Electromagnetic Foot Step Power Generation
|
|
|
- Cory Fields
- 9 years ago
- Views:
Transcription
1 International Journal of Scientific and Research Publications, Volume 4, Issue 6, June Electromagnetic Foot Step Power Generation Alla Chandra Sekhar 1, B Murali Kishore 2,T Jogi Raju 3 1 B-tech, Mechanical Engineering, Kakinada institute of technology and science, Andhra Pradesh, India. 2 B-tech, Mechanical Engineering, Kakinada institute of technology and science, Andhra Pradesh, India. 3 B-tech, Mechanical Engineering, Kakinada institute of technology and science, Andhra Pradesh, India. Abstract- We are generating electrical power as nonconventional method by simply walking or running on the foot step. Non-conventional energy system is very essential at this time to our nation. Non-conventional energy using foot step is converting mechanical energy into the electrical energy. The main aim of this project is to develop much cleaner cost effective way of power generation method, which in turns helps to bring down the global warming as well as reduce the power shortages. In this project the conversion of the force energy in to electrical energy by using electromagnetic induction. In this project the force energy is converted into electrical energy. The control mechanism carries the copper coil and bar magnetic which is used to generate voltage, a rechargeable battery is used to store this generated voltage. Index Terms- Non-conventional renewable energy source, Electromagnetic principle, etc E I. INTRODUCTION 1.1 Introduction to the project nergy is the ability to do work. While energy surrounds us in all aspects of life, the ability to harness it and use it for constructive ends as economically as possible is the challenge before mankind. Alternative energy refers to energy sources, which are not based on the burning of fossil fuels or the splitting of atoms. The renewed interest in this field of study comes from the undesirable effects of pollution (as witnessed today) both from burning fossil fuels and from nuclear waste by products. Fortunately there are many means of harnessing energy, which have less damaging impacts on our environment [1]. The alternatives are, Solar Wind Power Tides Hydroelectric In addition to these we have developed a new methodology of generating power using human energy and the name of this alternative is a foot step power generation. The usage of traditional power generation. II. LITERATURE SURVEY Method such as burning of coal, wood, diesel (generators) etc is continuously depleting our natural resources such as fossil fuels, which is the demand for power has exceed the supply due to the rising population. In addition to this the traditional methods cause pollution, Global warming is the increase in the average measured temperature of the Earth's near surface air and Oceans since the mid-20th century, and its projected continuation. Global surface temperature increased 0.74 ± 0.18 C (1.33 ± 0.32 F) during the 100 years ending in 2005 [2]. The Intergovernmental Panel on Climate Change (IPCC) concludes that most of the increase since the mid-twentieth century is "very likely" due to the increase in anthropogenic greenhouse gas concentrations. Natural phenomena such as solar variation combined with volcanoes probably had a small warming effect from pre-industrial times to 1950 and a small cooling effect from 1950 [2] onward. Climate model projections summarized by the IPCC indicate that average global surface temperature will likely rise a further 1.1 to 6.4 C (2.0 to 11.5 F) during the twenty-first century [2]. This range of values results from the use of differing scenarios of future greenhouse gas emissions as well as models with differing climate sensitivity. Although most studies focus on the period up to 2100, warming and sea level rise are expected to continue for more than a thousand years even if greenhouse gas levels are stabilized. The delay in reaching equilibrium is a result of the large heat capacity of the oceans. Increasing global temperature is expected to cause sea levels to raise, an increase in the intensity of extreme weather events, and significant changes to the amount and pattern of precipitation, likely including an expanse of the subtropical desert regions. Other expected effects of global warming include changes in agricultural yields, modifications of trade routes, glacier retreat, mass species extinctions and increases in the ranges of disease vectors. Remaining scientific uncertainties include the amount of warming expected in the future, and how warming and related changes will vary from region to region around the globe. Most national governments have signed and ratified the Kyoto Protocol aimed at reducing greenhouse gas emissions, but there is ongoing political and public debate worldwide regarding what, if any, action should be taken to reduce or reverse future warming or to adapt to its expected consequences. Global dimming, the gradual reduction in the amount of global direct irradiance at the Earth's surface, may have partially mitigated global warming in the late 20th century. From 1960 to 1990 human-caused aerosols likely precipitated this effect. Scientists have stated with 66-90% [2] confidence that the effects of human-caused aerosols, along with volcanic activity, have offset some of the global warming, and that greenhouse gases would have resulted in more warming than observed if not for these dimming agents.
