution which will have a major impact on your company, such as determining how much to increase the overall production
More informationStudy Guide 2 Solutions MATH 111
Study Guide 2 Solutions MATH 111 Having read through the sample test, I wanted to warn everyone, that I might consider asking questions involving inequalities, the absolute value function (as in the suggested
More informationNotes on Determinant
ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 918/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without
More informationNOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
More informationLinear Programming II: Minimization 2006 Samuel L. Baker Assignment 11 is on page 16.
LINEAR PROGRAMMING II 1 Linear Programming II: Minimization 2006 Samuel L. Baker Assignment 11 is on page 16. Introduction A minimization problem minimizes the value of the objective function rather than
More informationLU Factorization Method to Solve Linear Programming Problem
Website: wwwijetaecom (ISSN 22502459 ISO 9001:2008 Certified Journal Volume 4 Issue 4 April 2014) LU Factorization Method to Solve Linear Programming Problem S M Chinchole 1 A P Bhadane 2 12 Assistant
More informationTwoStage Stochastic Linear Programs
TwoStage Stochastic Linear Programs Operations Research Anthony Papavasiliou 1 / 27 TwoStage Stochastic Linear Programs 1 Short Reviews Probability Spaces and Random Variables Convex Analysis 2 Deterministic
More information160 CHAPTER 4. VECTOR SPACES
160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results
More informationLECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005
LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005 DAVID L. BERNICK dbernick@soe.ucsc.edu 1. Overview Typical Linear Programming problems Standard form and converting
More informationThe Multiplicative Weights Update method
Chapter 2 The Multiplicative Weights Update method The Multiplicative Weights method is a simple idea which has been repeatedly discovered in fields as diverse as Machine Learning, Optimization, and Game
More informationSolutions Of Some NonLinear Programming Problems BIJAN KUMAR PATEL. Master of Science in Mathematics. Prof. ANIL KUMAR
Solutions Of Some NonLinear Programming Problems A PROJECT REPORT submitted by BIJAN KUMAR PATEL for the partial fulfilment for the award of the degree of Master of Science in Mathematics under the supervision
More information! Solve problem to optimality. ! Solve problem in polytime. ! Solve arbitrary instances of the problem. #approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NPhard problem What should I do? A Theory says you're unlikely to find a polytime algorithm Must sacrifice one of three
More informationSome representability and duality results for convex mixedinteger programs.
Some representability and duality results for convex mixedinteger programs. Santanu S. Dey Joint work with Diego Morán and Juan Pablo Vielma December 17, 2012. Introduction About Motivation Mixed integer
More informationUsing CPLEX. =5 has objective value 150.
Using CPLEX CPLEX is optimization software developed and sold by ILOG, Inc. It can be used to solve a variety of different optimization problems in a variety of computing environments. Here we will discuss
More informationa 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
More informationCreating a More Efficient Course Schedule at WPI Using Linear Optimization
Project Number: ACH1211 Creating a More Efficient Course Schedule at WPI Using Linear Optimization A Major Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial
More informationDuality of linear conic problems
Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least
More informationSolving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
More informationEXCEL SOLVER TUTORIAL
ENGR62/MS&E111 Autumn 2003 2004 Prof. Ben Van Roy October 1, 2003 EXCEL SOLVER TUTORIAL This tutorial will introduce you to some essential features of Excel and its plugin, Solver, that we will be using
More informationPermutation Betting Markets: Singleton Betting with Extra Information
Permutation Betting Markets: Singleton Betting with Extra Information Mohammad Ghodsi Sharif University of Technology ghodsi@sharif.edu Hamid Mahini Sharif University of Technology mahini@ce.sharif.edu
More informationRecovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branchandbound approach
MASTER S THESIS Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branchandbound approach PAULINE ALDENVIK MIRJAM SCHIERSCHER Department of Mathematical
More informationIntegrating Benders decomposition within Constraint Programming
Integrating Benders decomposition within Constraint Programming Hadrien Cambazard, Narendra Jussien email: {hcambaza,jussien}@emn.fr École des Mines de Nantes, LINA CNRS FRE 2729 4 rue Alfred Kastler BP
More information9th MaxPlanck Advanced Course on the Foundations of Computer Science (ADFOCS) PrimalDual Algorithms for Online Optimization: Lecture 1
9th MaxPlanck Advanced Course on the Foundations of Computer Science (ADFOCS) PrimalDual Algorithms for Online Optimization: Lecture 1 Seffi Naor Computer Science Dept. Technion Haifa, Israel Introduction
More informationSystems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
More information15.053/8 February 26, 2013
15.053/8 February 26, 2013 Sensitivity analysis and shadow prices special thanks to Ella, Cathy, McGraph, Nooz, Stan and Tom 1 Quotes of the Day If the facts don't fit the theory, change the facts. 
More informationOptimization Methods in Finance
Optimization Methods in Finance Gerard Cornuejols Reha Tütüncü Carnegie Mellon University, Pittsburgh, PA 15213 USA January 2006 2 Foreword Optimization models play an increasingly important role in financial
More informationSeveral Views of Support Vector Machines
Several Views of Support Vector Machines Ryan M. Rifkin Honda Research Institute USA, Inc. Human Intention Understanding Group 2007 Tikhonov Regularization We are considering algorithms of the form min
More informationCHAPTER 9. Integer Programming
CHAPTER 9 Integer Programming An integer linear program (ILP) is, by definition, a linear program with the additional constraint that all variables take integer values: (9.1) max c T x s t Ax b and x integral
More informationThe Graphical Method: An Example
The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,
More informationApplied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
More informationby the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the yaxis We observe that
More informationIntroduction to Linear Programming (LP) Mathematical Programming (MP) Concept
Introduction to Linear Programming (LP) Mathematical Programming Concept LP Concept Standard Form Assumptions Consequences of Assumptions Solution Approach Solution Methods Typical Formulations Massachusetts
More informationConvex Programming Tools for Disjunctive Programs
Convex Programming Tools for Disjunctive Programs João Soares, Departamento de Matemática, Universidade de Coimbra, Portugal Abstract A Disjunctive Program (DP) is a mathematical program whose feasible
More informationDiscrete Optimization
Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.14.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 20150331 Todays presentation Chapter 3 Transforms using
More information! Solve problem to optimality. ! Solve problem in polytime. ! Solve arbitrary instances of the problem. !approximation algorithm.
Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NPhard problem What should I do? A Theory says you're unlikely to find a polytime algorithm Must sacrifice one of
More informationSolving Linear Systems, Continued and The Inverse of a Matrix
, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing
More informationLecture 1: Systems of Linear Equations
MTH Elementary Matrix Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Lecture 1 Systems of Linear Equations ² Systems of two linear equations with two variables
More informationAn Introduction to Linear Programming
An Introduction to Linear Programming Steven J. Miller March 31, 2007 Mathematics Department Brown University 151 Thayer Street Providence, RI 02912 Abstract We describe Linear Programming, an important
More informationChapter 5. Linear Inequalities and Linear Programming. Linear Programming in Two Dimensions: A Geometric Approach
Chapter 5 Linear Programming in Two Dimensions: A Geometric Approach Linear Inequalities and Linear Programming Section 3 Linear Programming gin Two Dimensions: A Geometric Approach In this section, we
More information