2 International Journal of Scientific and Research Publications, Volume 4, Issue 6, June Ozone depletion, the steady decline in the total amount of ozone in Earth's stratosphere, is frequently cited in relation to global warming. Although there are areas of linkage, the relationship between the two is not strong. 2.1 Problem definition: Some developing countries and newly-industrialized countries have several hours of daily power-cuts in almost all cities and villages because the increase in demand for electricity exceeds the increase in electric power generation. People in these countries may use a power-inverter (rechargeable batteries) or a diesel/petrol-run electric generator at their homes during the power- cut. The use of standby generators is common in industrial and IT hubs. This ultimately increases the shortage of power. electrical energy. This project uses electromagnetic induction principle. In this project the pressure energy is converted into electrical energy. The control mechanism carries the copper coil and bar magnetic which is used to generate voltage, a rechargeable battery is used to store this generated voltage. III. BLOCK DIAGRAM 2.2 Objective of project: The main aim of this project is to develop much cleaner cost effective way of power generation method, which in turns helps to bring down the global warming as well as reduce the power shortages. In this project the conversion of the force energy in to electrical energy by using electromagnetic induction. The control mechanism carries the copper coil, bar magnetic and dc rechargeable battery. 2.3 Existing system Other people have developed Rack-pinion [3] (mechanical-toelectrical) and piezoelectric [4] method in the past. The Crowd Farm floor is composed of standard parts that are easily replicated but it is expensive to produce at this stage and produce less power. This technology would facilitate the future creation of new urban landscapes athletic fields with a spectator area, music halls, theatres, nightclubs and a large gathering space for rallies, railway stations, bus stands, subways, airports etc. like capable of Harnessing human location for electricity generation. Fig-1: block diagram IV. LINE DIAGRAM 2.4 Proposed system Proposal for the utilization of waste energy of foot power with human locomotion is very much relevant and important for highly populated countries like India and China where the roads, railway stations, bus stands, temples, etc. are all over crowded and millions of people move around the clock. This whole human/bio energy being wasted if can be made possible for utilization it will be great invention and crowd energy farms will be very useful energy sources in crowded countries. Walking across a "Crowd Farm," floor, then, will be a fun for idle people who can improve their health by exercising in such farms with earning. The electrical energy generated at such farms will be useful for nearby applications. The ultimate aim of this project is to develop much cleaner cost effective way of power generation method, which in turns helps to bring down the global warming as well as reduce the power shortages In this project we are generating electrical power as non-conventional method by simply walking or running on the foot step. Non-conventional energy system is very essential at this time to our nation. Non-conventional energy using foot step is converting mechanical energy into the Fig-2: line diagram 4.1 Step by step procedure Step1: when force is applied on the plate by virtue on stamping on the plate the spring gets compressed
3 International Journal of Scientific and Research Publications, Volume 4, Issue 6, June Step2: The magnet fixed at the top plate hit the copper coil fixed at bottom plate and emf is induced in the copper coil. Step3: The generated voltage is stored in the battery. V. WORKING PRINCIPLE 5.1Electromagnetic Induction We have seen previously that when a DC current pass through a long straight conductor a magnetizing force, H and a static magnetic field, B is developed around the wire. If the wire is then wound into a coil, the magnetic field is greatly intensified producing a static magnetic field around itself forming the shape of a bar magnet giving a distinct North and South pole. very sensitive centre zero moving-coil ammeter, will deflect away from its centre position in one direction only. When the magnet stops moving and is held stationary with regards to the coil the needle of the galvanometer returns back to zero as there is no physical movement of the magnetic field. Likewise, when the magnet is moved away from the coil in the other direction, the needle of the galvanometer deflects in the opposite direction with regards to the first indicating a change in polarity. Then by moving the magnet back and forth towards the coil the needle of the galvanometer will deflect left or right, positive or negative, relative to the directional motion of the magnet. 5.2 Electromagnetic Induction by a Moving Magnet Fig-4: Electromagnetic Induction by a Moving Magnet Fig-3: Air-core Hollow Coil The magnetic flux developed around the coil being proportional to the amount of current flowing in the coils windings as shown. If additional layers of wire are wound upon the same coil with the same current flowing through them, the static magnetic field strength would be increased. Therefore, the magnetic field strength of a coil is determined by the ampere turns of the coil. With more turns of wire within the coil the greater will be the strength of the static magnetic field around it But what if we reversed this idea by disconnecting the electrical current from the coil and instead of a hollow core we placed a bar magnet inside the core of the coil of wire. By moving this bar magnet in and out of the coil a current would be inducted into the coil by the physical movement of the magnetic flux inside it. Likewise, if we kept the bar magnet stationary and moved the coil back and forth within the magnetic field an electric current would be induced in the coil. Then by either moving the wire or changing the magnetic field we can induce a voltage and current within the coil and this process is known as Electromagnetic Induction and is the basic principal of operation of transformers, motors and generators. Electromagnetic Induction was first discovered way back in the 1830 s by Michael Faraday. Faraday noticed that when he moved a permanent magnet in and out of a coil or a single loop of wire it induced an Electromotive Force or emf, in other words a Voltage, and therefore a current was produced [5]. So what Michael Faraday discovered was a way of producing an electrical current in a circuit by using only the force of a magnetic field and not batteries. This then lead to a very important law linking electricity with magnetism, Faraday s Law of Electromagnetic Induction. So how does this work? When the magnet shown below is moved towards the coil, the pointer or needle of the Galvanometer, which is basically a Likewise, if the magnet is now held stationary and ONLY the coil is moved towards or away from the magnet the needle of the galvanometer will also deflect in either direction. Then the action of moving a coil or loop of wire through a magnetic field induces a voltage in the coil with the magnitude of this induced voltage being proportional to the speed or velocity of the movement. Then we can see that the faster the movement of the magnetic field the greater will be the induced emf or voltage in the coil, so for Faraday s law to hold true there must be relative motion or movement between the coil and the magnetic field and either the magnetic field, the coil or both can move. 5.3 Lenz s Law of Electromagnetic Induction Lenz s law is one of the basic laws in electromagnetic induction for determining the direction of flow of induced currents and is related to the law of conservation of energy. According to the law of conservation of energy which states that the total amount of energy in the universe will always remain constant as energy cannot be created nor destroyed. Lenz s law is derived from Michael Faraday s law of induction. One final comment about Lenz s Law regarding electromagnetic induction. We now know that when a relative motion exists between a conductor and a magnetic field, an emf is induced within the conductor [6]. But the conductor may not actually be part of the coils electrical circuit, but may be the coils iron core or some other metallic part of the system, for example, a transformer. The induced emf within this metallic part of the system causes a circulating current to flow around it and this type of core current is known as an Eddy Current. 6.1Compression springs VI. DESCRIPTION OF PARTS
4 International Journal of Scientific and Research Publications, Volume 4, Issue 6, June This is a Non-conventional system Battery is used to store the generated power Less moving parts. Easy maintenance. 7.2 Demerits Only applicable for the particular place. Initial cost of this arrangement is high. Coil winding may damaged when we apply high pressure Fig-5 compression spring Spring free length = 80mm Outer diameter = 40mm Inner diameter = 35mm Quantity =4 6.2 Copper coil Street-1lightening. Colleges. Cinema theatres. Shopping complex. Railway stations. Airports. Bus stand. Speed breakers. Suspension system. Dancing floors. VIII. APPLICATIONS IX. KIT PHOTO REPRESENTATIONS Fig-6 copper coil Gauge size = 18awg Normal wire diameter = Ohms/mgt normal = Magnet Fig-7 Magnet Magnet type NdFeB Rare Earth Permanent Magnet Grade = 35 Length Width =50mm =30mm Fig-6: kit photo representations VII. MERITS AND DEMERITS 7.1 Merits Power generation is simply walking on the step Power also generated by running or exercising on the step. No need fuel input X. CONCLUSIONS The project ELECTRO MAGNETIC FOOT STEP POWER GENERATION is successfully tested and implemented which is the best economical, affordable energy solution to common people. This can be used for many applications in rural areas where power availability is less or totally absence. As India is a developing country where energy
5 International Journal of Scientific and Research Publications, Volume 4, Issue 6, June management is a big challenge for huge population. By using this project we can drive both AC as well as D.C loads according to the force. REFERENCES [1] Energy by Sarena Inmon and Anayeli Quintero [2] Global warming by scontro Similar projects [3] Rack pinion foot step power generation (Foot Step Power Generation system for rural energy application to run AC and DC loads by g.v. anilkumar) [4] Piezoelectric foot step power generation by sagar institute of technology Working principle [5] Electromagnetic induction principle by Faraday, Michael; Day, P. ( ) [6] Lenz's law was first proposed by Heinrich Lenz ( ) AUTHORS First Author Alla Chandra sekhar, Designation : pursuing b-tech 4th year in mechanical engineering, [email protected] Second Author Boddu murali Kishore, Designation : pursuing b-tech 4th year in mechanical engineering, [email protected] Third Author Thumu jogi raju, Designation : pursuing b-tech 4th year in mechanical engineering, [email protected]
Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links 2010-2011
Climate Change: A Local Focus on a Global Issue Newfoundland and Labrador Curriculum Links 2010-2011 HEALTH Kindergarten: Grade 1: Grade 2: Know that litter can spoil the environment. Grade 3: Grade 4:
The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.
260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this
1. The diagram below represents magnetic lines of force within a region of space.
1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest
Objectives. Capacitors 262 CHAPTER 5 ENERGY
Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.
DIRECT CURRENT GENERATORS
DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle
PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.
PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,
DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.
DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into
FACTS ABOUT CLIMATE CHANGE
FACTS ABOUT CLIMATE CHANGE 1. What is climate change? Climate change is a long-term shift in the climate of a specific location, region or planet. The shift is measured by changes in features associated
ElectroMagnetic Induction. AP Physics B
ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday
Motor Fundamentals. DC Motor
Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical
STUDY GUIDE: ELECTRICITY AND MAGNETISM
319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: [email protected] Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three
Magnetism Basics. Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment. Net Effect = Zero!
Magnetism Basics Source: electric currents Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment Net Effect = Zero! Net Effect = Additive! Bipolar: all magnets
Inductors & Inductance. Electronic Components
Electronic Components Induction In 1824, Oersted discovered that current passing though a coil created a magnetic field capable of shifting a compass needle. Seven years later, Faraday and Henry discovered
ELECTRODYNAMICS 05 AUGUST 2014
ELECTRODYNAMICS 05 AUGUST 2014 In this lesson we: Lesson Description Discuss the motor effect Discuss how generators and motors work. Summary The Motor Effect In order to realise the motor effect, the
Chapter 22: Electric motors and electromagnetic induction
Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on
Induced voltages and Inductance Faraday s Law
Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic
Magnetism. Magnetism. Magnetic Fields and Magnetic Domains. Magnetic Fields and Magnetic Domains. Creating and Destroying a Magnet
Magnetism Magnetism Opposite poles attract and likes repel Opposite poles attract and likes repel Like electric force, but magnetic poles always come in pairs (North, South) Like electric force, but magnetic
UTILIZATION OF MECHANICAL ENERGY FROM ROTATION OF CEILING FAN TO GENERATE ELECTRICITY (Mini Generator Using Conventional Machine)
UTILIZATION OF MECHANICAL ENERGY FROM ROTATION OF CEILING FAN TO GENERATE ELECTRICITY (Mini Generator Using Conventional Machine) Vinay Pattanashetti 1, Angelo L Noronha 2, Prashant D Hulaji 3 1, 2, 3
MEASURING INSTRUMENTS. By: Nafees Ahmed, Asstt, Prof, EE Deptt, DIT, Dehradun
MEASURING INSTRUMENTS By: Nafees Ahmed, Asstt, Prof, EE Deptt, DIT, Dehradun MEASURING INSTRUMENTS The device used for comparing the unknown quantity with the unit of measurement or standard quantity is
DEIGN OF SIMPLE RECYCLING AC ELECTRICAL ENERGY GENERATION SYSTEM WITH SMALL DC INPUT & HIGH EFFICIENCY WITH GOOD LOAD HANDLING CAPABILITY
DEIGN OF SIMPLE RECYCLING AC ELECTRICAL ENERGY GENERATION SYSTEM WITH SMALL DC INPUT & HIGH EFFICIENCY WITH GOOD LOAD HANDLING CAPABILITY Shaik Rasheed Ahameed Newton Institute Of Engineering, Alluguraja
Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor
Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor At first glance, a brushless direct-current (BLDC) motor might seem more complicated than a permanent magnet brushed DC motor,
Chapter 7. Magnetism and Electromagnetism ISU EE. C.Y. Lee
Chapter 7 Magnetism and Electromagnetism Objectives Explain the principles of the magnetic field Explain the principles of electromagnetism Describe the principle of operation for several types of electromagnetic
Magnetic Fields and Their Effects
Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases
Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory
Introduction to Electricity & Magnetism Dr Lisa Jardine-Wright Cavendish Laboratory Examples of uses of electricity Christmas lights Cars Electronic devices Human body Electricity? Electricity is the presence
A Practical Guide to Free Energy Devices
A Practical Guide to Free Energy Devices Part PatD9: Last updated: 28th January 2006 Author: Patrick J. Kelly Please note that this is a re-worded excerpt from this patent. If the content interests you,
Physics 30 Worksheet #10 : Magnetism From Electricity
Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron
Worksheet A Environmental Problems
Worksheet A Environmental Problems Vocabulary Can you talk about Environmental issues in English? With a partner, try to explain the terms in the diagram below. Why are the words divided into two groups
Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).
INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes
Inductance. Motors. Generators
Inductance Motors Generators Self-inductance Self-inductance occurs when the changing flux through a circuit arises from the circuit itself. As the current increases, the magnetic flux through a loop due
Digital Energy ITI. Instrument Transformer Basic Technical Information and Application
g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER
The Science and Ethics of Global warming. Global warming has become one of the central political and scientific issues of
The Science and Ethics of Global warming Global warming has become one of the central political and scientific issues of our time. It holds a fascination for scientists because of the tremendous complexity
DC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
DC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
climate science A SHORT GUIDE TO This is a short summary of a detailed discussion of climate change science.
A SHORT GUIDE TO climate science This is a short summary of a detailed discussion of climate change science. For more information and to view the full report, visit royalsociety.org/policy/climate-change
GETTING CURRENT: Generating Electricity Using a Magnet
GETTING CURRENT: Generating Electricity Using a Magnet PLANNING OVERVIEW SUBJECT AREAS: Physical Science, Math, Language Arts TIMING: Preparation: 30 minutes Activity: 1-2 45-minute class periods Summary
Georgia Performance Standards Framework for Physical Science 8 th Grade. Powering Satellites
The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are
Electricity. Electricity: The Mysterious Force. 32 Intermediate Energy Infobook CARBON ATOM SEVERAL COMMON ELEMENTS
Electricity: The Mysterious Force What exactly is the mysterious force we call electricity? It is simply moving electrons. And what exactly are electrons? They are tiny particles found in atoms. Everything
Introduction to Non- Conventional Energy Systems
Introduction to Non- Conventional Energy Systems Dr.L.Umanand L. Umanand NCES/M1/V1/2004 1 Why Fossil Fuel Base? Applications need concentrated energy i.e. high energy densities. Extraction, storage, distribution
Answer Keys to Unit Tests
Reading Geography Series Answer Keys to Unit Tests Unit 1 The Five Themes of Geography Unit 2 Patterns in Physical Geography Unit 3 Natural Resources 7 Portage & Main Press Unit Test for The Five Themes
Nuclear power is part of the solution for fighting climate change
Nuclear power is part of the solution for fighting climate change "Nuclear for Climate" is an initiative undertaken by the members of the French Nuclear Energy Society (SFEN), the American Nuclear Society
Coupled Inductors. Introducing Coupled Inductors
Coupled Inductors From power distribution across large distances to radio transmissions, coupled inductors are used extensively in electrical applications. Their properties allow for increasing or decreasing
Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Pros:
P a g e 1 Generating Current Electricity: Complete the following summary table for each way that electrical energy is generated. Generating Electrical Energy Using Moving Water: Hydro-Electric Generation
GREENHOUSE EFFECT & GLOBAL WARMING - The internet as the primary source of information
GREENHOUSE EFFECT & GLOBAL WARMING - The internet as the primary source of information - The internet as a resource - Use reputable web sites Government agencies: EPA, NASA, DOE, etc Academic Institutions
Energy Transformations
Energy Transformations Concept Sheet Energy Transformations PS.6: The student will investigate and understand states and forms of energy and how energy is transferred and transformed. 1. Energy is the
Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets
Linear DC Motors The purpose of this supplement is to present the basic material needed to understand the operation of simple DC motors. This is intended to be used as the reference material for the linear
The DC Motor/Generator Commutation Mystery. Commutation and Brushes. DC Machine Basics
The DC Motor/Generator Commutation Mystery One small, yet vital piece of the DC electric motor puzzle is the carbon brush. Using the correct carbon brush is a key component for outstanding motor life,
Motors and Generators
Motors and Generators Electro-mechanical devices: convert electrical energy to mechanical motion/work and vice versa Operate on the coupling between currentcarrying conductors and magnetic fields Governed
UNIT 3 AUTOMOBILE ELECTRICAL SYSTEMS
UNIT 3 AUTOMOBILE ELECTRICAL SYSTEMS Automobile Electrical Structure 3.1 Introduction Objectives 3.2 Ignition System 3.3 Requirement of an Ignition System 3.4 Types of Ignition 3.4.1 Battery or Coil Ignition
MCQ - ENERGY and CLIMATE
1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated
Theory of Heating by Induction
CHAPTER 2 Theory of Heating by Induction INDUCTION HEATING was first noted when it was found that heat was produced in transformer and motor windings, as mentioned in the Chapter Heat Treating of Metal
Chapter 2: Forms of Energy
Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3 To describe energy storage
Friday 20 January 2012 Morning
THIS IS A NEW SPECIFICATION H Friday 20 January 2012 Morning GCSE TWENTY FIRST CENTURY SCIENCE PHYSICS A A181/02 Modules P1 P2 P3 (Higher Tier) *A131500112* Candidates answer on the Question Paper. A calculator
Slide 1 / 26. Inductance. 2011 by Bryan Pflueger
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
TEACHER BACKGROUND INFORMATION THERMAL ENERGY
TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to
E/M Experiment: Electrons in a Magnetic Field.
E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.
T E A C H E R S N O T E S
T E A C H E R S N O T E S Focus: Students explore energy: its sources, forms, and transformations. Students also consider the benefits of energy-efficient technologies and energy conservation. Learning
CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS
BOARD OF INTERMEDIATE EDUCATION, A.P., HYDERABAD REVISION OF SYLLABUS Subject PHYSICS-II (w.e.f 2013-14) Chapter ONE: WAVES CHAPTER - 1 1.1 INTRODUCTION 1.2 Transverse and longitudinal waves 1.3 Displacement
Renewable Choice Energy
Catawba College Table of Contents About Renewable Choice The Problem: Electricity Production Today The Solutions: Renewable Energy Sources Renewable Energy Credits (RECs) Who can participate in Renewable
Force on Moving Charges in a Magnetic Field
[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after
ELECTRICAL FUNDAMENTALS
General Electricity is a form of energy called electrical energy. It is sometimes called an "unseen" force because the energy itself cannot be seen, heard, touched, or smelled. However, the effects of
Aircraft Electrical System
Chapter 9 Aircraft Electrical System Introduction The satisfactory performance of any modern aircraft depends to a very great degree on the continuing reliability of electrical systems and subsystems.
Electromagnetic Induction: Faraday's Law
1 Electromagnetic Induction: Faraday's Law OBJECTIVE: To understand how changing magnetic fields can produce electric currents. To examine Lenz's Law and the derivative form of Faraday's Law. EQUIPMENT:
California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping
California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,
Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49
Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large
Build A Simple Electric Motor (example #1)
PHY115 Experiment 11 Build A Simple Electric Motor (example #1) MATERIAL This is the necessary equipment. Present any list of material in your written lab report. 1.5 V battery in series 1 ceramic magnet
The Earth System. The geosphere is the solid Earth that includes the continental and oceanic crust as well as the various layers of Earth s interior.
The Earth System The atmosphere is the gaseous envelope that surrounds Earth. It consists of a mixture of gases composed primarily of nitrogen, oxygen, carbon dioxide, and water vapor. The atmosphere and
Little Barford Power Station Visit Report
Little Barford Power Station Visit Report Exhaust Chimney Computer Control Room Air intake filter Step-Up Transformer Cooling Towers Exciter Steam Turbine Black Start Generator By Stephen Lucas Steam Turbine
WINDING RESISTANCE TESTING
WINDING RESISTANCE TESTING WINDING RESISTANCE TEST SET, MODEL WRT-100 ADWEL INTERNATIONAL LTD. 60 Ironside Crescent, Unit 9 Scarborough, Ontario, Canada M1X 1G4 Telephone: (416) 321-1988 Fax: (416) 321-1991
Scope and Sequence Interactive Science grades 6-8
Science and Technology Chapter 1. What Is Science? 1. Science and the Natural World 2.Thinking Like a Scientist 3. Scientific Inquiry Scope and Sequence Interactive Science grades 6-8 Chapter 2. Science,
ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Work is a transfer of a. energy. c. mass. b. force. d. motion. 2. What
Energy and Energy Transformations Test Review
Energy and Energy Transformations Test Review Completion: 1. Mass 13. Kinetic 2. Four 14. thermal 3. Kinetic 15. Thermal energy (heat) 4. Electromagnetic/Radiant 16. Thermal energy (heat) 5. Thermal 17.
AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.
A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.
Do-Now. 1.) Get out notebook.
Do-Now 1.) Get out notebook. 2.) Answer the following questions on the first clean sheet in your notebook. 1.) What are renewable resources? 2.) What are nonrenewable resources? Alternative Sources of
Inductors. AC Theory. Module 3
Module 3 AC Theory What you ll learn in Module 3. Section 3.1 Electromagnetic Induction. Magnetic Fields around Conductors. The Solenoid. Section 3.2 Inductance & Back e.m.f. The Unit of Inductance. Factors
Chapter 27 Magnetic Field and Magnetic Forces
Chapter 27 Magnetic Field and Magnetic Forces - Magnetism - Magnetic Field - Magnetic Field Lines and Magnetic Flux - Motion of Charged Particles in a Magnetic Field - Applications of Motion of Charged
ASSOCIATION INC Geothermal Energy: New Zealand s most reliable sustainable energy resource
NEW PO Box 11-595 ZEALAND GEOTHERMAL Tel: 64-9-474 2187 ASSOCIATION INC Geothermal Energy: New Zealand s most reliable sustainable energy resource Current Status, Costs and Advantages of Geothermal East
Implications of Abundant Natural Gas
Implications of Abundant Natural Gas JAE EDMONDS AND HAEWON MCJEON APRIL 2013 May 29, 2013 1 Background May 29, 2013 2 The natural gas revolution The application of technologies for accessing unconventional
PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.
PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the
The Next Generation Science Standards (NGSS) Correlation to. EarthComm, Second Edition. Project-Based Space and Earth System Science
The Next Generation Science Standards (NGSS) Achieve, Inc. on behalf of the twenty-six states and partners that collaborated on the NGSS Copyright 2013 Achieve, Inc. All rights reserved. Correlation to,
13 ELECTRIC MOTORS. 13.1 Basic Relations
13 ELECTRIC MOTORS Modern underwater vehicles and surface vessels are making increased use of electrical actuators, for all range of tasks including weaponry, control surfaces, and main propulsion. This
5-Minute Refresher: RENEWABLE ENERGY
5-Minute Refresher: RENEWABLE ENERGY Renewable Energy Key Ideas Renewable energy is a source of energy that can be used and replenished naturally in a relatively short period of time. Non renewable energy
CHAPTER 6 INSTRUMENTATION AND MEASUREMENTS 6.1 MEASUREMENTS
CHAPTER 6 INSTRUMENTATION AND MEASUREMENTS 6.1 MEASUREMENTS Atmospheric electricity is a field that is very easy to get into because it does not require a large capital investment for measuring equipment.
AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
AC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Eðlisfræði 2, vor 2007
[ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has
Module 2.2. Heat transfer mechanisms
Module 2.2 Heat transfer mechanisms Learning Outcomes On successful completion of this module learners will be able to - Describe the 1 st and 2 nd laws of thermodynamics. - Describe heat transfer mechanisms.
Direction of Induced Current
Direction of Induced Current Bar magnet moves through coil Current induced in coil A S N v Reverse pole Induced current changes sign B N S v v Coil moves past fixed bar magnet Current induced in coil as
Magnetostatics (Free Space With Currents & Conductors)
Magnetostatics (Free Space With Currents & Conductors) Suggested Reading - Shen and Kong Ch. 13 Outline Review of Last Time: Gauss s Law Ampere s Law Applications of Ampere s Law Magnetostatic Boundary
Global Warming and Greenhouse Gases Reading Assignment
What is global warming? Global Warming and Greenhouse Gases Imagine you live in a timber shack in Alaska. It's chilly up there, so you build yourself a huge log fire and pile on all the wood you can find.
Line Reactors and AC Drives
Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences
Section 15.1 Energy and Its Forms (pages 446 452)
Section 15.1 and Its Forms (pages 446 452) This section describes how energy and work are related. It defines kinetic energy and potential energy, and gives examples for calculating these forms of energy.
Economic Development and the Risk of Global Climate Change
14 Economic Development and the Risk of Global Climate Change Who is primarily responsible for creating the risk of global climate change? 78 Since the industrial revolution, economic development has been
The electrical energy produced at the gen
300 300 Principles of Power System CHAPTER CHAPTER 12 Distribution Systems General 12.1 Distribution System 12.2 Classification of Distribution Systems 12.3 A.C. Distribution 12.4 D.C. Distribution 12.5
Time allowed: 1 hour 45 minutes
GCSE PHYSICS Foundation Tier Paper 1F F Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the Physics Equation Sheet (enclosed). Instructions Answer
Magnetic Fields. I. Magnetic Field and Magnetic Field Lines
Magnetic Fields I. Magnetic Field and Magnetic Field Lines A. The concept of the magnetic field can be developed in a manner similar to the way we developed the electric field. The magnitude of the magnetic
Magnetic electro-mechanical machines
Magnetic electro-mechanical machines Lorentz Force A magnetic field exerts force on a moving charge. The Lorentz equation: f = q(e + v B) f: force exerted on charge q E: electric field strength v: velocity
SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM
SOLAR PV-WIND HYBRID POWER GENERATION SYSTEM J.Godson 1,M.Karthick 2,T.Muthukrishnan 3,M.S.Sivagamasundari 4 Final year UG students, Department of EEE,V V College of Engineering,Tisaiyanvilai, Tirunelveli,
Sources of electricity
Sources of electricity This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
Sources of electricity
Sources of electricity This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE ESCI 101 - INTRODUCTION TO ENVIRONMENTAL SCIENCE
STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE ESCI 101 - INTRODUCTION TO ENVIRONMENTAL SCIENCE Prepared By: Rajiv Narula, Ph.D. SCHOOL OF SCIENCE, HEALTH, AND CRIMINAL
GENERAL POWER SYSTEM WIRING PRACTICES APPLIED TO TECNADYNE DC BRUSHLESS MOTORS
1/5/2006 Page 1 of 6 GENERAL POWER SYSTEM WIRING PRACTICES APPLIED TO TECNADYNE DC BRUSHLESS MOTORS 1. Introduction The purpose of this application note is to describe some common connection and filtering
Power Plant Electrical Distribution Systems
PDH Course E184 Power Plant Electrical Distribution Systems Gary W Castleberry, PE 2008 PDH Center 2410 Dakota Lakes Drive Herndon, VA 20171-2995 Phone: 703-478-6833 Fax: 703-481-9535 www.pdhcenter.com
